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ABSTRACT: In this study, it is aimed to determine the optimal conjugate gradient (CG) method for the 

geometry fitting of 2D measured profiles. To this end, the three well-known CG methods such as the 

Fletcher-Reeves, Polak-Ribiere and Hestenes-Stiefel were employed. For testing those methods 

performances, the five primitive geometries accommodating circle, square, triangle, ellipse and rectangle 

were first built with a 3D printer, and then they were scanned with a coordinate measuring machine 

(CMM) to achieve their 2D profiles. The nonlinear least squares procedure was implemented to minimize 

the error between those measured data and modeled ones. An iterative line search was utilized for this 

task. The search direction was calculated using the above-mentioned CG methods. During the geometry 

fitting process, the number of function evaluations at each iteration were computed and the total number 

of function evaluations were set to be a performance measure of the CG method in question when it 

converged. By using these performance measures, the performance and data profiles were created to 

efficiently determine the optimal CG method. Based on performance profiles, it can be stated that the 

Fletcher-Reeves and Polak-Ribiere methods are the fastest ones on three test geometries out of five. In 

addition to that, all the CG methods were able to complete the geometry fitting of 80% of test geometries. 

On the other hand, by examining the data profiles, it was determined that the Polak-Ribiere and Hestenes-

Stiefel methods achieve their maximum capabilities of the completing geometry fitting (i.e., 80%) with 

much lower number of function evaluations than the Fletcher-Reeves method. Besides, in most 

geometries, the Polak-Ribiere method outperformed the others, thereby it was determined to be the 

optimal one for the geometry fitting.  As a conclusion, the reported results in this work might help the 

end-users who study on the CMM data processing to conduct an efficient geometry fitting. 
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Geometri Uydurma için En İyi Eşlenik Gradyan Yönteminin Tespit Edilmesi 

 

ÖZ: Bu çalışmada, ölçülen 2B profillere geometri uydurulması için en iyi eşlenik gradyan (EG) yönteminin 

tespit edilmesi hedeflenmektedir. Bu amaçla, iyi bilinen üç eşlenik gradyan yöntemleri, Fletcher-Reeves, 

Polak-Ribiere and Hestenes-Stiefel kullanıldı. Adı geçen yöntemlerin performansları test etmek için daire, 

kare, üçgen, elips ve dikdörtgen geometrilerini içeren test parçaları ilk olarak 3B yazıcı ile imal edildi ve 

daha sonra bu geometrilerin 2B profillerini elde etmek amacıyla adı geçen geometriler koordinat ölçme 

makinesi ile tarandı. Ölçülerek ve modellenerek elde edilen veriler arasındaki hatayı en aza indirmek için 

doğrusal olmayan en küçük kareler prosedürü uygulandı. Bu uygulama için bir iterativ doğru boyunca 

arama gerçekleştirildi. Arama yönü ise yukarıda adı geçen yöntemler kullanılarak hesaplandı. Geometri 

uydurma sürecinde her bir iterasyonda yapılan fonksiyon değerlendirme sayısı hesap edildi ve ilgili 
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eşlenik gradyan yöntemi yakınsadığında ortaya çıkan toplam fonksiyon değerlendirme sayısı yöntemin 

performans ölçütü olarak belirlendi. Verimli bir şekilde en iyi eşlenik gradyan yöntemini tespit edebilmek 

için bu performans ölçütleri kullanılarak performans ve veri profilleri oluşturuldu. Performans 

profillerine dayanarak, Fletcher-Reeves ve Polak-Ribiere yöntemlerinin beş geometriden üçünde en hızlı 

olduğu ifade edilebilir. Buna ek olarak, tüm EG yöntemleri test geometrilerinin %80'inin geometri 

uydurmasını tamamlayabilmiştir. Öte yandan, veri profilleri incelenerek, Polak-Ribiere ve Hestenes-

Stiefel yöntemlerinin Fletcher-Reeves yöntemine göre çok daha az sayıda fonksiyon değerlendirmesi ile 

maksimum geometri uydurma kabiliyetlerine (%80) ulaştıkları tespit edilmiştir. Ayrıca birçok geometride 

Polak-Ribiere yöntemi diğerlerinden daha iyi olduğundan bu yöntem geometri uydurma için en iyi 

yöntem olarak belirlendi. Sonuç olarak, çalışmada rapor edilen sonuçlar koordinat ölçme makinesi 

verilerinin işlenmesi ile ilgilenen son kullanıcılara verimli bir geometri uydurma gerçekleştirmelerinde 

yardımcı olabilir. 

 

Anahtar Kelimeler: Eşlenik gradyan, Geometri uydurma, En iyileme 

1. INTRODUCTION 

The application of the CG methods can be found in many fields such as engineering, computer science, 

etc. due to their efficiency in nonlinear optimization.  Li et al. (2020), for instance, proposed a CG method 

along with pseudospectral collocation scheme. They applied it to find optimal rocket landing guidance. 

The authors reported that the proposed method stands out with high convergence speed and 

computational efficiency. In the work completed by Chattopadhyay and Chattopadhyay (2018), a 

neurocomputing model was developed using CG method-based backpropagation in artificial neural 

network for predicting average rainfall. An application of CG methods in finite element method was 

presented by Schwarz (1979). Helmig et al. (2020) investigated effect of number of temperature 

measurements on boundary conditions obtained using CG method. To this end, they used two test cases 

including orthogonal cutting process and a heat spreader cooling concept for power electronics and they 

stated that it is possible to reconstruction of the boundary using lower temperature measurements than 

the actual unknown boundary segments with a certain threshold number of sensors. Another study on 

inverse heat conduction problem was completed by Xiong et al. (2020) using a sequential CG method. 

They estimated the surface heat flux and it was reported that the proposed method provides more accurate 

results and less computation time. On the other hand, from the structural engineering point of view, Wang 

et al. (2013) revealed a new CG method for multi-source dynamic load identification from the noisy 

response measurements. The application results proved that the suggested method is more efficient than 

the Landweber iteration method. Moreover, for the image restoration problem, some modified Hestenes-

Stiefel conjugate gradient algorithms were presented by Hu et al. (2020). Other CG algorithms (Cao and 
Wu, 2020; Joo et al., 1997), for this purpose, were also brought in the literature. In addition to them, some 

improved CG methods such as those of (Mtagulwa and Kaelo, 2019; Jiang and Jian, 2019; Wang et al., 2018; 

Fatemi, 2016) were presented for general optimization problems.  

As can be seen from the above summarized studies, the CG methods have been frequently finding an 

area to be applied. However, no study was found on the geometry fitting and the CMM data processing 

by using CG methods. Thus, there is no data about their performance in this topic. To a little contribute 

this gap, the current work concentrates on defining the optimal CG methods from the well-known 

methods (i.e., Fletcher-Reeves, Polak-Ribiere and Hestenes-Stiefel) for the geometry fitting of measured 

2D profiles. The paper is structured as follows: Section 2. covers the primitive geometries, their 

mathematical models, and the geometry fitting procedure. A brief description on the mathematical 

background of CG method is given in Section 3. In Section 4, the obtained results are presented with 

discussion. Finally, Section 5 summarizes and concludes the paper. 
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Nomenclature 

𝑥, 𝑦: coordinates of each point on the geometry 𝑟𝑐 : radius of circle 

𝑥𝑢 , 𝑦𝑢: 
coordinates of each point on the geometry 

without rotation 
𝑟: radius of triangle 

𝑥𝑐 , 𝑦𝑐: center coordinates of the geometry 𝜃: rotation angle 

𝑢: 
parameter ranging between 0 and 2𝜋 

radians 
𝑎: radius of ellipse along 𝑥 axis 

𝑤: width 𝑏: radius of ellipse along 𝑦 axis 

ℎ: height 𝑛𝑠: Number of edges (i.e., 𝑛𝑠 = 3 for triangle) 

 

2. PRIMITIVE GEOMETRIES AND THEIR FITTING PROCEDURE 

For determination of the optimal CG method, the five primitive geometries are used. Those geometries 

are circle, square, rectangle, triangle, and ellipse. Their parametric mathematical models (Desmos, 2021) 

are given below. 

 

Circle: 

 

𝑥 = 𝑟𝑐 cos(𝑢) + 𝑥𝑐 (1) 
𝑦 = 𝑟𝑐 sin(𝑢) + 𝑦𝑐  

 

Square and rectangle: 

 

𝑥𝑢 =
𝑤

2
(|cos⁡(𝑢)| cos(𝑢) + |sin⁡(𝑢)| sin(𝑢))  

𝑦𝑢 =
ℎ

2
(|cos⁡(𝑢)| cos(𝑢) − |sin⁡(𝑢)| sin(𝑢)) (2) 

𝑥 = 𝑥𝑢 cos(𝜃) − 𝑦𝑢 sin(𝜃) + 𝑥𝑐  
𝑦 = 𝑥𝑢 sin(𝜃) + 𝑦𝑢 cos(𝜃) + 𝑦𝑐  

 

Triangle: 

 

𝑟 =
ℎ

𝑐𝑜𝑠⁡(
2

𝑛𝑠
𝑎𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛(

𝑛𝑠
2
𝑢)))

  

𝑥𝑢 = 𝑟 𝑐𝑜𝑠(𝑢) (3) 
𝑦𝑢 = 𝑟 𝑠𝑖𝑛(𝑢)  
𝑥 = 𝑥𝑢 𝑐𝑜𝑠(𝜃) − 𝑦𝑢 𝑠𝑖𝑛(𝜃) + 𝑥𝑐   
𝑦 = 𝑥𝑢 𝑠𝑖𝑛(𝜃) + 𝑦𝑢 𝑐𝑜𝑠(𝜃) + 𝑦𝑐  

 

Ellipse: 

 
𝑥𝑢 = 𝑎 cos(𝑢)  

𝑦𝑢 = 𝑏 sin(𝑢) (4) 
𝑥 = 𝑥𝑢 cos(𝜃) − 𝑦𝑢 sin(𝜃) + 𝑥𝑐  
𝑦 = 𝑥𝑢 sin(𝜃) + 𝑦𝑢 cos(𝜃) + 𝑦𝑐  

 

All those coordinate calculations given above are theoretical. To obtain actual coordinates of those 

geometries, first a workpiece containing those geometries were built using a 3D printer with a PLA 

material. They were later scanned via the CMM that provides their 2D profiles. With these theoretical and 

measured data, the nonlinear least squares fitting procedure is employed. To do so, first we describe the 

sum of the squared errors, 𝜖2(𝑝), between theoretical and measured data as follows (Jia, 2017): 
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𝜖2(𝑝) = ∑ [𝑥𝑗 − 𝑥𝑗
𝑚𝑜𝑑𝑒𝑙(𝑝)]

2
+ ∑ [𝑦𝑗 − 𝑦𝑗

𝑚𝑜𝑑𝑒𝑙(𝑝)]
2𝑛

𝑗=1
𝑛
𝑗=1  (5) 

 

where 𝑝 is the parameter vector accommodating all the variables in the geometry being used, 𝑥𝑗, 𝑦𝑗, 

𝑥𝑗
𝑚𝑜𝑑𝑒𝑙(𝑝) and 𝑦𝑗

𝑚𝑜𝑑𝑒𝑙(𝑝) denote 𝑥 and 𝑦-coordinates of the geometry obtained from the measurement and 

the mathematical model, respectively. As well-known, the nonlinear least squares procedure aims to 

minimize this parameter dependent error. For that purpose, in this study, an iterative line search 

procedure along with three well-known CG methods is implemented. The details about the minimization 

process are covered in the next section. 

3. CONJUGATE GRADIENT METHODS 

The conjugate gradient methods are frequently used in nonlinear optimization problems. To minimize 

the sum of squared errors between the data obtained via the measurements and the mathematical model, 

in this study, an iterative line search procedure is implemented. In the line search, the search direction, 

𝑠𝑗+1, (see Equation 6.) is computed using three well-known CG methods (i.e., Fletcher-Reeves (Fletcher 

and Reeves, 1964), Polak-Ribiere (Polak and Ribiere, 1969) and Hestenes-Stiefel (Hestenes and Stiefel, 

1952)). 

 

𝑠𝑗+1 =⁡−𝐺(𝑝𝑗+1) + 𝛽𝑗+1𝑠𝑗   (6) 

 

In this equation, 𝐺 = −𝐽𝑇𝐷 is the objective function gradient, 𝐽 is the Jacobian matrix of the objective 

function, 𝐷 = [
𝐷𝑥
𝐷𝑦

]⁡ is the difference matrix, 𝐷𝑥 = 𝑥𝑗 − 𝑥𝑗
𝑚𝑜𝑑𝑒𝑙(𝑝)⁡ and 𝐷𝑦 = 𝑦𝑗 − 𝑦𝑗

𝑚𝑜𝑑𝑒𝑙(𝑝)⁡. 𝛽𝑗+1 is the CG 

coefficient and it is computed using the above-mentioned methods. Their mathematical descriptions are 

given below. 

 

Fletcher-Reeves: 

 

𝛽𝑗+1 =
𝐺(𝑝𝑗+1)

𝑇
𝐺(𝑝𝑗+1)

𝐺(𝑝𝑗)
𝑇
𝐺(𝑝𝑗)

   (7) 

 

Polak-Ribiere: 

 

𝛽𝑗+1 =
𝐺(𝑝𝑗+1)

𝑇
(𝐺(𝑝𝑗+1)−⁡𝐺(𝑝𝑗))

‖𝐺(𝑝𝑗)‖
2    (8) 

 

Hestenes-Stiefel: 

 

𝛽𝑗+1 =
𝐺(𝑝𝑗+1)

𝑇
(𝐺(𝑝𝑗+1)−⁡𝐺(𝑝𝑗))

𝑠𝑗
𝑇(𝐺(𝑝𝑗+1)−⁡𝐺(𝑝𝑗))

   (9) 

 

In Equations 7 to 9, the initial search direction is 𝑠0 = −𝐺(𝑝0) (i.e., opposite of the gradient of the 

objective function). By using all those, the iterative line search to find the next parameters is describes as 

follows (Nocedal and Wright, 2006): 

 

𝑝𝑗+1 = 𝑝𝑗 + 𝛼𝑗𝑠𝑗
𝑇   (10) 

 

where 𝛼𝑗 > 0 is the step length that controls the amount of the movement along the CG direction. It 

can be computed using various line search conditions. However, in this study, a numerical algorithm is 
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implemented to compute the step length. Equation 10 proceeds until the convergence condition is 

satisfied. This condition is: 

 

maximum|𝐽𝑇𝐷| ≤ 𝜕 (11) 

 

where 𝜕 = 10−4 is the convergence tolerance. 

4. RESULTS AND DISCUSSION 

To determine the optimal CG method for geometry fitting, totally fifteen geometry fittings have been 

completed using the five test geometries and three CG methods. For keeping track the geometry fitting 

process, the geometry fitting parameters, sum of the squared errors, norm of the gradient of the objective 

function and step length have been recorded at each iteration. Those results are presented in Figure 1. 

Note that all those results, as example, belong the ellipse fitting process with the Polak-Ribiere method. 

The same procedure has been also completed for all the test geometries and the CG methods. In addition, 

the number of function evaluations (Nfe), as the performance measure of the CG method, are computed 

for each iteration. The above-mentioned fitting outcomes are also plotted in accordance with number of 

function evaluations, as shown in Figure 2.  

 

 
Figure 1. Fitting progress of the ellipse: Results versus iteration, (a) Ellipse center 𝑥-coordinate (mm) (b) 

Ellipse center 𝑦-coordinate (mm) (c) Ellipse rotation angle (degree) (d) Ellipse radius along 𝑥-direction 

(mm) (e) Ellipse radius along 𝑦-direction (mm) (f) Sum of squared errors (g) Norm of the gradient of 

objective function (h) Step length 
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Figure 2.  Fitting progress of the ellipse: Results versus number of function evaluations, (a) Ellipse center 

𝑥-coordinate (mm) (b) Ellipse center 𝑦-coordinate (mm) (c) Ellipse rotation angle (degree) (d) Ellipse 

radius along 𝑥-direction (mm) (e) Ellipse radius along 𝑦-direction (mm) (f) Sum of squared errors (g) 

Norm of the gradient of objective function (h) Step length 

 

As can be seen from these figures, the iterative line search starts with initial parameter values supplied 

by the user and it successfully converges the required tolerance after a little bit fluctuation. It might be 

stated that the convergence is linear based on the Figure 2(g). Also notice that the sum of squared error 

and norm of the gradient of the objective function continuously decrease. This shows that the proposed 

fitting process works very well. On the other hand, the number of function evaluations at each iteration 

quite different due to step length computation. Figure 2(h) shows that the different step length is necessary 

for a significant progress, which means that the amount of work, the number of function evaluations, will 

vary during the process. As a result of converged ellipse parameters at 37. iteration (i.e., 𝑥𝑐 = 335.9690 

mm, 𝑦𝑐 = 198.6981 mm, 𝜃 = −0.0084𝑜, 𝑎 = 12.4034 mm, 𝑏 = 5.97 mm), a comparison of actual, fit, and 

measured ellipses is indicated in Figure 3. One can notice that the fitted ellipse successfully represents the 

measured data. 

 

 
Figure 3. Ellipse fitting 
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As mentioned before, the same outcome recording procedure (i.e., Figures 1 and 2) and the fit quality 

check (i.e., Figure 3) have been completed for all the test geometries and the CG methods. At the end of 

convergence, the total number of function evaluations are set as the performance measure of the CG 

methods for each geometry. All those results are provided in Figure 4. The geometry numbers 1, 2, 3, 4 

and 5, in this figure, correspond to the circle, the square, the triangle, the ellipse and the rectangle, 

respectively. Moreover, the ∞  denotes that the corresponding CG method fails to converge. For more 

clarity, the Fletcher-Reeves on the square, Polak-Ribiere and Hestenes-Stiefel on the rectangle are not 

successful to complete the fitting process. 

 

 
Figure 4. Total number of function evaluations for all CG methods 

 

One can also notice from Figure 4. that the Polak-Ribiere and Hestenes-Stiefel methods exhibit similar 

performances for all the geometries while the Fletcher-Reeves differs from them on the geometries 2 and 

5. It can be seen that, for rectangle fit, the Fletcher-Reeves is the only one being successful. Although those 

interpretations, it is difficult to define the optimal CG method for geometry fitting. Therefore, we generate 

performance (Dolan and More, 2002) and data profiles (More and Wild, 2009) using the total number of 

function evaluations. The performance profiles of the CG methods are illustrated in Figure 5. These 

profiles simply show success rate of the CG methods within the factor 𝜐 of the fastest CG method which 

can be identified from probability values 𝑃(𝜐) at 𝜐 = 1. Such that, the fastest CG method might be defined 

either the Fletcher-Reeves and the Polak-Ribiere. Both has 𝑃(1) = 60%, which means that they are the 

fastest one on three test geometries out of five, whereas the Hestenes-Stiefel has the probability 𝑃(1) =

40%. As we keep increasing factor 𝜐, all the methods capabilities to complete geometry fitting rise. For 

instance, at the factor 𝜐 = 1.109 of fastest one, the Polak-Ribiere and the Hestenes-Stiefel methods 

performances rise to 80% (i.e., 𝑃(1.109⁡) = 80%). At this factor, the Fletcher-Reeves method performance 

remains same. It can be also mentioned that the Polak-Ribiere and the Hestenes-Stiefel methods reach up 

their maximum performance at 𝜐 = 1.109. From this value on, even if we increase the 𝜐, their success 

probability will not change. However, the same is not valid for the Fletcher-Reeves. It is necessary to 

increase the factor 𝜐 from 1.109 to 1.196. At this value, the Fletcher-Reeves reaches its maximum 

probability (i.e., 𝑃(1.196⁡) = 80%).  
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Figure 5. Performance profiles of CG methods 

 

In other respect, we can also evaluate the performances of the CG methods from a computational 

budget perspective. For this task, we use data profiles, as shown Figure 6. Those profiles basically provide 

the number of geometries, which can be successfully fitted by the CG methods, within given 

computational budget (i.e., total number of function evaluations in this study). As an example, we are 

given a computational budget of 5 × 105 (i.e., 𝜓 = 5 × 105) total number of function evaluations to 

complete at least two geometry fittings (i.e., 𝐷(𝜓 = 5 × 105) ≥ 40%). In these terms, we could choose one 

of the CG methods because they all have same probability 𝐷(𝜓 = 5 × 105) = 40%. Let’s give another 

example; the computational budget is 𝜓 = 6.51 × 105 and we need to fit at least three geometries 

(𝐷(𝜓 = 6.51 × 105) ≥ 60%). For these conditions, the only choice is the Polak-Ribiere method because its 

probability at 𝜓 = 6.51 × 105 is 60% while the others have probability of 40% (see Figure 6). As can be 

seen from the figure that the Polak-Ribiere and Hestenes-Stiefel methods reach maximum number of 

geometry fitting (i.e., 4 geometries out of 5) at 𝜓 = 8.472 × 105. However, the Fletcher-Reeves requires 

much greater number of function evaluations to reach the 𝐷(𝜓) = 80%. 

 

 
Figure 6. Data profiles of CG methods 
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Based on the results reported so far, it is determined that the Polak-Ribiere is the optimal CG method 

for geometry fitting in this study because it is both one of the fastest methods and requires lower number 

of function evaluations to reach the maximum probability compared to others. This efficiency of the Polak-

Ribiere method comes from its self-restarting property. More specifically, if the method provides a bad 

search direction and a small progress (i.e., 𝑝𝑗+1 ≈ 𝑝𝑗 which in turn 𝐺(𝑝𝑗+1) ⁡≈ ⁡𝐺(𝑝𝑗)), the 𝛽𝑗+1 will be 

approximately zero (see Equation 8). In this case, the method reduces to steepest descent method, which 

means that it restarts itself to get rid of bad search direction and small progress. The same property is also 

valid for the Hestenes-Stiefel method. However, the Fletcher-Reeves method is not able to perform a self-

restarting and it requires additional restart conditions in this case. For further mathematical details on this 

property, the reader is referred to Nocedal and Wright (2006). 

5. CONCLUSIONS 

This paper has focused on determining the optimal CG method for geometry fitting. For this task, the 

three well-known CG methods (i.e., Fletcher-Reeves, Polak-Ribiere and Hestenes-Stiefel) were employed. 

To test their performances in the geometry fitting, the five primitive geometries such as circle, square, 

triangle, ellipse and rectangle were selected and their 2D profiles were acquired via the CMM. Based on 

the nonlinear least squares fitting process, the sum of the squared error between the measured and 

modeled data was minimized using the iterative line search along with the conjugate directions obtained 

from the above-mentioned CG methods. During the fitting process, the number of function evaluations 

required to progress in the line search were kept track for each iteration, and the total number of function 

evaluations, when the CG method being used converges, were set as a performance measure. Using those 

data, the performance and data profiles were created to be efficiently determine the optimal method. The 

results have shown that the Fletcher-Reeves and the Polak-Ribiere are the fastest ones based on the 

performance profiles. However, for an optimal choice, it has been determined that the Polak-Ribiere is a 

great candidate. From a practical application view, those results may be pioneer for the end-users who 

deal with geometry fitting of the CMM data. 
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