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ABSTRACT: In this study, it is aimed to determine the optimal conjugate gradient (CG) method for the
geometry fitting of 2D measured profiles. To this end, the three well-known CG methods such as the
Fletcher-Reeves, Polak-Ribiere and Hestenes-Stiefel were employed. For testing those methods
performances, the five primitive geometries accommodating circle, square, triangle, ellipse and rectangle
were first built with a 3D printer, and then they were scanned with a coordinate measuring machine
(CMM) to achieve their 2D profiles. The nonlinear least squares procedure was implemented to minimize
the error between those measured data and modeled ones. An iterative line search was utilized for this
task. The search direction was calculated using the above-mentioned CG methods. During the geometry
fitting process, the number of function evaluations at each iteration were computed and the total number
of function evaluations were set to be a performance measure of the CG method in question when it
converged. By using these performance measures, the performance and data profiles were created to
efficiently determine the optimal CG method. Based on performance profiles, it can be stated that the
Fletcher-Reeves and Polak-Ribiere methods are the fastest ones on three test geometries out of five. In
addition to that, all the CG methods were able to complete the geometry fitting of 80% of test geometries.
On the other hand, by examining the data profiles, it was determined that the Polak-Ribiere and Hestenes-
Stiefel methods achieve their maximum capabilities of the completing geometry fitting (i.e., 80%) with
much lower number of function evaluations than the Fletcher-Reeves method. Besides, in most
geometries, the Polak-Ribiere method outperformed the others, thereby it was determined to be the
optimal one for the geometry fitting. As a conclusion, the reported results in this work might help the
end-users who study on the CMM data processing to conduct an efficient geometry fitting.
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Geometri Uydurma igin En Iyi Eslenik Gradyan Yoénteminin Tespit Edilmesi

0Z: Bu calismada, 6lgiilen 2B profillere geometri uydurulmast igin en iyi eslenik gradyan (EG) yonteminin
tespit edilmesi hedeflenmektedir. Bu amagla, iyi bilinen {i¢ eslenik gradyan yontemleri, Fletcher-Reeves,
Polak-Ribiere and Hestenes-Stiefel kullanildi. Ad1 gecen yontemlerin performanslari test etmek icin daire,
kare, {icgen, elips ve dikdortgen geometrilerini igeren test parcalari ilk olarak 3B yazici ile imal edildi ve
daha sonra bu geometrilerin 2B profillerini elde etmek amaciyla ad: gegen geometriler koordinat 6lgme
makinesi ile tarandi. Olgiilerek ve modellenerek elde edilen veriler arasindaki hatay1 en aza indirmek icin
dogrusal olmayan en kiigiik kareler prosediirii uygulandi. Bu uygulama igin bir iterativ dogru boyunca
arama gerceklestirildi. Arama yonii ise yukarida ad1 gegen yontemler kullanilarak hesaplandi. Geometri
uydurma siirecinde her bir iterasyonda yapilan fonksiyon degerlendirme sayist hesap edildi ve ilgili
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eslenik gradyan yontemi yakinsadiginda ortaya ¢ikan toplam fonksiyon degerlendirme sayisi yontemin
performans Olgiitii olarak belirlendi. Verimli bir sekilde en iyi eslenik gradyan yontemini tespit edebilmek
i¢cin bu performans Olciitleri kullanilarak performans ve veri profilleri olusturuldu. Performans
profillerine dayanarak, Fletcher-Reeves ve Polak-Ribiere yontemlerinin bes geometriden iiciinde en hizli
oldugu ifade edilebilir. Buna ek olarak, tiim EG yontemleri test geometrilerinin %80'inin geometri
uydurmasini tamamlayabilmigtir. Ote yandan, veri profilleri incelenerek, Polak-Ribiere ve Hestenes-
Stiefel yontemlerinin Fletcher-Reeves yontemine gore cok daha az sayida fonksiyon degerlendirmesi ile
maksimum geometri uydurma kabiliyetlerine (%80) ulastiklar: tespit edilmistir. Ayrica bircok geometride
Polak-Ribiere yontemi digerlerinden daha iyi oldugundan bu yontem geometri uydurma igin en iyi
yontem olarak belirlendi. Sonug¢ olarak, calismada rapor edilen sonuglar koordinat 6l¢me makinesi
verilerinin islenmesi ile ilgilenen son kullanicilara verimli bir geometri uydurma gerceklestirmelerinde
yardimci olabilir.

Anahtar Kelimeler: Eglenik gradyan, Geometri uydurma, En iyileme
1. INTRODUCTION

The application of the CG methods can be found in many fields such as engineering, computer science,
etc. due to their efficiency in nonlinear optimization. Li et al. (2020), for instance, proposed a CG method
along with pseudospectral collocation scheme. They applied it to find optimal rocket landing guidance.
The authors reported that the proposed method stands out with high convergence speed and
computational efficiency. In the work completed by Chattopadhyay and Chattopadhyay (2018), a
neurocomputing model was developed using CG method-based backpropagation in artificial neural
network for predicting average rainfall. An application of CG methods in finite element method was
presented by Schwarz (1979). Helmig et al. (2020) investigated effect of number of temperature
measurements on boundary conditions obtained using CG method. To this end, they used two test cases
including orthogonal cutting process and a heat spreader cooling concept for power electronics and they
stated that it is possible to reconstruction of the boundary using lower temperature measurements than
the actual unknown boundary segments with a certain threshold number of sensors. Another study on
inverse heat conduction problem was completed by Xiong et al. (2020) using a sequential CG method.
They estimated the surface heat flux and it was reported that the proposed method provides more accurate
results and less computation time. On the other hand, from the structural engineering point of view, Wang
et al. (2013) revealed a new CG method for multi-source dynamic load identification from the noisy
response measurements. The application results proved that the suggested method is more efficient than
the Landweber iteration method. Moreover, for the image restoration problem, some modified Hestenes-
Stiefel conjugate gradient algorithms were presented by Hu et al. (2020). Other CG algorithms (Cao and
Wu, 2020; Joo et al., 1997), for this purpose, were also brought in the literature. In addition to them, some
improved CG methods such as those of (Mtagulwa and Kaelo, 2019; Jiang and Jian, 2019; Wang et al., 2018;
Fatemi, 2016) were presented for general optimization problems.

As can be seen from the above summarized studies, the CG methods have been frequently finding an
area to be applied. However, no study was found on the geometry fitting and the CMM data processing
by using CG methods. Thus, there is no data about their performance in this topic. To a little contribute
this gap, the current work concentrates on defining the optimal CG methods from the well-known
methods (i.e., Fletcher-Reeves, Polak-Ribiere and Hestenes-Stiefel) for the geometry fitting of measured
2D profiles. The paper is structured as follows: Section 2. covers the primitive geometries, their
mathematical models, and the geometry fitting procedure. A brief description on the mathematical
background of CG method is given in Section 3. In Section 4, the obtained results are presented with
discussion. Finally, Section 5 summarizes and concludes the paper.
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Nomenclature
X,y coordinates of each point on the geometry 1.:  radius of circle
coordinates of each point on the geometr
Xy Vo : ) p & y r:  radius of triangle
without rotation
Xe,Y.:  center coordinates of the geometry 0: rotation angle
arameter ranging between 0 and 2r . . .
u: P . &ing a: radius of ellipse along x axis
radians
w: width b:  radius of ellipse along y axis
h height ng:  Number of edges (i.e., ny = 3 for triangle)

2. PRIMITIVE GEOMETRIES AND THEIR FITTING PROCEDURE

For determination of the optimal CG method, the five primitive geometries are used. Those geometries
are circle, square, rectangle, triangle, and ellipse. Their parametric mathematical models (Desmos, 2021)
are given below.

Circle:

x =1, cos(u) + x, (1)
y =1 sin(u) + y.

Square and rectangle:

Xy = %(lcos(u)l cos(u) + |sin(w)| sin(u))
Yu = %(ICOS(u)I cos(u) — [sin(w)| sin(w)) (2)

x = x, cos(6) — y, sin(0) + x,
y = x, sin(@) + y, cos(0) + y,

Triangle:

h
Cos(nisarcsin(sin(%u)))

x, = rcos(u) 3)
vy, = rsin(u)

x = x, cos(0) — y, sin(6) + x,

y = x, sin(0) + y, cos(8) + y,

Tr =

Ellipse:

X, = acos(u)

¥, = bsin(u) (4)
x = x, cos(0) — y, sin(0) + x,

y = x, sin(@) + y, cos(0) + y,

All those coordinate calculations given above are theoretical. To obtain actual coordinates of those
geometries, first a workpiece containing those geometries were built using a 3D printer with a PLA
material. They were later scanned via the CMM that provides their 2D profiles. With these theoretical and
measured data, the nonlinear least squares fitting procedure is employed. To do so, first we describe the
sum of the squared errors, €2(p), between theoretical and measured data as follows (Jia, 2017):
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€2(p) = Y7u[x; — % )] + Ty — vt )] )

where p is the parameter vector accommodating all the variables in the geometry being used, x;, y;,

xjmodel

the mathematical model, respectively. As well-known, the nonlinear least squares procedure aims to

(p) and y}""del (p) denote x and y-coordinates of the geometry obtained from the measurement and

minimize this parameter dependent error. For that purpose, in this study, an iterative line search
procedure along with three well-known CG methods is implemented. The details about the minimization
process are covered in the next section.

3. CONJUGATE GRADIENT METHODS

The conjugate gradient methods are frequently used in nonlinear optimization problems. To minimize
the sum of squared errors between the data obtained via the measurements and the mathematical model,
in this study, an iterative line search procedure is implemented. In the line search, the search direction,
Sj+1, (see Equation 6.) is computed using three well-known CG methods (i.e., Fletcher-Reeves (Fletcher
and Reeves, 1964), Polak-Ribiere (Polak and Ribiere, 1969) and Hestenes-Stiefel (Hestenes and Stiefel,
1952)).

Sjy1 = _G(Pj+1) + ﬁj+15j (6)

In this equation, G = —J7D is the objective function gradient, J is the Jacobian matrix of the objective
D
function, D = [ D;] is the difference matrix, D, = x; — xjm"d"’l(p) and D, = y; — y]model(p) . Bj+1 is the CG

coefficient and it is computed using the above-mentioned methods. Their mathematical descriptions are
given below.

Fletcher-Reeves:

G(pj+1)TG(pj+1)
o= b)) AP 7
Bj+1 60, 6(ny) 7)
Polak-Ribiere:
6(pj1) (6(j41)-6(v)))
= 8
P leI” ®
Hestenes-Stiefel:
6(pjs1)' (6(pj42)-6(r))
. = 9
ﬁjﬂ S]T(G(pj+1)_ G(pj)) ©)
In Equations 7 to 9, the initial search direction is s, = —G(py) (i-e., opposite of the gradient of the

objective function). By using all those, the iterative line search to find the next parameters is describes as
follows (Nocedal and Wright, 2006):

Pj+1 = P; + ;s (10)

where @; > 0 is the step length that controls the amount of the movement along the CG direction. It
can be computed using various line search conditions. However, in this study, a numerical algorithm is
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implemented to compute the step length. Equation 10 proceeds until the convergence condition is
satisfied. This condition is:

maximum|/TD| < 0 (11)
where 0 = 107* is the convergence tolerance.
4. RESULTS AND DISCUSSION

To determine the optimal CG method for geometry fitting, totally fifteen geometry fittings have been
completed using the five test geometries and three CG methods. For keeping track the geometry fitting
process, the geometry fitting parameters, sum of the squared errors, norm of the gradient of the objective
function and step length have been recorded at each iteration. Those results are presented in Figure 1.
Note that all those results, as example, belong the ellipse fitting process with the Polak-Ribiere method.
The same procedure has been also completed for all the test geometries and the CG methods. In addition,
the number of function evaluations (Nfe), as the performance measure of the CG method, are computed
for each iteration. The above-mentioned fitting outcomes are also plotted in accordance with number of
function evaluations, as shown in Figure 2.
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Figure 1. Fitting progress of the ellipse: Results versus iteration, (a) Ellipse center x-coordinate (mm) (b)
Ellipse center y-coordinate (mm) (c) Ellipse rotation angle (degree) (d) Ellipse radius along x-direction
(mm) (e) Ellipse radius along y-direction (mm) (f) Sum of squared errors (g) Norm of the gradient of
objective function (h) Step length
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Figure 2. Fitting progress of the ellipse: Results versus number of function evaluations, (a) Ellipse center
x-coordinate (mm) (b) Ellipse center y-coordinate (mm) (c) Ellipse rotation angle (degree) (d) Ellipse
radius along x-direction (mm) (e) Ellipse radius along y-direction (mm) (f) Sum of squared errors (g)

Norm of the gradient of objective function (h) Step length

As can be seen from these figures, the iterative line search starts with initial parameter values supplied
by the user and it successfully converges the required tolerance after a little bit fluctuation. It might be
stated that the convergence is linear based on the Figure 2(g). Also notice that the sum of squared error
and norm of the gradient of the objective function continuously decrease. This shows that the proposed
fitting process works very well. On the other hand, the number of function evaluations at each iteration
quite different due to step length computation. Figure 2(h) shows that the different step length is necessary
for a significant progress, which means that the amount of work, the number of function evaluations, will
vary during the process. As a result of converged ellipse parameters at 37. iteration (i.e., x, = 335.9690
mm, y, = 198.6981 mm, 6 = —0.0084°, a = 12.4034 mm, b = 5.97 mm), a comparison of actual, fit, and
measured ellipses is indicated in Figure 3. One can notice that the fitted ellipse successfully represents the
measured data.
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Figure 3. Ellipse fitting
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As mentioned before, the same outcome recording procedure (i.e., Figures 1 and 2) and the fit quality
check (i.e., Figure 3) have been completed for all the test geometries and the CG methods. At the end of
convergence, the total number of function evaluations are set as the performance measure of the CG
methods for each geometry. All those results are provided in Figure 4. The geometry numbers 1, 2, 3, 4
and 5, in this figure, correspond to the circle, the square, the triangle, the ellipse and the rectangle,
respectively. Moreover, the o denotes that the corresponding CG method fails to converge. For more
clarity, the Fletcher-Reeves on the square, Polak-Ribiere and Hestenes-Stiefel on the rectangle are not
successful to complete the fitting process.

|- Fletcher-Reeves [ Polak-Ribiere [Jill Hestenes-Stiefel |

1010 . : : . T
o0 ?OO
108 | .
&
z
106 | .
10* L

1 2 3 4 5
Geometry numbers

Figure 4. Total number of function evaluations for all CG methods

One can also notice from Figure 4. that the Polak-Ribiere and Hestenes-Stiefel methods exhibit similar
performances for all the geometries while the Fletcher-Reeves differs from them on the geometries 2 and
5. It can be seen that, for rectangle fit, the Fletcher-Reeves is the only one being successful. Although those
interpretations, it is difficult to define the optimal CG method for geometry fitting. Therefore, we generate
performance (Dolan and More, 2002) and data profiles (More and Wild, 2009) using the total number of
function evaluations. The performance profiles of the CG methods are illustrated in Figure 5. These
profiles simply show success rate of the CG methods within the factor v of the fastest CG method which
can be identified from probability values P(v) at v = 1. Such that, the fastest CG method might be defined
either the Fletcher-Reeves and the Polak-Ribiere. Both has P(1) = 60%, which means that they are the
fastest one on three test geometries out of five, whereas the Hestenes-Stiefel has the probability P(1) =
40%. As we keep increasing factor v, all the methods capabilities to complete geometry fitting rise. For
instance, at the factor v = 1.109 of fastest one, the Polak-Ribiere and the Hestenes-Stiefel methods
performances rise to 80% (i.e., P(1.109 ) = 80%). At this factor, the Fletcher-Reeves method performance
remains same. It can be also mentioned that the Polak-Ribiere and the Hestenes-Stiefel methods reach up
their maximum performance at v = 1.109. From this value on, even if we increase the v, their success
probability will not change. However, the same is not valid for the Fletcher-Reeves. It is necessary to
increase the factor v from 1.109 to 1.196. At this value, the Fletcher-Reeves reaches its maximum
probability (i.e., P(1.196 ) = 80%).
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Figure 5. Performance profiles of CG methods

In other respect, we can also evaluate the performances of the CG methods from a computational
budget perspective. For this task, we use data profiles, as shown Figure 6. Those profiles basically provide
the number of geometries, which can be successfully fitted by the CG methods, within given
computational budget (i.e., total number of function evaluations in this study). As an example, we are
given a computational budget of 5x 10° (i.e, ¥ =5 X 10°) total number of function evaluations to
complete at least two geometry fittings (i.e., D(i = 5 X 10°) = 40%). In these terms, we could choose one
of the CG methods because they all have same probability D(y = 5 X 10°) = 40%. Let’s give another
example; the computational budget is 1 = 6.51 X 10° and we need to fit at least three geometries
(D(y = 6.51 x 10°) = 60%). For these conditions, the only choice is the Polak-Ribiere method because its
probability at ¢ = 6.51 x 10° is 60% while the others have probability of 40% (see Figure 6). As can be
seen from the figure that the Polak-Ribiere and Hestenes-Stiefel methods reach maximum number of
geometry fitting (i.e., 4 geometries out of 5) at 1) = 8.472 x 10°. However, the Fletcher-Reeves requires
much greater number of function evaluations to reach the D(y) = 80%.
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Figure 6. Data profiles of CG methods
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Based on the results reported so far, it is determined that the Polak-Ribiere is the optimal CG method
for geometry fitting in this study because it is both one of the fastest methods and requires lower number
of function evaluations to reach the maximum probability compared to others. This efficiency of the Polak-
Ribiere method comes from its self-restarting property. More specifically, if the method provides a bad
search direction and a small progress (i.e., pj;; = p; which in turn G(ij) ~ G(pj)), the B;,, will be
approximately zero (see Equation 8). In this case, the method reduces to steepest descent method, which
means that it restarts itself to get rid of bad search direction and small progress. The same property is also
valid for the Hestenes-Stiefel method. However, the Fletcher-Reeves method is not able to perform a self-
restarting and it requires additional restart conditions in this case. For further mathematical details on this
property, the reader is referred to Nocedal and Wright (2006).

5. CONCLUSIONS

This paper has focused on determining the optimal CG method for geometry fitting. For this task, the
three well-known CG methods (i.e., Fletcher-Reeves, Polak-Ribiere and Hestenes-Stiefel) were employed.
To test their performances in the geometry fitting, the five primitive geometries such as circle, square,
triangle, ellipse and rectangle were selected and their 2D profiles were acquired via the CMM. Based on
the nonlinear least squares fitting process, the sum of the squared error between the measured and
modeled data was minimized using the iterative line search along with the conjugate directions obtained
from the above-mentioned CG methods. During the fitting process, the number of function evaluations
required to progress in the line search were kept track for each iteration, and the total number of function
evaluations, when the CG method being used converges, were set as a performance measure. Using those
data, the performance and data profiles were created to be efficiently determine the optimal method. The
results have shown that the Fletcher-Reeves and the Polak-Ribiere are the fastest ones based on the
performance profiles. However, for an optimal choice, it has been determined that the Polak-Ribiere is a
great candidate. From a practical application view, those results may be pioneer for the end-users who
deal with geometry fitting of the CMM data.
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