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Abstract 

Although most previous studies on cell formation have involved the assignment of parts and 

machines to cells, in recent years the assignment of workers has also been considered and the 

studies have taken into account the human factor. An important step for the successful 

implementation of a Cellular Manufacturing System is to decide appropriate groups of parts, 

machines, and workers and then assign them to cells. Consideration of the skills of workers and 

machines in processing parts has enhanced cell performance. In this study, the problem of a cubic 

cell formation that takes into account the three-dimensional part-machine-worker matrix is 

addressed, and the minimization of the exceptional element and void as well as the maximization 

of the part quality index is aimed. The mathematical model used in this study was coded in the 

GAMS 24.2.1 software. A hybrid GA-SA approach was also proposed for the solution of large 

instances. The relative Percentage Deviation performance index was utilized to evaluate the 

performance of the algorithm. According to the results, the hybrid technique developed, 

considering technical cell performance criteria together with worker skills, shows promising 

results from the standpoint of the considered objective and the computational time. 
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1. INTRODUCTION 

 

Group Technology (GT) aims to take advantage of the similarity in design and manufacturing by grouping 

similar parts together [1, 2]. Cellular Manufacturing System (CMS), an application of group technology in 

the manufacturing industry, is a widely used and successful technique in terms of shortening set-up times, 

in-process inventory, and requirements of the factory space as well as material routes [3]. With this 

technique, which tries to provide the aforementioned advantages by creating machine cells and part 

families, it is primarily aimed to minimize the part movement between cells [4, 5]. Essential parameters of 

the CMS problem are listed by Rafiee and Mohamaditalab [6]. One of the most important steps in the design 

of CMS is the solution of the cell formation problem. This problem has been discussed frequently in the 

literature [7-10]. The two basic elements that emerge in the solution of this problem are Exceptional 

Element (EE) and void. EE is the displacement that occurs when parts are processed on machines in separate 

cells. The voids inside the cell mean the absence of a link between the machine and the part [11, 12]. 

 

In cell formation literature, besides exact methods, many meta-heuristic techniques have been used. In some 

studies, Particle Swarm Optimization (PSO) [13, 14], Bacteria Foraging Algorithm (BFA) [15], Genetic 

Algorithm (GA) [11, 16], Simulated Annealing (SA) [17, 18] techniques were used. In addition, some 

hybrid [19] and stochastic approaches [20, 21] are also presented to solve the cell formation problem. 
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The problem of cell formation, based on the similarities of parts and machines, is critical for successful 

CMS design. The success of the system depends on the representation of the assumptions of real-life 

problems. Since the human and organizational factors are directly related to the success of the system, it is 

very important to identify and eliminate possible obstacles to the successful implementation of the CMS 

[22]. Although parts and machines have been taken into account in cell formation in most of the studies 

conducted, it has recently emerged that it is important to consider the human factor in these studies. The 

expertise and skills of the workers in machining and using machines seriously affect system quality and 

performance. The cell formation problem, which takes operator assignment into consideration, was first 

described by [23]. Important human issues in literature mainly include; the utilization of workers and 

machines [24-25], schedule plans [26, 27], promotion of workers from one skill to another [28-29], multi-

period planning [30], workload balancing [13, 31], total non-interest workers in cells [32] and hiring, 

training, salary and firing costs [33]. 

 

In the literature, the three-dimensional cell formation problem, in which the workers are assigned to the 

cells as well as the part and the machine, is named as the Cubic Cell Formation (CCF) problem. In the CCF 

problem, the worker dimension is also included in the problem, taking into account technical skills related 

to the use of the equipment and other personal skills. Mahdavi et al. [34] included the operators in cell 

assignment as the third dimension, depending on their performance on the machines. They argued that the 

problem of assigning the operator to parts and machines is very important in order to increase the overall 

performance of the system. Bootaki et al. [25] aimed at maximizing the total part quality, depending on the 

part processing skills of the operators, as well as minimizing the intercellular movement. Mahdavi et al. 

[35] considered the interactional interest of workers, and the epsilon constraint method is presented two 

solve the developed bi-objective model. Sahin and Alpay [11] obtained successful solutions in large sizes 

with GA they developed for the problem of CCF, where they consider the void and EE as objectives. In the 

CCF problem, Bouaziz et al. [36] predicted that assigning more skilled workers from the alternative worker 

cluster to perform the part operation will increase the quality index of the parts to be produced. They 

presented a generalized CCF problem and solved it with a discrete flower pollination algorithm. Here, the 

factors affecting the part quality index are the machine size, machine life, age, and worker dimension, and 

the factors such as experience, skill, and expertise. 

 

The structure of the CCF problem addressed by Bootaki et al. [25] was used in this study. In addition, the 

study of Bouaziz et al. [36] was considered to add the quality dimension to the objective function. The 

prominent contributions of this study can be listed as follows: (1) In addition to the main objectives of cell 

formation problems such as void and EE, a scalarized objective function term that aims to maximize the 

quality index is proposed. (2) A hybrid Genetic Algorithm-Simulated Annealing (GA-SA) is developed. 

(3) It is very important to consider operator capabilities for flexible and effective use of resources. In this 

regard, unlike previous studies, the CCF problem, which takes the quality of the parts into account, the 

performance of the study was tested on the data sets with different meta-heuristics, and the performance of 

the proposed methods was compared with the Relative Percentage Deviation (RPD). 

 

In the following section, the problem of CCF is defined and a linearized mathematical model is explained 

and the proposed solution approaches are presented. The third section includes findings and discussions, 

and the last section gives the results and recommendations. 

 

2. MATERIAL METHOD 

 

In this work, while it is aimed to process similar parts and part operations in the same cell by considering 

minimization of voids, it is also aimed to maximize the part quality index with the minimum transfer of 

skilled workers between cells which are conflicting aims. The elements that make up the quality index are 

considered in part-machine and worker-machine dimensions. Factors related to machine life, precision, and 

other capabilities of the machine affect the part-machine quality. Worker-machine dimension is affected by 

the worker's ability and success in using the machine. 

 

To facilitate the understanding of the problem, the movement between cells is defined for the following 

situations [25]: 
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Case 1: Part, machine, and worker are assigned to the same cell, in which case there is no movement 

between cells. 

Case 2: While the machine and the worker are assigned to the same cell, the part has been assigned to 

another cell. Movement between cells is "1". 

Case 3: While the part and the machine are assigned to the same cell, the worker has been assigned to a 

different cell and the movement between cells is "1". 

Case 4: The worker and the part are assigned to a cell or cells different from the cell to which the machine 

is assigned, and in this case, the movement between cells is "2". 

 

Processing of a part on a machine by a worker is shown with the three-dimensional matrix shown in Figure 

1 similar to Bootaki et al. [25]. Ranking in the matrix is done over integers [1-5]. The value “0” indicates 

that the part cannot be machined by the relevant machine and worker. Past records and experiences are used 

to estimate these values. Workers' experience and skills are also important in determining these values [36].  

 

 
Figure 1. An example of the Part Quality matrix 

 

2.1. Mathematical Model 

 

The mathematical model discussed in the study of Bootaki et al. [25] is used in this study in terms of 

constraints. In addition, the structure similar to the quality index presented in Bouaziz et al. [36] has been 

taken into account in constructing the third part of the objective function. The following assumptions have 

been made in this model: 

- The quality at which a part can be processed by a worker on a convenient machine is expressed by 

integers between “1” and “5”. 

- These above quality values are obtained through observation and based on old records. 

- Workers can work on different machines (worker flexibility). 

- Each job is assigned to one worker. 

Indices 

i:    index for parts (i = 1, 2, . . ., P); 

w:  index for workers (w = 1, 2, . . ., W); 

m:  index for machines (m = 1, 2, . . ., M); 

k:   index for cells (k = 1, 2, . . ., C). 

 

Parameters 

rimw = 1, if ith part can be processed on mth machine by wth  worker; 0, otherwise; 

aim = 1, if ith part needs processing on mth machine; 0, otherwise; 

qimw = quality index of ith part when it is processed in mth machine by wth worker 

Nm= number of identical machines 

LMk = lower bound of machine assignment to cell k 

LPk = lower bound of part assignment to cell k 

LWk = lower bound of worker assignment to cell k 

𝑈𝑄𝐼𝐵 =Upper quality index bound 
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Decision variables 

xmk = 1, if mth machine is assigned to cell k; 0, otherwise 

yik = 1, if ith part is assigned to cell k; 0, otherwise 

zwk = 1, if wth worker is assigned to cell k; 0, otherwise 

dimwk = 1, if ith part is processed by mth machine with wth worker in cell k; 0, otherwise 

 

The objective function and constraints of 0-1 mixed integer mathematical model for the considered problem 

is given as follows: 

 

𝑀𝑖𝑛 𝑍 = 𝛼1 𝑍1 +  𝛼2 𝑍2 +  𝛼3𝑍3                                                                                      (1) 

 

where 

𝑍1 = ∑ [∑ ∑ ∑ 𝑦𝑖𝑘𝑥𝑚𝑘𝑧𝑤𝑘 − ∑ ∑ ∑ 𝑦𝑖𝑘𝑥𝑚𝑘𝑧𝑤𝑘𝑑𝑖𝑚𝑤𝑘

𝑊

𝑤=1

𝑀

𝑚=1

𝑃

𝑖=1

𝑊

𝑤=1

𝑀

𝑚=1

𝑃

𝑖=1

]

𝐶

𝑘=1

 

 

𝑍2 = ∑ ∑ ∑ ∑ [(2𝑑𝑖𝑚𝑤𝑘𝑥𝑚𝑘 − 𝑦𝑖𝑘𝑑𝑖𝑚𝑤𝑘𝑥𝑚𝑘 − 𝑧𝑤𝑘 𝑑𝑖𝑚𝑤𝑘𝑥𝑚𝑘)]

𝑊

𝑤=1

𝑀

𝑚=1

𝐶

𝑘=1

𝑃

𝑖=1

 

 

𝑍3 = 𝑈𝑄𝐼𝐵 − ∑ ∑ ∑ ∑ 𝑞𝑖𝑚𝑤  𝑑𝑖,𝑚,𝑤,𝑘

𝑊

𝑤=1

𝑀

𝑚=1

𝐶

𝑘=1

𝑃

𝑖=1

 

 

 

subject to 

       ∑ zwk = 1

C

k=1

   ∀ w 

 

(2) 

       ∑ 𝑦𝑖𝑘 = 1    ∀ 𝑖

𝐶

𝑘=1

 

 

(3) 

       ∑ 𝑥𝑚𝑘 ≤ 𝑁𝑚   ∀ 𝑚

𝐶

𝑘=1

 

 

(4) 

      ∑ 𝑥𝑚𝑘 ≥ 𝐿𝑀𝑘  ∀ 𝑘

𝑀

𝑚=1

 

 

(5) 

     𝑑𝑖𝑚𝑤𝑘 ≤ 𝑟𝑖𝑚𝑤𝑥𝑚𝑘  ∀ 𝑖, 𝑚, 𝑤, 𝑘 (6) 

     ∑ ∑ 𝑑𝑖𝑚𝑤𝑘 = 𝑎𝑖𝑚

𝑊

𝑤=1

  ∀ 𝑖, 𝑚

𝐶

𝑘=1

 

 

(7) 

     ∑ 𝑦𝑖𝑘 ≥ 𝐿𝑃𝑘   ∀ 𝑘

𝑃

𝑖=1

 

(8) 

     ∑ 𝑧𝑤𝑘 ≥ 𝐿𝑊𝑘   ∀ 𝑘

𝑊

𝑤=1

 

(9) 

     𝑥𝑚𝑘, 𝑦𝑖𝑘 , 𝑧𝑤𝑘 , 𝑑𝑖𝑚𝑤𝑘  ∈  {0,1}  ∀ (𝑖, 𝑚, 𝑤, 𝑘). (10) 

In this model, Z is the objective function to be minimized and it is basically the weighted sum of three 

objectives: the number of total voids (𝑍1), the total number of EEs (𝑍2), and part quality index (𝑍3). Since 

objective function direction of the study is minimization, a transformation in the form of “𝑍3 =
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 𝑈𝑄𝐼𝐵 –  𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒” was applied to combine 𝑍3 with other objectives in the direction of minimization. 

𝑈𝑄𝐼𝐵 here represents the greatest possible value for the selected part quality that can be assigned. 

 

According to Equations (2) and (3) respectively, it is guaranteed that each worker and each part will be 

appointed to only a single cell. Equation (4) ensures that the number of identical machines to be placed in 

a cell does not exceed the number of machines available in that type. Equation (5) makes sure that the 

number of machines assigned to cell k is equal to or greater than LMk. Equation (6) indicates whether the 

type m machines in cell k are used or not. Equation (7) ensures that each type of part will be processed on 

a proper machine by only one worker. Equation (8) identifies the minimum number of parts that should be 

assigned to each cell. Equation (9) specifies the minimum number of workers to be assigned to cell k. 

Finally, decision variables are given in Equation (10).  

 

Here the non-linear objective function terms are linearized by using auxiliary binary variables. The weights 

were assumed to be equal in this study. The mathematical model was linearized similar to the studies of 

Mahdavi et al. [34] and Sahin and Alpay [11] as follows: Auxiliary binary variables 

(e. g. , 𝐸𝑖𝑚𝑤𝑘 , 𝐹𝑖𝑚𝑤𝑘 ,  𝑆𝑖𝑚𝑤𝑘 , 𝐻𝑖𝑚𝑤𝑘,  𝐺𝑖𝑚𝑤𝑘) were used to linearize the non-linear objective-function terms 

that are the multiplication of the binary variables. The non-linear terms in the objective function are 

linearized with 𝐸𝑖𝑚𝑤𝑘 = 𝑥𝑚𝑘𝑑𝑖𝑚𝑤𝑘 ,  𝐹𝑖𝑚𝑤𝑘 = 𝑥𝑚𝑘𝑦𝑖𝑘  𝑧𝑤𝑘, 𝑆𝑖𝑚𝑤𝑘 = 𝑥𝑚𝑘𝑦𝑖𝑘  𝑧𝑤𝑘𝑑𝑖𝑚𝑤𝑘, 𝐻𝑖𝑚𝑤𝑘 =
𝑥𝑚𝑘𝑦𝑖𝑘  𝑑𝑖𝑚𝑤𝑘, and 𝐺𝑖𝑚𝑤𝑘 = 𝑥𝑚𝑘𝑧𝑤𝑘 𝑑𝑖𝑚𝑤𝑘. The model was linearized using the following constraints: 

 

𝑥𝑚𝑘 + 𝑦𝑖𝑘 + 𝑧𝑤𝑘 ≥ 3 𝐹𝑖𝑚𝑤𝑘   ∀𝑖, 𝑚, 𝑤, 𝑘 (11) 

𝑥𝑚𝑘 + 𝑦𝑖𝑘 + 𝑧𝑤𝑘 ≤ 2 +  𝐹𝑖𝑚𝑤𝑘      ∀𝑖, 𝑚, 𝑤, 𝑘                                                                                           (12) 

𝑥𝑚𝑘 + 𝑑𝑖𝑚𝑤𝑘 ≥ 2 𝐸𝑖𝑚𝑤𝑘     ∀𝑖, 𝑚, 𝑤, 𝑘         (13) 

𝑥𝑚𝑘 + 𝑑𝑖𝑚𝑤𝑘 ≤ 1 +  𝐸𝑖𝑚𝑤𝑘     ∀𝑖, 𝑚, 𝑤, 𝑘    (14) 

𝑥𝑚𝑘 + 𝑦𝑖𝑘 +  𝑧𝑤𝑘 + 𝑑𝑖𝑚𝑤𝑘 ≥ 4 𝑆𝑖𝑚𝑤𝑘   ∀𝑖, 𝑚, 𝑤, 𝑘     (15) 

𝑥𝑚𝑘 + 𝑦𝑖𝑘 +  𝑧𝑤𝑘 + 𝑑𝑖𝑚𝑤𝑘 ≤ 3 +  𝑆𝑖𝑚𝑤𝑘   ∀𝑖, 𝑚, 𝑤, 𝑘     (16) 

𝑥𝑚𝑘 + 𝑦𝑖𝑘 +  𝑑𝑖𝑚𝑤𝑘 ≥ 3 𝐻𝑖𝑚𝑤𝑘          ∀𝑖, 𝑚, 𝑤, 𝑘         (17) 

𝑥𝑚𝑘 + 𝑦𝑖𝑘 +  𝑑𝑖𝑚𝑤𝑘 ≤ 2 + 𝐻𝑖𝑚𝑤𝑘        ∀𝑖, 𝑚, 𝑤, 𝑘    (18) 

𝑥𝑚𝑘 + 𝑧𝑤𝑘 + 𝑑𝑖𝑚𝑤𝑘 ≥ 3 𝐺𝑖𝑚𝑤𝑘   ∀𝑖, 𝑚, 𝑤, 𝑘 (19) 

𝑥𝑚𝑘 + 𝑧𝑤𝑘 + 𝑑𝑖𝑚𝑤𝑘 ≤ 2 +  𝐺𝑖𝑚𝑤𝑘  ∀𝑖, 𝑚, 𝑤, 𝑘 (20) 

𝐸𝑖𝑚𝑤𝑘,  𝐹𝑖𝑚𝑤𝑘, 𝑆𝑖𝑚𝑤𝑘 , 𝐻𝑖𝑚𝑤𝑘 , 𝐺𝑖𝑚𝑤𝑘 ∈  {0,1}  ∀ 𝑖, 𝑚, 𝑤, 𝑘. (21) 

 

The linearized model is described as follows: 

 

𝑀𝑖𝑛 𝑍 = 𝛼1  ∑ ∑ ∑ ∑ [𝐹𝑖𝑚𝑤𝑘 − 𝑆𝑖𝑚𝑤𝑘]

𝑊

𝑤=1

𝑀

𝑚=1

𝑃

𝑖=1

𝐶

𝑘=1

+ 𝛼2  ∑ ∑ ∑ ∑ [(2𝐸𝑖𝑚𝑤𝑘 − 𝐻𝑖𝑚𝑤𝑘 − 𝐺𝑖𝑚𝑤𝑘)]

𝑊

𝑤=1

𝑀

𝑚=1

𝐶

𝑘=1

𝑃

𝑖=1

+  𝛼3(𝑈𝑄𝐼𝐵 − ∑ ∑ ∑ ∑ 𝑞𝑖𝑚𝑤  𝑑𝑖,𝑚,𝑤,𝑘

𝑊

𝑤=1

𝑀

𝑚=1

𝐶

𝑘=1

𝑃

𝑖=1

) 

 

subject to constraints (2-21). 

 

When the studies in the same field in the literature are examined, it is seen that the problem is too difficult 

to solve with the existing solvers, even with this new version. [37]. As a result, considering that the multi-

objective nature of the study also increased the difficulty of the problem, it is necessary to develop 

metaheuristics to solve large instances. 
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2.2. Proposed Hybrid Method 

 

Although GA easily provides the best or near best solutions for the global optimization problems with 

shorter solution times, it starts to perform poorly in avoiding local minimums when the size of the problem 

or the number of variables are increased [38]. To overcome this handicap, some hybrid approaches are 

developed that combine the superior features of different meta-heuristics. The success of these hybrid 

methods is proven in several problems and the results show that they can improve the solutions that have 

been obtained by the meta-heuristics [39]. 

 

In this study, a hybrid method that combines GA and SA is proposed. The philosophy behind this approach 

is first to apply single GA with the considered problem to obtain just a feasible solution, then initialize SA 

with this feasible solution and finally try to achieve the optimal solution by using a single SA. Since GA is 

applied to obtain a feasible solution instead of the optimal one and SA is initialized with a feasible solution 

instead of a random one, it is expected to reach the optimal solution or better solutions in shorter solution 

times. The pseudo-code for the proposed hybrid GA-SA method is depicted by the following algorithm.  

 

Proposed GA-SA Algorithm 

begin // Procedure GA 

g ← 0 

initialization 𝑃1(𝐺) 

evaluation 𝑃1(𝐺) 

while not termination criteria do 

begin 

recombination 𝑃1(𝐺) → 𝑃2(𝐺) 

evaluation 𝑃2(𝐺) 

selection 𝑃1(𝐺) and 𝑃2(𝐺) → 𝑃1(𝐺 + 1) 

g ← g + 1 

end 

end 

return 𝑃𝐺𝐴 : the fittest individual from 𝑃1(𝐺) 

 

begin // Procedure SA 

𝑠𝑘 ← 𝑃𝐺𝐴 //initialize SA with the feasible solution achieved by GA 

𝑇 ← 𝑇0 

k ← 1 

while 𝑇 > 𝑇𝑚𝑖𝑛 do 

begin 

generate 𝑠𝑘+1 ← 𝑠𝑘 // neighborhood solution 

Δ ← 𝐸(𝑠𝑘+1) − 𝐸(𝑠𝑘) 

if  Δ < 0 then 

accept 𝑠𝑘+1 

else 

accept 𝑠𝑘+1 considering probability 𝑒
−∆

𝑇  

decrease T 

k ← k + 1 

end 

end 

return 𝑃𝑆𝐴 

 

𝑃𝑏𝑒𝑠𝑡 ← 𝑃𝑆𝐴 //The Best solution with SA is the optimal one for 

  //considered problem.  
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2.3. Genetic Algorithm 

 

As it has been first introduced by Holland [40], GAs are population-based stochastic search techniques that 

are inspired by natural selection and evolution theory proposed by Charles Darwin. GAs can be applied to 

solve both unconstrained and constrained optimization problems in a wide range of engineering areas [41]. 

In GAs, potential solutions to the considered problem are regarded as individuals and encoded by simple 

data structures. These structures are called as chromosomes and each chromosome consists of a number of 

genes which has their own meaning and carry genetic information. Since these algorithms are iterative 

procedures performed over a population of chromosomes, first an initial population is generated. A score 

is appointed to each individual to show the quality of the solution. The fitness value of an individual is 

formed by calculating the objective function value of the corresponding individual according to the 

presented mathematical model. In each generation, random individuals are selected from the current 

population as parents and genetic operators such as crossover and mutation are applied to each parent. 

Afterwards, new generations are formed by selecting the individuals according to their fitness values based 

on survival of the fittest. In successive generations, worse solutions tend to disappear and good solutions 

survive. Thus these survived individuals become parents in the following generations and they result in 

better solutions. The evolutionary process of the GAs continues until the predetermined stopping criterion 

is met. Finally, the individual with the best fitness value is accepted as the best solution [42]. However, this 

best solution is not guaranteed to be the global optimal solution to the considered problem. 

 

2.4. Chromosome Structure 

 

In GAs, potential solutions to the considered problem are encoded by proper data structures or 

chromosomes. The chromosome structure used to express the considered problem in this manuscript, all 

genes have a uniformly distributed random value between 0 and 1. Each chromosome consists of two 

segments. In the first part of the chromosome, the machines, workers, and parts are assigned to the cells, 

while in the second part, the workers are assigned to the machines. 

 

An example representation of the first segment is shown in Figure 2. This segment contains three sub-

segments including 4 machines, 5 workers, and 5 parts. First, the values of each gene in the first segment 

should be decoded to identify which part, machine, and worker to be assigned to each cell. In a 2-cell 

problem, for each value that belongs to the interval [0; 0.5), they are assigned to the first cell as given in 

Figure 3. On the other hand, for values that belong to interval [0.5; 1), they are assigned to cell 2. 

Consequently, Figure 4 represents the decoded version of the chromosome segment. According to Figure 

4, the first and fourth machines are assigned to cell 2, second and third machines to cell 1. Similarly, cell 1 

contains second and third machines, third and fourth workers with first, second, and fourth parts while cell 

2 contains first and fourth machines, first, second and fifth workers with third and fifth parts. 
 

machine worker part 

M1 M2 M3 M4 W1 W2 W3 W4 W5 P1 P2 P3 P4 P5 

Figure 2. The first segment of the chromosome 

 

machine worker  part 

0.6 0.4 0.2 0.8 0.8 0.5 0.4 0.2 0.5 0.2 0.4 0.6 0.3 0.7 

Figure 3. An example representation of the first segment (random values) 

 

machine worker  part 

2 1 1 2 2 2 1 1 2 1 1 2 1 2 

Figure 4. An example representation of the first segment (decoded version) 

 

The second part of the chromosome refers to taking into account the ability of workers to use machines in 

the part-worker assignment. To illustrate the chromosome structure, example problem data seen in Tables 

1, 2, and 3 are used. Table 1 shows the requirement of parts on different machines while Table 2 depicts 

the ability of workers to use machines. For example, the set of workers who can work with the parts on the 
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relevant machines can be seen in Table 2. The candidate workers’ matrix shown in Table 3 is obtained by 

considering the capability of workers to process parts. According to Table 3, UQIB values are defined as 

follows: the maximum quality that can be achieved for the first part with the first machine is “4” with the 

fifth worker. As similar, this value is “5” for the first part on the third machine by the first worker.  Finally, 

for this instance, since 𝑈𝑄𝐼𝐵 represents the greatest possible value for the selected part quality, it is 

calculated as “4+5+2+4+2+3+5=25”.  

 

As seen in Figure 5, the number of sub-segments depends on the number of parts. Each sub-segment has a 

number of genes equal to the number of machines required for the corresponding part. According to Table 

1, the second chromosome segment given in Figure 5 should be divided into five sub-segments. Since part 

1 must be processed in machines {1, 3}; the sub-segment related to part 1 in Figure 5 has a length of 2 

genes. The length of the remaining sub-segments can be easily seen in Figures 5 and decoded version of 

this chromosome is given in Figure 6. 
 

Table 1. Part machine incidence matrix  

Parts Machines 

 1 2 3 4 

1 1 0 1 0 

2 1 0 0 0 

3 0 0 0 1 

4 0 1 0 0 

5 0 0 1 1 
 

Table 2. Machine-worker and part-worker incidence matrices 

Machines Workers Workers Parts 

 1 2 3 4 5  1 2 3 4 5 

1 1 0 1 0 1 1 1 1 0 0 0 

2 0 1 0 1 0 2 0 0 1 0 0 

3 1 0 1 0 0 3 1 0 1 1 1 

4 0 0 1 0 1 4 0 0 1 1 0 

      5 1 1 0 1 1 
 

Table 3. Candidate workers matrix with part quality indexes 

Part Machine Worker 

  1 2 3 4 5 

P1 1 2 0 2 0 4 

 3 5 0 3 0 0 

P2 1 1 0 0 0 2 

P3 4 0 0 4 0 0 

P4 2 0 0 0 2 0 

P5 3 0 0 3 0 0 

 4 0 0 3 0 5 

 

 

Part 1 Part 2 Part 3 Part 4 Part 5 

0.8 0.4 0.9 0.4 0.7 0.1 0.3 

M1 M3 M1 M4 M2 M3 M4 

      ↓ 

     W3 W5 

Figure 5. A representation of the second segment (random values) 
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According to Table 3, part 5 must be processed in machine 3 and machine 4. Besides, part 5 can be 

processed in the fourth machine by the workers {3, 5}.  If the value of the second gene of the fifth sub-

segment in Figure 5 (the gene related to a worker who processes part five in machine four) belongs to [0; 

0.5), this means that the third worker will be responsible for machining the fifth part on the fourth machine. 

Similarly, if a random value corresponding to the interval [0.5; 1) is generated, then the fifth worker will 

be responsible for this process, respectively.  
 

Part 1 Part 2 Part 3 Part 4 Part 5 

3 1 5 3 4 3 3 

M1 M3 M1 M4 M2 M3 M4 

      ↓ 

     W3 W5 

Figure 6. An example representation of the second segment (decoded version) 

 

2.5. Fitness Evaluation and Constraint Handling 
 

Two main methods can be used to include constraints to the model while applying GA to constrained 

optimization problems. Constraints can be handled by using penalty functions or by the chromosome 

structure itself. In this manuscript, most of the constraints in the proposed model are directly included in 

the solution by using the proposed chromosome structure. However, the constraints (5), (8), and (9) in the 

mathematical model cannot be handled by the proposed chromosome structure. These constraints are 

violated when there isn’t any machine assigned in any cell, there isn’t any worker assigned in any cell and 

there isn’t any part assigned in any cell. Penalty functions are defined for each of them as given below: 

 

𝐶𝑃𝑀 = {
𝑝𝑒𝑛_𝑣𝑎𝑙𝑢𝑒_𝑚𝑎𝑐ℎ𝑖𝑛𝑒, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠𝑛’𝑡 𝑎𝑛𝑦 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛 𝑎𝑛𝑦 𝑐𝑒𝑙𝑙

0,                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              
 

 

𝐶𝑃𝑊 = {
𝑝𝑒𝑛_𝑣𝑎𝑙𝑢𝑒_𝑤𝑜𝑟𝑘𝑒𝑟, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠𝑛’𝑡 𝑎𝑛𝑦 𝑤𝑜𝑟𝑘𝑒𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛 𝑎𝑛𝑦 𝑐𝑒𝑙𝑙

0,                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              
 

 

𝐶𝑃𝑃 = {
𝑝𝑒𝑛_𝑣𝑎𝑙𝑢𝑒_𝑝𝑎𝑟𝑡,               𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠𝑛’𝑡 𝑎𝑛𝑦 𝑝𝑎𝑟𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑖𝑛 𝑎𝑛𝑦 𝑐𝑒𝑙𝑙

0,                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              
. 

 

In the above functions, the penalty values; pen_value_machine, pen_value_worker, and pen_value_part 

are determined as “50000” for all unsatisfied constraints mentioned above for the considered problem. 

Finally, these penalties are added to the objective function to form the fitness function. Therefore, the fitness 

function of the considered problem similar becomes as follows: 

 

𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑍 + 𝐶𝑃𝑀 + 𝐶𝑃𝑊 + 𝐶𝑃𝑃 .   (22) 

  

2.6. Simulated Annealing 
 

SA is another stochastic search technique which is first introduced by Kirkpatrick [43] and is too often used 

to solve problems with a discrete search space such as routing problems, travel salesman problems, task 

scheduling, etc. It has been developed based on the analogy between the way in which the crystalline 

structure of metal achieves near the lowest possible energy level during the annealing procedure of solids 

and the way in which a function may reach a minimum during a stochastic search of the solution space [44]. 

In this context, the states of the solid represent possible solutions to the optimization problem while the 

energy levels of each stat correspond to the objective function values of the related solution. Therefore, the 

lowest energy level represents the optimal solution for the problem [45].  SA is a kind of iterative process 

and at each iteration new random solutions are generated for the current solutions. These new solutions are 

also called as neighborhood solutions. At the end of each iteration, all neighborhood solutions that lower 

the objective function value of the current solution are accepted. On the other hand, the neighborhood 

solutions that raise the objective function can be also accepted as a new solution according to the predefined 
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acceptance probability function. Since some worse new solutions are also accepted with a certain 

probability, SA performs successfully in avoiding to stuck at local minimums. These iterations are repeated 

until predetermined stopping criteria are met. 
 

2.7. Deriving Neighborhood Solutions 

 

In SA, it is tried to achieve the optimal solution by means of the neighborhood solutions derived from the 

current solution in each iteration. Therefore, the mechanism behind generating neighborhood solutions and 

the quality of these have an important role on the performance of the algorithm.  

 

In this manuscript, SA is applied by expressing the problem with the chromosome structure mentioned 

given in Figure 6 which can be also considered as the decoded version of the main chromosome that consists 

of real numbers between [0;1]. By considering this decoded chromosome structure, a neighborhood solution 

is generated by modifying the value of a randomly selected gene.  

 

If the selected gene takes place in the first segment, then it means that the assignments of machines, workers, 

or parts to cells will be modificated. In this case, the value of the selected gene is replaced with remaining 

cells one by one in random order. For a 4-cell problem, consider the chromosome structure whose first 

segment is given in Figure 7 (a). Assume that the 6th gene is randomly selected to generate a neighborhood 

solution. Therefore, the value of the 6th gene will be replaced by the elements of the list which includes the 

remaining cells in a random order as given in Figure 7 (b). After each replacement, problem constraints are 

checked whether this newly generated solution is feasible or not. If the generated solution is feasible, then 

it is accepted as the neighborhood solution. Otherwise, the replacement procedure continues until a feasible 

solution is obtained. If there isn’t any feasible solution is achieved after all cell values are tested, then the 

current solution is considered as the neighborhood solution. An example of a generated neighborhood 

solution is given in Figure 7 (c). 

 

machine worker  part 

2 1 1 2 2 2 1 1 2 1 1 2 1 2 

(a) 

machine worker  part 

2 1 1 2 2 2 1 1 2 1 1 2 1 2 

     ↓         

     3 1 4       

(b) 

machine worker  part 

2 1 1 2 2 4 1 1 2 1 1 2 1 2 

(c) 

Figure 7. Example representation of chromosomes a) first segment of the chromosome          

b) modifying the randomly selected gene c) generated neighborhood solution 

 

Since the gene to be modificated is selected randomly, it is also possible that it can be located in the second 

segment and differences may occur in the worker-part assignment, depending on the ability to use the 

machines. For a 4-cell problem, consider the chromosome structure whose second segment is given in 

Figure 8 (a). This section shows the relationship between the assignment of workers and related machines. 

Assume that 1st gene of this segment is randomly selected to generate a neighborhood solution. Therefore, 

the selected gene is replaced by the elements of the list which includes the remaining workers in a random 

order who are able to use this machine as given in Figure 8 (b). According to Table 3, the first part in the 

first machine can be processed by workers {1, 3, 5}. So, the list includes workers 1 and 5. 
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Part 1 Part 2 Part 3 Part 4 Part 5 

3 1 5 3 4 3 3 

M1 M3 M1 M4 M2 M3 M4 

(a) 

Part 1 Part 2 Part 3 Part 4 Part 5 

3 1 5 3 4 3 3 

M1 M3 M1 M4 M2 M3 M4 

↓       

5 1      

(b) 

Part 1 Part 2 Part 3 Part 4 Part 5 

5 1 5 3 4 3 3 

M1 M3 M1 M4 M2 M3 M4 

(c) 
 

Figure 8. An example representation of chromosomes a) The Second segment of the chromosome            

b) Modifying the randomly selected gene c) Generated neighborhood solution 
 

After each replacement, obtained interim solution is checked whether it is feasible or not. If this interim 

solution is feasible, then it is accepted as the neighborhood solution. Otherwise, the replacement procedure 

continues until a feasible solution is obtained. If there isn’t any feasible solution is reached after all available 

workers are tested, then the current solution is considered as the neighborhood solution. An example of a 

generated neighborhood solution is given in Figure 8 (c). 
 

3. RESEARCH FINDINGS AND DISCUSSIONS 

 

The data set used in the study was first proposed by Mahdavi et al. [34]. In addition, due to the nature of 

the problem, the quality matrix has been added in this work and the data set is presented in Appendix A. In 

the analysis, the GAMS 24.2.1 software was run in a limited time (10800 sec) and the results were recorded. 

Although the best solutions for the small size problems are achieved with GAMS 24.2.1 by using the 

proposed model, it fails to obtain proven optimal solutions as the model size has increased. Therefore, a 

hybrid GA-SA method is coded in MATLAB R2013a software and applied to solve large-scale problems 

on a PC with an Intel (R) Core (TM) 2 duo CPU 2.53 GHz processor and 4 GB of RAM. 

 

3.1. Parameter Setting and Stopping Criterion 

 

It is obvious that the solution quality and the performance of metaheuristics largely depend on the choice 

of parameters. In this study, the parameters given in Sahin and Alpay [11] are used by considering the levels 

obtained by the Taguchi method. Since in this study GA is applied to achieve an initial solution point for 

SA instead of the optimal solution, population size and number of generations are taken lower than the ones 

given in Sahin and Alpay [11]. Roulette selection technique was used and "adaptive feasible mutation" in 

MATLAB R2013a [46] was selected as the mutation function. Besides, the initial temperature value used 

in SA was specified according to the problem sizes and taken as 500 for small size problems and 750 for 

large size problems. At the end of each outer iteration, the temperature value is updated by using standard 

geometric cooling scheduling as T_new=0.9×T_old. For each temperature value, the number of generated 

neighborhood solutions is selected as 100 for small size problems and 150 for large size problems. For all 

test problems, SA terminates when the temperature value becomes lower than 0.5. Selected parameters are 

given in Table 4. 
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Table 4. Parameters for Hybrid GA-SA 

Parameters  Small-scale Large-scale 

Population size  50 150 

Max. Generation  75 150 

Crossover Ratio  0.9 0.9 

Mutation Ratio  0.1 0.1 

Initial Temperature  500 750 

Minimum Temperature  0.5 0.5 

Number of Iteration  100 150 

 

3.2. Comparison of the Results 

 

The aforementioned eleven test problems were solved by GAMS, GA, and GA-SA hybrid techniques. First 

of all, problems were solved with 25 repetitions by the chosen GA parameters, the best, mean, and worst 

values and the mean of solution time were recorded for each problem. For the GA-SA hybrid method, the 

best solution of the repeated 25 trials obtained with the best parameter levels of GA was assumed as the 

initial solution in SA. Afterwards, solution results and solution times on average of 25 replicates were 

recorded. The results obtained are included in Table 5. Since all constraints are satisfied and the function 

does not receive a penalty,  𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠 and 𝑧3 are equal to each other in Table 5 (see Equation (11)).  

 

Table 5. Comparison of mathematical model, GA and GA-SA result 

* Global optimum      ** Best integer found after 5 hours 

 

The best solution was found with GAMS in a limited time for all of the small problems and for the first of 

the large problems. For these problems, the best solutions were found in a short time with the GA and GA-

SA approaches. This situation can be considered as an indication that the proposed meta-heuristics are 

working. It was seen that as the size of the problem increased, the best results that could be obtained with 

the GA-SA technique were better. Besides, the hybrid method seems to be more successful than the GA 

technique in terms of average elapsed time. 

 

In addition, the performances for the proposed methods were compared with the RPD criterion [47]. As 

listed in Table 6, RPDs and mean RPDs (ARPDs) were calculated by Equations (23) - (24) with repeated 

test results 

 

RPD =
|𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑆𝑜𝑙 − 𝐵𝑒𝑠𝑡𝑆𝑜𝑙|

𝐵𝑒𝑠𝑡𝑆𝑜𝑙
𝑥 100                              

(23) 

ARPD = 𝑅𝑃𝐷̅̅ ̅̅ ̅̅  =
∑ 𝑅𝑃𝐷𝑖

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛
𝑖=1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛
. 

  (24) 

 

Size Test Problem  

(part, 

machine, 

worker, cell) 

GAMS  Proposed GA    Proposed GA-SA   

 

 

 

 

 

 

 

 
 

Solution 

Elapsed 

Time 

(s) 

 

SolBest SolAvg SolWorst 

Avg. 

Elapsed 

Time 

(s) 

 

SolBest SolAvg SolWorst 

Avg.  

Elapsed 

Time  

(s) 

Small p1 (4,4,4,2) 12* < 1  12 12.24 13 3.63  12 12.08 13 3.20 

p2 (5,4,5,2) 15* < 1  15 16.04 17 3.38  15 15.80 17 3.11 

p3 (6,5,5,2) 20* < 1  20 20.36 22 4.39  20 20.72 24 3.81 

p4 (10,7,4,2) 34* < 1  34 35.00 49 10.16  34 35.24 47 9.27 

p5 (10,7,6,3) 29* 333  29 32.00 37 5.44  29 30.68 37 5.28 

Large p1 (12,8,6,3) 32* 367  32 35.76 43 19.62  32 34.12 41 17.39 

p2 (12,8,7,3) 35** > 10800  34 38.44 45 19.38  34 37.40 43 19.38 

p3 (15,10,6,3) 51** > 10800  51 59.00 64 27.78  51 55.64 63 28.88 

p4 (15,10,6,4) 43** > 10800  43 47.48 53 26.42  42 45.20 52 22.74 

p5 (20,10,6,3) 68** > 10800  63 70.20 80 37.38  62 69.96 78 43.07 

p6 (20,10,6,4) 58** > 10800  54 61.72 77 34.12  51 57.48 64 36.96 
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While the solution of each problem obtained by the algorithm was expressed as 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑆𝑜𝑙, the best 

solution of the problem among the trials was expressed as 𝐵𝑒𝑠𝑡𝑆𝑜𝑙. In order to compare the performance of 

the methods, RPD and  𝑅𝑃𝐷̅̅ ̅̅ ̅̅  values were calculated in all problem dimensions. In addition, the arithmetic 

mean of the mean of  𝑅𝑃𝐷̅̅ ̅̅ ̅̅  values based on the problem dimensions was also examined. Table 6 shows the 

𝑅𝑃𝐷̅̅ ̅̅ ̅̅  values for each problem in the framework of methods. 

 

Table 6. Comparison of proposed methods according to 𝑅𝑃𝐷̅̅ ̅̅ ̅̅  values 

 Solution Techniques  
GA GA-SA 

Small Instances 𝑹𝑷𝑫̅̅ ̅̅ ̅̅ ̅ 𝑹𝑷𝑫̅̅ ̅̅ ̅̅ ̅ 

P1 2.00 0.67 

P2 6.93 5.33 

P3 1.80 3.60 

P4 2.94 3.65 

P5 10.34 5.79 

Average 4.80 3.81 

Large Instances   

P1 11.75 6.63 

P2 13.06 10.00 

P3 15.69 9.09 

P4 13.05 7.62 

P5 13.23 12.84 

P6 21.02 12.71 

Average 14.63 9.82 

 

According to Table 6, GA has reached a solution with an average deviation of 4.80% for small size 

problems and 14.63% for large size problems from the best solutions reached. On the other hand, in the 

GA-SA hybrid method, an average deviation of 3.81% for small size problems and 9.82% for large size 

problems was obtained. As a result, the lowest average 𝑅𝑃𝐷̅̅ ̅̅ ̅̅  values were obtained for the GA-SA hybrid 

method. The results showed that the proposed GA-SA hybrid method was more successful in convergence 

to the best solution in iterative problems of different dimensions. 

 

4. CONCLUSIONS 

 

Considering the importance of the ability of the workers in using the machines and processing the part, the 

worker has been included in the studies as a dimension in addition to the part and machine size in recent 

years. This study is important in terms of considering the worker as a dimension in the CMS. Part quality 

is included in the problem objectives as well as void and EE, and it is important for improving the quality 

of the produced parts and customer satisfaction. GA and GA-SA meta-heuristics, which were also 

developed in the RPD indicator, proved the success of large-scale. 

 

For the small-scale problems, GAMS gives the proven optimal results for the considered problem in a 

reasonable time period and easily outperforms both GA and GA-SA in terms of average solution time. It is 

obvious that the mathematical model of the considered problem is successfully represented by the proposed 

chromosome structure and the proposed constraint handling mechanism. Besides, the proposed procedure 

for generating neighborhood solutions helps SA to search the solution space more efficiently. When the 

problem size is increased, GAMS starts to have difficulties obtaining the best solutions, and the solution 

times are considerably increased. For these large-scale problems, GA and proposed GA-SA are successfully 

performed and they both give better solutions in shorter durations compared to GAMS.  

 

The lowest average 𝑅𝑃𝐷̅̅ ̅̅ ̅̅  values were obtained for the GA-SA hybrid method. Neither GA nor GA-SA 

becomes dominant in terms of RPD values for small-scale problems and they tend to have similar average 

RPD values. But GA-SA starts to outperform GA with having lower RPD values for each large-scale 
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problem. Lower RPD values for GA-SA is an indication of the success of the algorithm to find the best or 

best possible in different runs. 

 

This study reveals also many avenues for future work. It may be considered to integrate issues closely 

related to human factors such as teamwork, synergy, competition, and incentives, into models. The 

psychological factors of the operators have not been taken into account in CMS studies due to the difficulty 

of being included in the problem. Environmental factors are also disregarded. To consider the 

environmental aspect in cell formation problem, minimization of different kinds of wastes such as CO2 

emission, energy loss, raw material scrap, etc. can be considered in future cubic cell work. In particular, the 

inclusion of ergonomic factors that may have an impact on work performance is also open to investigation. 

Additionally, noise dosage to prevent worker hear loss can be considered as a social constraint to minimize 

and balance noise exposure that may cause social and physical problems. The validity and success of the 

model will increase by including the mentioned situations. 

 

CONFLICTS OF INTEREST  

 

No conflict of interest was declared by the authors. 

 

REFERENCES 

 

[1] Danilovic, M., Ilic, O., “A novel hybrid algorithm for manufacturing cell formation problem”, 

Expert Systems with Applications, 135: 327-350, (2019). 

 

[2] Li, M., “A novel algorithm of cell formation with alternative machines and multiple-operation-

type machines”, Computers & Industrial Engineering, 154: 107172, (2021). 

 

  [3] Rafiee, M., Kayvanfar, V., Mohammadi, A., Werner, F., “A robust optimization approach for a 

cellular manufacturing system considering skill-leveled operators and multi-functional machines”, 

Applied Mathematical Modelling, 107: 379-397, (2022). 

 

[4] Ameli, M. S. J., Arkat, J., “Cell formation with alternative process routings and machine reliability 

consideration”, The International Journal of Advanced Manufacturing Technology, 35: 761–768, 

(2008). 

 

[5] Dalfard, V.M., “New mathematical model for problem of dynamic cell formation based on number 

and average length of intra and intercellular movements”, Applied Mathematical 

Modelling, 37(4): 1884-1896, (2013). 

 

[6] Rafiee, M., Mohamaditalab, A., “Investigation into skill leveled operators in a multi-period 

cellular manufacturing system with the existence of multi-functional machines”, Scientia Iranica, 

27(6): 3219-3232, (2020). 

 

[7] Brown, J. R., “A capacity constrained mathematical programming model for cellular 

manufacturing with exceptional elements”, Journal of Manufacturing Systems, 37: 227-232, 

(2015). 

 

[8] Bychkov, I., Batsyn, M., “An efficient exact model for the cell formation problem with a variable 

number of production cells”, Computers & Operations Research, 91: 112-120, (2018). 

 

[9] Sahin, Y. B., Alpay, S., “A New Mathematical Model for the Integrated Solution of Cell 

Formation and Part Scheduling Problem”, Gazi University Journal of Science, 32(4): 1196-1210, 

(2019). 

 

[10] Danilovic, M., Ilic, O., “A novel hybrid algorithm for manufacturing cell formation 

problem”, Expert Systems with Applications, 135: 327-350, (2019). 



766  Burak URAZEL, Yeliz BURUK SAHIN / GU J Sci, 36(2): 752-771 (2023) 

 
 

 

[11] Sahin, Y. B., Alpay, S., “A metaheuristic approach for a cubic cell formation problem”, Expert 

Systems with Applications, 65: 40-51, (2016). 

 

[12] Firouzian, S., Mahdavi, I., Paydar, M. M., Saadat, M., “Simulated annealing and artificial immune 

system algorithms for cell formation with part family clustering”, Journal of Industrial 

Engineering and Management, 7(1): 191-219, (2020). 

 

[13] Feng, H., Da, W., Xi, L., Pan, E., Xia, T., “Solving the integrated cell formation and worker 

assignment problem using particle swarm optimization and linear programming”, Computers & 

Industrial Engineering, 110: 126-137, (2017). 

 

[14] Mahmoodian, V., Jabbarzadeh, A., Rezazadeh, H., Barzinpour, F., “A novel intelligent particle 

swarm optimization algorithm for solving cell formation problem”, Neural Computing and 

Applications, 31(2): 801-815, (2019). 

 

[15] Liu, C., Wang, J., Leung, J. Y. T., Li, K., “Solving cell formation and task scheduling in cellular 

manufacturing system by discrete bacteria foraging algorithm”, International Journal of 

Production Research, 54(3): 923-944, (2016). 

 

[16] Hazarika, M., Laha, D., “Genetic algorithm approach for machine cell formation with alternative 

routings”, Materials Today, 5(1): 1766-1775, (2018). 

 

[17] Adinarayanan, A., Uthayakumar, M., Prabhakaran, G., “Machine cell formation using simulated 

annealing algorithm in cellular manufacturing system”, International Journal of Computer Aided 

Engineering and Technology, 10(1-2): 111-125, (2018). 

 

[18] Kamalakannan, R., Pandian, R. S., Sivakumar, P., “A simulated annealing for the cell formation 

problem with ratio level data”, International Journal of Enterprise Network Management, 10(1): 

78-90, (2019). 

 

[19] Deep, K., “Machine cell formation for dynamic part population considering part operation trade-

off and worker assignment using simulated annealing-based genetic algorithm”, European Journal 

of Industrial Engineering, 14(2): 189-216, (2020). 

 

[20] Ariafar, S., Firoozi, Z., Ismail, N., A triangular stochastic facility layout problem in a cellular 

manufacturing system. In international conference on Mathematical Sciences and Statistics, 

Springer, Singapore, 45-52, (2013). 

 

[21] Zohrevand, A. M., Rafiei, H., Zohrevand, A. H., “Multi-objective dynamic cell formation 

problem: A stochastic programming approach”, Computers & Industrial Engineering, 98: 323-

332, (2016). 

 

[22] Islier, A., “Cellular Manufacturing Systems: Organization, Trends and Innovative 

Methods”, Alphanumeric Journal, 3(2): 13-26, (2015). 

 

[23] Min, H., Shin, D., “Simultaneous formation of machine and human cells in group technology: A 

multiple objective approach”, International Journal of Production Research, 31(10): 2307–2318, 

(1993). 

 

[24] Bootaki, B., Mahdavi, I., Paydar, M. M., “A hybrid GA-AUGMECON method to solve a cubic 

cell formation problem considering different worker skills”, Computers & Industrial 

Engineering, 75: 31-40, (2014). 

 

 



767  Burak URAZEL, Yeliz BURUK SAHIN / GU J Sci, 36(2): 752-771 (2023) 

 
 

[25] Bootaki, B., Mahdavi, I., Paydar, M. M., “New bi-objective robust design-based utilisation 

towards dynamic cell formation problem with fuzzy random demands”, International Journal of 

Computer Integrated Manufacturing, 28(6): 577-592, (2015). 

 

[26] Delgoshaei, A., Ariffin, M. K. A., Ali, A., “A multi-period scheduling method for trading-off 

between skilled-workers allocation and outsource service usage in dynamic CMS”, International 

Journal of Production Research, 55(4), 997-1039 (2017). 

 

[27] Goli, A., Tirkolaee, E. B., Aydın, N. S., “Fuzzy integrated cell formation and production 

scheduling considering automated guided vehicles and human factors”, IEEE Transactions on 

Fuzzy Systems, 29(12), 3686-3695 (2021). 

 

[28] Delgoshaei, A., Ali, A., “An applicable method for scheduling temporary and skilled-workers in 

dynamic cellular manufacturing systems using hybrid ant colony optimization and tabu search 

algorithms”, Journal of Industrial and Production Engineering, 34(6): 425-449, (2017). 

 

[29] Delgoshaei, A., Mirzazadeh, A., Ali, A., “A hybrid ant colony system and tabu search algorithm 

for the production planning of dynamic cellular manufacturing systems while confronting 

uncertain costs”, Brazilian Journal of Operations & Production Management, 15(4): 499-516, 

(2018). 

 

[30] Mahdavi, I., Aalaei, A., Paydar, M. M., Solimanpur, M., “Multi-objective cell formation and 

production planning in dynamic virtual cellular manufacturing systems”, International Journal of 

Production Research, 49(21), 6517-6537, (2011). 

 

[31] Nouri, H., “Development of a comprehensive model and BFO algorithm for a dynamic cellular 

manufacturing system”, Applied Mathematical Modelling, 40(2): 1514-1531, (2016). 

 

[32] Bagheri, F., Safaei, A. S., Kermanshahi, M., Paydar, M. M., “Robust Design of Dynamic Cell 

Formation Problem Considering the Workers Interest”, International Journal of 

Engineering, 32(12): 1790-1797, (2019). 

 

[33] Niakan, F., Baboli, A., Moyaux, T., Botta-Genoulaz, V., “A bi-objective model in sustainable 

dynamic cell formation problem with skill-based worker assignment”, Journal of Manufacturing 

Systems, 38: 46-62, (2016). 

 

[34] Mahdavi, I., Aalaei, A., Paydar, M. M., Solimanpur, M., “A new mathematical model for 

integrating all incidence matrices in multi-dimensional cellular manufacturing system”, Journal of 

Manufacturing Systems, 31(2): 214-223, (2012). 

 

[35] Mahdavi, I, Bootaki, B., Paydar, M. M., “Manufacturing Cell Configuration Considering Worker 

Interest Concept Applying a Bi-Objective Programming Approach”, International Journal of 

Industrial Engineering & Production Research, 25(1): 41-53, (2014). 

 

[36] Bouaziz, H., Berghida, M., Lemouari, A., “Solving the generalized cubic cell formation problem 

using discrete flower pollination algorithm”, Expert Systems with Applications, 113345, (2020). 

 

[37] Delgoshaei, A., Gomes, C., “A multi-layer perceptron for scheduling cellular manufacturing 

systems in the presence of unreliable machines and uncertain cost”, Applied Soft Computing, 49, 

27-55, (2016). 

 

[38] Chen, A., Jiang, T., Chen, Z., Zhang, Y., “A genetic and simulated annealing combined algorithm 

for optimization of wideband antenna matching networks”, International Journal of Antennas and 

Propagation, 251624, (2012). 

 



768  Burak URAZEL, Yeliz BURUK SAHIN / GU J Sci, 36(2): 752-771 (2023) 

 
 

[39] Delgoshaei, A., Ali, A., Ariffin, M. K. A., Gomes, C., “A multi-period scheduling of dynamic 

cellular manufacturing systems in the presence of cost uncertainty”, Computers & Industrial 

Engineering, 100, 110-132, (2016). 

 

[40] Holland, J. H., Adaptation in natural and artificial systems: an introductory analysis with 

applications to biology, control, and artificial intelligence, 1st ed., U Michagan Press, Oxford, 

England, (1992). 

 

[41] Gen, M., Cheng, R., Genetic Algorithms and Engineering Optimization, 1st ed., John Wiley and 

Sons, New York, 53-61, (2000). 

 

[42] Rabunal, J. R., Dorado, J., Artificial neural networks in real-life applications, 1st ed., IGI Global, 

United Kingdom, London, 105-112, (2006). 

 

[43] Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., “Optimization by simulated 

annealing”, Science, 220(4598): 671-680, (1983). 

 

[44] Sahab, M., Toropov, V., Gandomi, A., A Review on Traditional and Modern Structural 

Optimization 1st ed., Waltham, USA, 25-47, (2013). 

 

[45] Eglese, R. W., “Simulated annealing: a tool for operational research”, European Journal of 

Operational Research, 46(3): 271-281, (1990). 

 

[46] https://www.mathworks.com/help/gads/genetic-algorithm-options.html. Access date: 15.10.2021 

 

[47] Attar, S. F., Mohammadi, M., Tavakkoli-Moghaddam, R., “Hybrid flexible flowshop scheduling 

problem with unrelated parallel machines and limited waiting times”, International Journal of 

Advanced Manufacturing Technology, 68(5-8): 1583-1599, (2013). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



769  Burak URAZEL, Yeliz BURUK SAHIN / GU J Sci, 36(2): 752-771 (2023) 

 
 

Appendix A. Quality Index Data Values  

Small Problems 

p1 (4,4,4,2) 

 workers 

part. 

machine 
1 2 3 4 

1.2 2 4 4 3 

1.3 5 3 1 2 

1.4 0 2 0 0 

2.1 1 3 0 1 

2.3 1 2 3 3 

3.1 0 2 0 5 

3.2 0 1 2 2 

3.3 0 1 3 5 

3.4 0 2 0 0 

4.1 1 0 0 3 

4.3 4 0 2 2 
 

p2 (5,4,5,2) 

  workers 

part. 

machine  
1 2 3 4 5 

1.1 2 0 2 0 4 

1.3 5 0 3 0 0 

2.1 1 0 0 0 2 

3.4 0 0 4 0 0 

4.2 0 0 0 2 0 

5.3 0 0 3 0 0 

5.4 0 0 3 0 5 
 

p3 (6,5,5,2) 

 

  workers 

part. 

machine 1 2 3 4 5 

1.1 0 3 0 5 0 

1.3 0 0 0 2 0 

1.4 0 4 0 0 0 

2.1 0 2 0 5 0 

2.4 0 1 0 0 0 

3.2 2 0 0 0 4 

3.5 1 0 3 0 3 

4.2 0 0 0 0 2 

5.3 0 0 0 3 0 

5.4 0 5 0 0 0 

6.1 0 4 0 1 0 

6.3 0 0 0 3 0 
 

 

p4 (10,7,4,2) 

  workers 

part. 

machine 1 2 3 4 

1.1 3 0 0 5 

1.3 0 3 0 0 

1.5 0 0 0 2 

1.6 5 2 0 0 

1.7 0 0 0 3 

2.2 0 0 3 0 

2.4 0 4 5 0 

2.7 0 0 0 2 

3.3 0 3 0 0 

3.4 0 3 0 0 

3.6 0 1 0 0 

4.2 0 0 5 0 

4.3 0 3 0 0 

4.4 3 1 4 0 

5.1 0 0 0 2 

5.4 0 5 0 0 

5.7 0 0 0 3 

6.1 1 0 0 3 

6.4 2 0 0 0 

6.6 3 0 0 0 

6.7 0 0 0 1 

7.1 0 0 0 2 

7.2 0 0 2 0 

7.3 0 2 0 0 

8.5 0 0 3 5 

8.6 1 4 0 0 
 

 

 

  workers 

part. 

machine 1 2 3 4 

8.7 0 0 0 2 

9.5 0 0 1 3 

9.7 0 0 0 2 

10.1 0 0 0 2 

10.5 0 0 0 4 

10.7 0 0 0 2 

 

 

 

p5 (10,7,6,3) 

   workers 

part. 

machine 1 2 3 4 5 6 

1.2 2 0 0 0 0 4 

1.5 0 0 0 0 0 3 

2.1 0 2 0 0 5 0 

2.6 0 3 0 0 0 0 

3.3 0 0 2 3 0 0 

3.4 0 0 4 0 0 0 

4.4 0 0 3 0 0 0 

5.5 0 0 0 0 0 4 

5.7 2 0 0 0 0 0 

6.6 0 2 0 0 0 0 

7.1 0 0 0 0 5 0 

7.7 2 0 0 0 0 0 

8.1 0 2 0 0 0 0 

9.3 0 0 0 3 0 0 

10.2 2 0 0 0 0 5 

10.5 0 0 0 0 0 4 

10.7 2 0 0 0 0 0 
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Large Problems 

p1 (12,8,6,3) 

  workers 

part. 

machine 1 2 3 4 5 6 

1.1 0 2 0 5 0 0 

1.4 0 1 0 0 0 0 

1.5 0 0 0 2 0 0 

2.2 1 0 0 0 3 0 

2.3 0 0 0 0 3 0 

3.1 0 2 0 3 0 0 

3.4 0 4 0 0 0 0 

4.3 0 0 4 1 0 0 

4.5 0 0 3 2 0 0 

4.8 0 0 1 5 0 0 

5.6 1 0 0 0 0 0 

5.7 0 0 0 0 3 0 

6.2 3 0 0 0 0 0 

6.4 0 4 0 0 0 0 

7.1 0 0 0 1 0 0 

8.3 0 0 2 0 0 0 

8.4 0 1 0 0 0 0 

9.8 0 0 0 2 4 0 

10.5 0 0 1 0 0 0 

11.1 0 0 0 1 0 0 

11.3 0 0 0 3 5 0 

12.4 0 3 0 0 0 0 
 

p2 (12,8,7,3) 

   workers 

part. 

machine 1 2 3 4 5 6 7 

1.1 0 3 0 0 4 0 0 

1.5 0 0 0 0 0 0 2 

1.7 0 1 0 0 0 0 3 

2.2 0 3 0 0 0 5 0 

2.8 0 0 0 2 0 4 0 

3.4 0 0 0 0 0 2 3 

3.5 0 0 0 0 0 0 5 

4.3 3 0 0 4 0 0 0 

5.6 0 0 2 0 5 0 0 

5.7 0 0 3 0 0 0 0 

6.2 0 1 0 0 0 4 0 

6.4 0 0 0 0 0 2 0 

7.1 0 0 2 0 3 0 0 

8.2 0 4 0 0 0 2 0 

8.5 0 0 0 0 0 0 2 

9.1 0 1 3 0 5 0 0 

9.6 0 0 4 0 2 0 0 

10.4 0 0 0 0 0 5 0 

11.1 0 0 2 0 3 0 0 

12.7 0 1 0 0 0 0 3 
 

p3 (15,10,6,3)/ p4 (15,10,6,4) 

 workers 

part. 

machine 1 2 3 4 5 6 

1.1 0 3 0 4 0 0 

1.4 0 2 0 0 0 0 

1.5 0 0 0 3 0 0 

2.2 1 0 0 0 4 0 

2.3 0 0 0 0 2 0 

3.1 0 1 0 5 0 0 

3.4 0 2 0 0 0 0 

4.3 0 0 3 5 0 0 

4.5 0 0 2 1 0 0 

4.8 0 0 1 3 0 0 

5.6 1 0 0 0 0 0 

5.7 0 0 0 0 2 0 

6.2 2 0 0 0 0 0 

6.4 0 3 0 0 0 0 

7.1 0 2 0 4 0 0 

7.9 0 1 0 0 0 0 

8.3 0 0 5 0 0 0 

8.4 0 4 0 0 0 0 

9.2 5 0 0 0 3 0 

9.8 0 0 0 4 2 0 

9.9 0 0 0 0 4 0 

10.3 0 0 1 0 0 0 

10.10 0 0 2 0 0 0 

11.1 0 0 0 4 0 0 

11.3 0 0 0 2 4 0 

12.4 0 3 0 0 0 0 

12.10 0 0 0 0 0 2 

13.6 2 0 0 0 0 0 

13.7 0 0 0 0 1 0 

14.1 0 2 0 0 0 0 

15.3 0 0 3 5 0 0 
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Large Problems (cont.) 

p5(20,10,6,3)/ p6 (20,10,6,4) 

          workers 

part. 

machine 1 2 3 4 5 6 

1.1 0 3 0 4 0 0 

1.4 0 2 0 0 0 0 

1.5 0 0 0 3 0 0 

2.2 1 0 0 0 4 0 

2.3 0 0 0 0 2 0 

3.1 0 1 0 5 0 0 

3.4 0 2 0 0 0 0 

4.3 0 0 3 5 0 0 

4.5 0 0 2 1 0 0 

4.8 0 0 1 3 0 0 

5.6 1 0 0 0 0 0 

5.7 0 0 0 0 2 0 

6.2 2 0 0 0 0 0 

6.4 0 3 0 0 0 0 

7.1 0 2 0 4 0 0 

7.9 0 1 0 0 0 0 

8.3 0 0 2 0 0 0 

8.4 0 4 0 0 0 0 

9.2 0 0 0 0 3 0 

9.8 0 0 0 4 2 0 

9.9 0 0 0 0 4 0 

10.3 0 0 1 0 0 0 

10.10 0 0 2 0 0 0 

11.1 0 0 0 4 0 0 

11.3 0 0 0 2 4 0 

12.4 0 3 0 0 0 0 

12.10 0 0 0 0 0 2 

13.6 2 0 0 0 0 0 

13.7 0 0 0 0 1 0 

14.1 0 2 0 0 0 0 

15.3 0 0 3 5 0 0 

16.5 0 0 2 4 0 0 

16.6 2 0 0 0 0 0 

17.1 0 3 0 4 0 0 

18.3 0 0 2 0 0 0 

18.4 0 1 0 0 0 0 

19.8 0 0 4 0 0 0 

19.10 0 0 1 0 0 5 

20.2 3 0 0 0 5 0 

 

 

 


