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Abstract: In the present study, the efficiency of Pd@g-C3N4/TiO2 NPs as photocatalysts on the 

degradation of organic pollutant methylene blue (MB) dye under visible light has been investigated. A 

traditional one-step impregnation-reduction method was used for the preparation of photocatalysts. 

Pd@g-C3N4/TiO2 NPs were characterized by several techniques such as FT-IR, DR/UV-Vis, SEM-

EDX, TEM, P-XRD, and XPS analyses. The photocatalytic performance of Pd@g-C3N4/TiO2 NPs was 

evaluated for the degradation of MB dye under visible light irradiation. Among different loadings of 

Pd (0.3, 0.5, and 0.7 %), the 0.5% loading Pd@g-C3N4/TiO2 NPs showed the highest catalytic activity. 

The results revealed an enhancement in the visible light photocatalytic activity of g-C3N4/TiO2 when it 

was coupled with Pd in the composite. Compared with pure g-C3N4/TiO2, the Pd@ g-C3N4/TiO2 hybrid 

photocatalyst exhibited enhanced visible-light photoactivity, which was approximately three times 

higher than that of pure g-C3N4/TiO2.  
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1. Introduction 

One of the main factors for serious environmental problems is the release of several hazardous 

organic dyes from textile industries in wastewater, which is concerned with human health and the 

environment due to the toxicity and the carcinogenic effect of these dyes [1]. In this context, we can 

list the process generally used to remove these toxic dyes from water as adsorption [2], chemical 

precipitation [3], sedimentation [4], biological membranes [5], ion exchange [6], and electrochemical 

[7]. However, these methods have several disadvantages such as they usually proceed slowly, require 

expensive equipment and require further elimination [8]. Photocatalytic methods can increase the use 

of solar energy and reduce pollutants in wastewater [9]. This issue is important both in terms of 

environmental protection and shows the importance of using a photocatalyst in terms of economy and 

time. In recent years, nano-sized semiconductors such as TiO2 [10, 11, 12], ZnO [13], Fe2O3 [14] and 

CdS [15] have yielded successful results in dye removal, which shows that they exhibit high 

photocatalytic reactivity.   

Graphitic carbon nitride (g-C3N4) is a photocatalytic support material that has recently attracted 

attention with its advantageous stable physicochemical properties (absorption at 400-450 nm and 

narrow energy band gap) but it has disadvantages such as high recombination rate, which reduces its 

catalytic activity. [16,17,18,19]. Furthermore, number of reports have shown that TiO2 exhibits robust 

photocatalytic activity, although its absorption efficiency for visible light is greatly limited due to its 
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wide band gap (3.2 eV) [20, 21, 22, 23]. Among the developed photocatalytic systems, g-C3N4/TiO2 

composites with a high specific surface area and special heterostructure were prominent in this pursuit 

due to their easy synthesis, stronger visible light activity and higher electron transfer rate [24, 25, 26, 

27]. Moreover, it has been proven that the noble metal palladium (Pd) can effectively improve the 

visible light absorption rate of composite materials, as it has abundant vacant orbitals that effectively 

promote electron transfer in composite materials. [28, 29, 30, 31].  

In this respect, we prepared Pd@g-C3N4-TiO2 nano heterostructured catalysts using a 

conventional one-step impregnation-reduction method. The results showed that these catalyst systems 

present excellent photocatalytic performance for methylene blue (MB) degradation under visible light, 

which demonstrates a promising strategic approach in the field of photocatalysis. The newly prepared 

Pd@g-C3N4/TiO2 NPs were characterized by FT-IR, DR/UV-Vis, SEM-EDX, TEM, P-XRD, and XPS 

analyses.  

2. Materials and Methods 

2.1. Materials 

Palladium Nitrate (Pd(NO3)2).2H2O (99%), Titanium (IV) oxide (anatase, nanopowder <25 nm 

particle size (99,7%), tetramethylthionine chloride (Methylene Blue; MB; C16H18ClN3SH2O), sodium 

borohydrate (NaBH4), Ethanol (C2H5OH), Methanol (CH3OH) were purchased from Sigma Aldrich
® 

and Urea (CH4N2O) were purchased from Merck. All glassware and magnetic stir sticks were washed 

with acetone, rinsed profusely with ethanol and furnace dried. 

2.2. Synthesis of g-C3N4 and g-C3N4/TiO2 Composite 

The g-C3N4 (CN)[32] and g-C3N4/TiO2[33] composite was prepared by using well-established 

procedures of which the details were given in recent publications.  

2.3. Preparation of Pd@g-C3N4/TiO2 

The Pd@g-C3N4/TiO2 catalyst was synthesized by conventional impregnation-reduction steps 

[34]. For this, 5.0 mL of an aqueous solution containing Pd(NO3) (2.50 mg, 9.38 µmol Pd) and g-

C3N4/TiO2 (0.2g) was stirred for 2 hours. A fresh 1.0 mL aqueous solution of NaBH4 (5.43 mg, 0.14 

mmol) was then added dropwise to this mixture and stirred under ambient conditions for half an hour. 

The final product was washed with copious amounts of water and ethanol (2x20 mL), filtered on filter 

paper and dried in an oven at 353 K. As a result, the Pd@g-C3N4/TiO2 catalyst was obtained as gray 

color powder. 

2.4. Characterization Methods 

P-XRD patterns were obtained with a Rigaku Ultima-III X-ray diffractometer at 40 kV and 35 

mA using Cu Ka radiation (k = 1.54059 A). For TEM analysis, diluted suspensions of the samples 

were prepared and the solvent was dried after dropping onto the carbon TEM grid. SEM analyses were 

performed on Zeiss Sigma 300. XPS patterns were performed on a Specs-Flex XPS with a 

photoelectron take-off angle of 45
0
. The FT-IR spectra of the samples were taken on a Cary 630 FTIR 

spectrometer. DR/UV–Vis analyses were performed using Shimadzu UV-3600 Plus device. 
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2.5. Photocatalytic Tests 

The photocatalytic degradation efficiency of the prepared photocatalyst was assessed by using 

methylene blue dye under UV-Vis light irradiation. A 300W Tungsten halogen lamp was used as a 

visible light source in this photocatalytic system. An experiment was carried out by adding 10 mg of 

the prepared catalysts to 30 mL of methylene blue aqueous solutions (7 µg/mL) in a cooling water-

jacketed Pyrex glass reactor vessel. The solution was stirred in the dark (30 min) to reach an 

adsorption-desorption equilibrium between the MB and the catalyst surface. A certain amount of 

sample (2mL) was taken from the reactor vessel and the catalyst was removed by centrifugation (4000 

rpm, 6 minutes). Changes in MB concentrations in solution were analyzed using a Cary 100 Bio UV–

Vis spectrophotometer at maximum absorption (λ =664 nm) at room temperature. 

The photodegradation efficiency (η) and the apparent pseudo-first-order rate constant (kapp) 

were determined by the following equation: 

 

  
    

  
               (1) 

  
  

 
                  (2) 

 

C0 in the equation is the initial concentration and C is the methylene blue concentration as a 

function of irradiation time t. 

3. Results and Discussion 

3.1. The Preparation and Characterization of Pd@g-C3N4/TiO2 Nanocomposite 

Before the preparation of Pd@g-C3N4/TiO2 catalyst, first g-C3N4 and then g-C3N4/TiO2 support 

materials were prepared by using a modified version of the method given in the literature[40]. The g-

C3N4/TiO2 support material was evidenced by FT-IR spectroscopy. FT-IR data were collected for the 

TiO2, g-C3N4, and g-C3N4/TiO2 structures as seen in Figure 1. The presence of g-C3N4 and g-

C3N4/TiO2 nanocomposites has been observed through FT-IR spectroscopy. Strong peaks observed at 

1238, 1328, and 1573 cm
-1

 for pure g-C3N4 are attributed to the typical stretching vibration of C-N 

heterocycles and a sharp peak at 806 cm
-1

 is related to the characteristic stretching vibration of triazine 

units. The broad peak in the range 3100-3300 cm
-1

 is assigned to the stretching vibration of N-H bonds 

of amines (-NH2 and =NH)[35,36]. The wide absorption peak at 400-700 cm
-1

 corresponds to the Ti-O 

stretching and Ti-O-Ti bridging stretching vibrations of pure TiO2 [37, 38]. In addition, the peaks 

corresponding to bending and stretching vibrations of the O-H group were observed at 1630 and 3500 

cm
-1

. The spectrum of Pd@g-C3N4-TiO2 catalyst was similar to that of g-C3N4-TiO2 composite and 

also showed all the peaks of g-C3N4 and TiO2. 
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Figure 1.  FT-IR spectra of TiO2 (a), g-C3N4 (b), g-C3N4/TiO2 (c) Pd@g-C3N4-TiO2 (d). 

In order to determine the optical properties of the Pd@g-C3N4/TiO2 nanocatalyst, the UV-Vis 

diffuse reflectance spectral analysis of TiO2, g-C3N4, and g-C3N4/TiO2 was carried out, and the results 

are shown in Figure 2. As seen in Figure 2, the absorption sharp edges of TiO2, g-C3N4, and g-

C3N4/TiO2 composite were found to be around 391, 425, and 412 nm, respectively. In addition, band 

gap values (Eg) of pure TiO2, pure g-C3N4, and g-C3N4/TiO2 composite were determined as ~ 3.08, 

2.81, and 2.84 eV, respectively. In conclusion, the g-C3N4/TiO2 nanocomposite exhibited enhanced 

absorption in the visible region compared to TiO2 due to the synergistic effect between TiO2 and g-

C3N4. It can be seen that the bandgap of TiO2 decreases with the addition of g-C3N4. [39]. 

 

 

 

 

 

 

 

Figure 2. UV–Vis Diffuse Reflectance spectra of TiO2 (a), g-C3N4 (b), and g-C3N4/TiO2 composite (c) 

Afterward, Pd@g-C3N4/TiO2 nanocatalyst was simply and reproducibly prepared by following 

the procedure [40], Pd@g-C3N4/TiO2 nanocatalyst was obtained as powders and characterized by P-

XRD, XPS, SEM-EDX, and TEM.  

The XRD patterns for fresh g-C3N4/TiO2 composite and Pd@g-C3N4/TiO2 photocatalyst 

samples are shown as a pattern in Figure 3. All the samples show the diffraction peaks of TiO2 with 2θ 

values which depict the anatase phase of TiO2 (JCPDS card No. 21–1272) and rutile phase (JCPDS 

card No. 21-1276) as shown in Figure 3. The one diffraction peak of g-C3N4 overlapped with the peak 

of the rutile phase at 27.5° (110) planes. Moreover, the diffraction peaks of Pd can only be observed 
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when the loading of Pd is 5% or more than 5 wt% with 2θ values of 40.2° (111), 48.0° (200), and 

68.8° (220) that corresponds to the presence of Pd (JCPDS 05-0681)[41,42].  

 

Figure 3. XRD patterns of g-C3N4/TiO2 composite and Pd@g-C3N4/TiO2 photocatalyst. 

The surface elemental composition of the Pd@g-C3N4/TiO2 nanocatalyst was investigated by 

using XPS analysis. The XPS spectrum of Pd@g-C3N4/TiO2 taken as a survey scan is depicted in 

Figure 4. As seen in this spectrum, obtained signals disclose that the surface composition consists of 

Ti, Pd, N, C, and O.  

 

Figure 4. (a) Survey scan XPS spectrum of Pd@g-C3N4/TiO2 

The morphology and nanostructure of samples (g-C3N4, TiO2, g-C3N4/TiO2, and Pd@g-

C3N4/TiO2) are studied by SEM-EDX (Figure 5a-d) and TEM (Figure 5f-g). In SEM image of g-C3N4, 

the nanosheet structure (Figure 5b). Pure TiO2 presents spherical-like large cauliflower-shaped 

particles that are non-agglomerate. Figure 5c-d shows the image of g-C3N4/TiO2 and Pd@g-C3N4/TiO2, 

respectively. Compositional analysis of prepared Pd@g-C3N4/TiO2 catalysts was done using Energy 

Dispersive X-Ray Analysis (EDX). EDX results of Pd@g-C3N4/TiO2 successfully revealed the 

presence of C, N, Ti, O, and Pd in the synthesized sample (Figure 5e). A transmission electron 

microscopy (TEM) image of the Pd@g-C3N4/TiO2 (Figure 5f-g) nanocatalyst indicated that the 

presence of Pd NPs in the range of 0.04–2.5 nm with a mean diameter of 1.0 nm.  
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Figure 5. SEM image of a) g-C3N4  b) TiO2  c) g-C3N4/TiO2 and d) Pd@g-C3N4/TiO2 e) SEM-EDX 

figure of Pd@g-C3N4/TiO2 photocatalyst f) TEM image of Pd@g-C3N4/TiO2 photocatalyst 

and g) size histogram of Pd NPs  
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3.2. Photocatalytic Activities for Methylene Blue (MB) Degradation under Visible Light 

Irradiation 

The photocatalytic performance of Pd@g-C3N4/TiO2 and g-C3N4/TiO2 was assessed by 

determining the degradation degree of MB solution (30 mL, 7 µg/mL) under the irradiation of visible 

light using 0.3 %, 0.5 %, and 0.7%wt Pd (10 mg catalyst) and water as a sole solvent. As shown in 

Figure 6a, significant decreases in the absorption peak at 664 nm are observed in these samples, 

indicating that the concentration of MB in the solution is decreased. However, the Pd@g-C3N4/TiO2 

nanocatalyst tends to have a much faster peak descent compared to the g-C3N4/TiO2 composite. When 

the g-C3N4/TiO2 composite was used as the photocatalyst, it took 90 minutes for MB to completely 

degrade (Fig. 6a-b), whereas when the 0.5% wt charged Pd@g-C3N4/TiO2 nanocatalyst was used, MB 

took 40 minutes to completely degrade. Also, for all these photocatalysts, the tendency of the 

absorption peak of MB to be blue-shifted with increasing irradiation time implies a change in the 

molecular structure of MB. As a result, compared with g-C3N4/TiO2, the as-prepared Pd@g-C3N4/TiO2 

photocatalysts (0.3, 0.5, or 0.7 % wt Pd loading) showed enhanced photocatalytic performance on the 

degradation of MB under visible light irradiation (λ>400nm).  Furthermore, to understand the reaction 

kinetics of the photocatalytic degradation of MB (Fig. 6b-c), the rate constant k was calculated from 

the equation ln(C0/Ct) = kt, and the process followed the first-order reaction. Here, C0 and Ct are the 

concentrations of the MB solution at times 0 and t, respectively. The rate constant obtained from the 

degradation of methylene blue, as seen in Figure 6e, indicates that the reaction proceeds via pseudo-

first-order kinetics. Under the irradiation of visible light, the first-order rate constants for MB 

degradation could be ranked as k(0.5% Pd@g-C3N4-TiO2) >k(0.7% Pd@g-C3N4-TiO2)> k(0.3% 

Pd@g-C3N4-TiO2)> k(g-C3N4-TiO2)(Fig. 6d). Among all catalysts, 0.5%Pd@g-C3N4-TiO2 catalyst 

exhibits the highest k value. The rate constant (k) of the (0.5% Pd@g-C3N4-TiO2) photocatalyst was 

approximately three times higher than that of pure g-C3N4-TiO2. As a result, a larger k value means 

higher utilization efficiency of visible light, resulting in better degradation performance. In addition, 

the following reactions are predicted to occur during the visible light assisted photodegradation of MB 

dye [43]. 

 

   Catalyst + h→ h
+

VB
 
+

 
e

-
CB     (3)

    h
+
 + H2O(ads) → •OH (ads) + H

+
(ads)     (4)  

                          O2 + 2e
-
 → (•O

2-
) (ads)                  (5) 

•O
2-

 (ads) + H
+
 ↔ •HO2(ads)      (6)  

•HO2(ads) → H2O2(ads) + O2      (7)  

H2O2(ads) → 2 •OH (ads)      (8)  

•HO + MB → CO2 + H2O      (9)  
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Figure 6. The degradation of MB by different photocatalysts (a) change of absorbance of MB solution 

(b) correlation between ln(C0/C) with time t, (c) linear transform ln(C0/Ct) of the kinetic curves 

of MB degradation d) correlation between C/C0 with time t, e) apparent pseudo-first-order rate 

constant k with different catalysts. 
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4. Conclusions 

In conclusion, we designed and successfully prepared new Pd nanoparticles, which are 

uniformly deposited on g-C3N4-TiO2 through a facile method by the conventional impregnation and 

subsequent reduction steps. Pd@g-C3N4-TiO2 nanocatalysts revealed a particle size of approximately 

1.0 nm ±0.33 nm. We also demonstrated the characterization and use of the highly active 0.5 % wt 

loading Pd@g-C3N4-TiO2 nanocatalyst for the degradation of methylene blue under visible light 

irradiation. The apparent rate constant for 0.5 % wt loading Pd@g-C3N4-TiO2 is approximately three 

times higher than that of pure g-C3N4-TiO2. Hence, the Pd@g-C3N4-TiO2 as a visible light-driven 

photocatalyst is a promising material for the photodegradation of methylene blue in wastewater. 
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