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Abstract

The estimation of the lift coefficient, CL of a non-slender delta wing under the ground effect, is performed
by employing an artificial neural network (ANN). The purpose of the study is to estimate the lift coefficient,
CL acting on the delta wing for the ground distance h/c=0.4 by utilizing the actual lift coefficient, CL for the
ground distances h/c=1, 0.7, 0.55, 0.25 and 0.1. In this ANN model, the angle of attack, α and ground
distance, h/c were used as input parameters and lift coefficients, CL as the output parameter. While mean
absolute percentage error (MAPE) and root mean squared error (RMSE) were found as 1.60% and 0.0114
in the testing stage, they were calculated as 1.77% and 0.01 in the training stage. Hence, this investigation
shows that the lift coefficient, CL of the delta wing in ground effect can be correctly estimated by developing
an ANN model.
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Yer Etkisi Altındaki Delta Kanat Üzerinde Oluşan Taşıma Katsayısının Yapay
Sinir Ağı Kullanılarak Tahmin Edilmesi

Öz

Bu çalışmada, yapay sinir ağı kullanılarak, yer etkisi altında olan düşük süpürme açısına sahip delta kanat
üzerindeki taşıma katsayının, CL tahmini yapılmıştır. Çalışmanın amacı boyutsuzlaştırılmış yer
mesafesinin, h/c=1, 0,7, 0,55, 0,25 ve 0.1 olduğu durumlardaki gerçek taşıma katsayıları kullanılarak,
boyutsuz yer mesafesinin, h/c=0.4 olduğu durumdaki taşıma katsayısını tahmin etmektir. Oluşturulan yapay
sinir ağı modelinde, hücum açısı, α ve boyutsuzlaştırılmış yer mesafesi, h/c girdi parametreleri olarak
kullanılmış, taşıma katsayısı, CL ise çıktı parametresi olarak kullanılmıştır. Oluşturulan yapay sinir ağı
modelinin eğitimi aşamasında, ortalama mutlak yüzde hata (MAPE) ve kök ortalama kare hatası (RMSE)
sırasıyla %1,60 ve 0,0114 olarak hesaplanırken, test aşamasında bu değerler sırasıyla %1,77 ve 0,01 olarak
hesaplanmıştır. Sonuç olarak bu çalışma, yapay sinir ağı kullanılarak yer etkisi altında olan delta kanat
üzerindeki taşıma katsayısının, CL doğru bir şekilde tahmin edilebileceğini göstermiştir.

Anahtar Kelimeler: Yapay sinir ağı, Delta kanat, Yer etkisi, Taşıma katsayısı
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1. INTRODUCTION

Non-slender delta wings are usually employed in
Unmanned Air Vehicles, Micro Air Vehicles, and
fighter crafts due to high maneuver capacity even at
high angles of attacks. Two counter-rotating
leading-edge vortices can identify the flow structure
around delta wings that occurs symmetrically with
respect to the delta wing’s axis. There are a lot of
studies and excellent reviews about vortical flow
structure and aerodynamic characteristics of delta
wing such as Gursul et al. [1], Ol and Gharib [2] and
Gursul et al. [3].

The lift coefficient, CL, is a dimensionless number
that engineers and researchers utilize to model
whole complex dependencies of shape, inclination
and some flow conditions [4]. It denotes the ratio of
the lift force on a kind of aircraft to the force
generated by the multiplication of dynamic pressure
and planform area of the body. It is a very important
coefficient because it affects the aerodynamic
performance of an aircraft, stall phenomena and
flight stability. The stall is a very important
parameter that affects aerodynamic efficiency, the
performance, and stability of aircraft. The lift
coefficient, CL, gets higher by an increasing angle
of attack and when the vortices start to break on a
very close region to the apex of the wing the lift
coefficient, CL attenuates by an increasing angle of
attack. This situation is known as a stall. Moreover,
maximum lift coefficient, CL determines the
minimum speed at which an airplane can fly. So that
reason, the measurement, and interpretation of the
lift coefficient are very significant. Researchers
generally measure the lift coefficient, CL by
utilizing models in a wind tunnel. In the wind
tunnel, the lift coefficient, CL can be measured by
setting the velocity, density, and planform area of
the body. The lift coefficient, CL, includes the
influences of air viscosity and compressibility. To
accurately measure the lift coefficient, we must
ensure that the influence compressibility and air
viscosity are identical between the measurement
and prediction case. On the contrary case, the
prediction will not be accurate. The lift coefficient,
CL occurs due to the pressure difference between the

upper and lower surfaces of the delta wing. When
an angle of attack, α is introduced to the delta wing,
there will be a pressure difference between suction
and pressure surfaces of the delta wing thus lift
force is developed on the surface of the wing. The
lift coefficient, CL can be increased or decreased by
altering the angle of attack, α the shape of the
model, and the velocity of the flow. Furthermore,
the lift coefficient, CL on an aircraft changes with
time for the same angle of attack, flow velocity and
model geometry due to unsteady and complex flow
structures as well as an irregular breakdown of
vortices.

One of the most critical stages of the whole flight of
an aircraft is the take-off and landing conditions.
Because during the take-off and landing procedures,
the flow physics and aerodynamic properties of an
aircraft significantly alter from the critical
characteristics of the unbounded flow region.
During the take-off and landing stages, there is an
inevitable interaction between the ground surface
and the lower surface of the wing. So that reason, it
is vitally important to investigate, understand and
interpret the ground effect on the aerodynamics of
aircraft. Even though most of the studies related to
the structure of vortical flow and aerodynamic
performance of delta wings are present in the
literature, there aren't enough studies about the
ground effect on the aerodynamic characteristics of
delta wings. In the investigation of Kawazoe and
Morita [5], as the delta wing approaches the ground,
lift and drag coefficients, CL and CD augment, and
rolling moment coefficient, CM are effected by the
existence of the ground effect, particularly at higher
α’s. According to Lee et al. [6], lift and drag
coefficients, CL and CD, were detected to increase
by increasing anhedral as the distance between the
ground and trailing edge of the anhedraled reversed
delta wing gets smaller. Tumse et al. [7] concluded
that lift and drag coefficients, CL and CD, get higher
with descending from the unbounded flow region
under the ground effect at each angle of attack.
According to them, the most effective
dimensionless ground distance normalized by chord
length, h/c is 0.1 in terms of the aerodynamic
performance since the highest CL/CD ratio is
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acquired at h/c=0.1. An increase in aerodynamic
performance developed by the ground effect can be
interpreted in the ram pressure effect caused by the
ground effect, which is the stagnation of air between
the ground and the wing surface. According to Lee
and Ko [8], lift enhancement was observed to be
highest at lower angles of attack and ground
distances, h/c and this augmentation deteriorates by
increasing h/c and α. Qu et al. [9] pointed out that
lift, drag and nose-down moment coefficient gets
higher with reducing ground proximity, h/c.
According to them, the induced drag attenuates
since the forming of weak wing-tip vortices and
movement of vortices far away from the wing
surface. Ahmed et al. [10] emphasized that the lift
coefficient augments when the distance between
wing and ground reduces at high angles of attack, α
due to the RAM pressure effect and air cushion
between airfoil surface and ground. But at low α, CL

deteriorates as ground distance, h/c reduces due to
the passage of converging-diverging flow in the
region between airfoil and ground surfaces.

In order to reduce the number of a necessary
experiment like pressure and force measurements in
the wind tunnel and improve the control system, an
artificial neural network (ANN) is an encouraging
model due to the significant learning capability for
linear and nonlinear systems. The aerodynamic
characteristics of the aircraft equipped with various
kinds of wings and the impacts of the flow control
methods play a significant position in wind tunnel
investigations. In these investigations, it is
necessary to carry out a number of experiments such
as the lift force, drag force, pressure and velocity
measurements. Due to these high number of
experiments, time, and cost requirements,
researchers are encouraged to perform numerical
and theoretical studies. The artificial neural network
(ANN), which is one of the most important ones
among these numerical studies, attracts much
attention because of its ability to model complicated
nonlinear systems [11-13].

In fluid mechanics, artificial neural networks are
generally employed in Particle Image Velocimetry
(PIV) measurements [14-16] and flow control

applications [17-19]. Akbiyik and Yavuz [20]
developed an ANN model to estimate the lift and
drag coefficients, CL, and CD on the NACA 2415
airfoil with and without plasma actuators.
According to their study, the maximum error of lift
and drag coefficients, CL and CD prediction, was
23.705% and 12.84%. Moreover, they stated that
the developed ANN model could be successfully
used to estimate aerodynamic coefficients of the
airfoil without the necessity of comprehensive
experimental studies. In the study of Sarioglu et al.
[21], the drag forces of a truck trailer equipped with
a spoiler were predicted by an artificial neural
network (ANN). They computed the mean absolute
percentage error (MAPE) as 2.24%, 3.75% and
4.58% during training, validation, and testing
stages, respectively, in the estimation of drag
forces. A neural network could correctly learn the
aerodynamic behavior of a delta wing having a
sweep angle of Ʌ=70° under large-amplitude pitch
oscillations [22]. Rokhsaz and Steck [23] revealed
that the extremely nonlinear aerodynamic
characteristics of an aircraft could be generalized
with enough correctness for design objectives. Even
though the neural network can be successfully
generalized the aerodynamic properties in design
and analysis problems, they seem deficient in terms
of robustness for the characteristics of dynamic
systems. Alkhedher and Al-Aribe [24] developed
neural networks and an adaptive neuro-fuzzy logic
interference system to estimate the pitching
moment and aerodynamic normal force coefficients
of different shaped wing aircraft under high angles
of attack. Based on the comprehensive analysis of
suggested prediction methods, the ANN
demonstrated lower mean squared errors during
modeling and testing stages. In the study of Gomec
and Canibek [25] feed forward neural network
(MLP) model having four layers together with two
hidden layers was established and approved.
According to their model, the Levenberg-Marquart
backpropagation method was used as a training
algorithm. In this study, Mach number, angle of
attack, side slip angle was used in the input layer
and drag force, lift force, side and roll moment was
used in the output layer.
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Ignatyev and Khrabrov [26] developed a neural
network model to predict the aerodynamic
characteristics of canard aircraft at high angles of
attack. The aircraft is equipped with leading-edge
extension (LEX) and a canard surface with a high
sweep angle. In this study, several approaches were
carried out to estimate the aerodynamic
performance of canard aircraft. They stated that
recurrent neural network (RNN) trained bayesian
regularization heteroscedastic data (BRHD)
algorithm demonstrated that better conclusions
regarding estimation ability compared to the neural
network (NN) trained one. Moreover, the
generalization ability of RNN was found to be better
compared to NN one. Secco et al. [27] evaluated the
various ANN architectures to predict aerodynamic
coefficients on wing-body combinations constituted
of generic airfoils. In this study, many numbers of
data, nearly 100.000 to train and develop the ANN
model. The number of neurons in ANN architecture
was determined regarding the minimum mean
squared error. According to this study, the mean
absolute error (MAPE) was calculated as 0.0041 for
the estimation of lift coefficient, CL, and
computation cost gets reduced by generated ANN
model compared to computational fluid dynamics
(CFD). Rai and Madavan [28] developed a neural
network to estimate the aerodynamic characteristics
of turbomachinery airfoils. In this study, pressure
distribution data were used during the training
process. They revealed that the neural network
could be accurately used for the design of the airfoil.

The purpose of this investigation is to estimate the
lift coefficient, CL of a non-slender delta wing under
the ground effect by an artificial neural network
(ANN) and to report the estimation capability of the
developed ANN model for this kind of application.

2. MATERIAL VE METHOD

2.1. Experimental Setup of Lift Coefficient
Measurements

The measurement of lift coefficients, CL, was
carried out in a wind tunnel with a square cross-

section of 570 mm x 570 mm x 1000 mm. This wind
tunnel has a turbulence intensity of smaller than
0.1% [29]. By using a vibration suppressor, the
vibrations from the fan are eliminated. The engine
of the fan, which provides flow in the tunnel has a
power of 4 kW and has a diameter of 700 mm. The
air inside the tunnel is discharged from the outlet
hose into the atmosphere. Telemecanique Altivar 17
brand (11 kW) frequency converter control unit is
utilized to obtain the desired airspeed within the
range of 0-50 Hz. The lift coefficient, CL

measurement was performed at angles of attack
within range of 2°≤ α ≤29° with an interval of 3°.
The CL was computed according to Equation 1.In
Equation 1, where FL is measured lift force of the
delta wing, ρ is the density of the fluid which is
equal to ρ=1 kg/m3 at measurement condition, U∞ is
the velocity of the fluid flow which is equal to
U∞=16.57 m/s and A is the planform area of the
wing, 𝐴 = 0.5 × 𝑏 × 𝑐 where b and c is the span
and chord length of the wing, respectively. Akbiyik
et al. [30] computed the uncertainty of force
measurement in the same wind-tunnel utilizing the
identical measurement techniques for similar
geometry with this investigation is nearly ±5%. The
Reynolds number was handled as Re=1.296x105

based on the chord length of the wing. The
maximum blockage ratio which is described as the
proportion of wing’s frontal area to the cross-
sectional area of the wind tunnel was calculated as
6%.

CL=
FL

0.5 ρ U∞
2 A

(1)

In this study, the distance between wing and
ground, h, is nondimensionalized with the chord
length, c of the wing.  The normalized ground
distances, h/c= 1, 0.7, 0.55, 0.4, 0.25 and 0.1 were
used. Actually, the normalized ground distance,
h/c=1, corresponds to the out-of-ground effect
region, in other words, the ground-free case. The
ground-free case is a circumstance that happens as
an aircraft flies in the unbounded flow area which is
outside of the region where the ground effect is felt.
For detailed information about this subject and the
schematic demonstration of the experimental setup,
please refer to Tumse et al. [7]. The upper section
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of the wind tunnel was used to represent the ground.
In lift coefficient measurements, the Reynolds
number was taken as Re=1.296 x105 with
corresponding free-stream air velocity, U∞=16.57
m/s. The chord length of the wing used in this study
is 14 cm. Also, the wing has a sweep angle of Ʌ=40°
thickness of t=5 with 45° sharp leading-edges. The
schematic representation of this delta wing and
input parameters for ANN, h, and c are
demonstrated in Figure 1.

Figure 1. The schematic representation of the delta
wing and input parameters of ANN, h and
c

2.2. Artificial Neural Network

An artificial neural network is encouraged from the
human neural network, as stated by Bishop [31]. A
neural network can be regarded as a mathematical
function changing nonlinearly that supplied a
connection between input and output variables.
ANN is a highly nonlinear model that is simple to
utilize and recognize compared to statistical
methods. It is a non-parametric model whereas most
statistical methods are a parametric model that
requires an advanced background of statistics. ANN
is applied when one has minor or even no
information on the structure and form of the input
and output mapping. It generally can supply more
flexibility in fitting non-linear mapping in high
dimensional datasets than curve fitting or regression
methods. The ANN model can be carried out
accurately in various areas of mathematics,
meteorology, medicine, thermodynamic
applications, economics, robotic controls, heat and

electrical load predictions, and many other fields
[32-34]. The structure of the developed ANN
model, which is known as Feed Forward Neural
Network, is demonstrated in Figure 2. This
generated ANN model is constituted of input,
hidden, and output layers. Output value can be
computed with respect to Equation 1.

F=f൫a+∑ vj
3
1 +ൣ∑ g2

1 ൫wijxi+bj൯൧൯ (2)

In Equation 2, F is the predicted value, a is the
output’s bias value, vj is the weight for the value of
output, wij is the weight for the input layer, b input’s
bias value, and x is the variable for the input. The
activation function of the input and output are
denoted as f and g in Equation 2. The angle of
attack, α, and normalized ground distance, h/c are
the input parameters, whereas lift coefficient, CL is
the output parameter of the generated ANN model.
A total of 60 data is utilized for the training and
testing process in the developed ANN model. The
50 data of these 60 data was used in the training
process, whereas the rest for the testing process. The
logistic sigmoid function (logsig) was used as an
activation function in the hidden layer, whereas the
linear transfer function (purelin) was employed as
an activation function in the output layer. The
expressions of logsig and purelin functions are
demonstrated in Equations 3 and 4, respectively.
The Levenberg-Marquart (LM) learning algorithm
was employed in this simulation. In this study, a
different number of neurons from 2 to 10 in the
hidden layer was tested, and the best one for the
prediction of lift coefficient in terms of MAPE,
MAE, and RMSE was selected. The best results for
the prediction of lift coefficient, CL were acquired
when the number of neurons is 3.

Figure 2. The structure of the developed ANN
model
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f(a)= 1
1+e-a (3)

purelin (a)=a (4)

2.3. Accuracy Assessment of Estimated
Parameters

Mean absolute percentage error (MAPE) is a
measure of closeness of estimated value to the
actual value. Sometimes the MAPE can be stated as
a percentage. It generally expresses the error of
forecasting.

MAPE=
∑ |At-Ft

At
|n

t=1

n
×100 (5)

where A is the actual value and F is the forecasting
value.

The mean absolute error (MAE) states the absolute
error between predicted and real values. It is
computed as the ratio of the sum of the difference
between predicted and real values to the number of
observations.

MAE= ∑ |At-Ft|n
t=1

n
(6)

The root mean square error (RMSE) is defined as
the root of the mean square error which is the ratio
of the sum of the square of the difference between
predicted and real values to the number of
observations.

RMSE=ට∑ (At-Ft)
2n

t=1
n

(7)

3. RESULTS AND DISCUSSION

Figure 3 represents the comparison between
measured and estimated values of lift coefficient, CL
with the angle of attack, α in case of ground
distance, h/c=0.4 during the testing period. As
inferred from this Figure, the estimated lift
coefficient values, CL by ANN model, demonstrates
an almost identical trend with experimentally
measured ones. For example, while the lift
coefficient, CL is experimentally measured as
0.4296, 0.7532, and 0.7177 at angles of attack,
α=8°, 17° and 26°, respectively, they estimated as
0.4456, 0.7527 and 0.7048, respectively by the
developed ANN model. So, it can be said that the
prediction performance of generated ANN model is
very good during the testing period which includes
the case of h/c=0.4.

Figure 3. Comparison of actual and predicted lift coefficients, CL of a non-slender delta wing in case of
ground distance, h/c=0.4 during the testing process



Sergen TÜMSE, Mehmet BİLGİLİ, Beşir ŞAHİN

Ç.Ü. Müh. Fak. Dergisi, 36(3), Eylül 2021 631

The performance values such as MAPE, RMSE,
and MAE for the estimation of lift coefficient, CL in
case of normalized ground distance, h/c=0.4 during
the testing case are demonstrated in Table 1. MAPE,
MSE, and MAE are displayed in order to assess the
estimation accuracy of generated ANN model. As
reported by Lewis [34], the estimation assessment
is rather correct if the value of MAPE is smaller
than 10%. As seen in Table 1, the MAPE value is
1.6% for the estimation of lift coefficient, CL in case
of ground distance, h/c=0.4. So, it denotes that the
generated ANN model has excellent accuracy. It
should be mentioned that if the value of RMSE
equals 0 or very close to 0, the estimation
performance is rather correct. As observed in Table
1, the value of RMSE is 0.0114.  So, it can be said
that the error between real and estimated values is
very low. As seen in Table 1, the value of MAE is
found as 0.0086 during the prediction of lift
coefficient, CL in the case of h/c=0.4. This MAE
value can be regarded as highly acceptable for the

prediction of lift coefficient, CL. Figure 4 shows the
correlation between the experimental and estimated
values of lift coefficient, CL, with the angle of
attack, α, generated by the ANN model. Regression
value, R specifies the relationship between
measured and estimated lift coefficient, CL. As seen
in Figure 4, the regression value, R, is almost equal
to 1; hence, the developed ANN model
demonstrates excellent consistency with
experimentally measured lift coefficient, CL.

Table 1. The values of MAPE, RMSE, and MAE
for the estimation of lift coefficient, CL in
case of normalized ground distance,
h/c=0.4 during the testing case

TESTING (h/c=0.4)

MAPE RMSE MAE

1.60% 0.0114 0.0086

Figure 4. Relation between actual and predicted values of lift coefficient, CL for testing case

The comparison of predicted and measured lift
coefficients, CL of a 40° swept delta wing under
various ground distances, h/c during the training
stage is demonstrated in Figure 5. As seen in Figure
5, the predicted lift coefficient, CL generated with
ANN model are noticeably linked with measured
ones demonstrating considerably correct results.

The estimated lift coefficients, CL overlap with
experimentally measured lift coefficients, CL
independent of angles of attack during the training
stage. For example, at h/c=0.7, while lift
coefficient, CL was experimentally measured as
0.568, 0.701 and 0.7 at α=11°, 20° and 29°,
respectively, they are predicted as 0.571, 0.7 and
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0.688 at α=11°, 20° and 29°, respectively by
developed ANN model. As observed from Figure 5,
the lift coefficient, CL augments by reducing
normalized ground distance, h/c. For instance, at
α=14°, while CL is equal to 0.673 for h/c=0.7, it is
found as 0.741, 0.836 for h/c=0.25 and 0.1,
respectively.  The lift increment can be attributed to
the ground effect induced RAM pressure and
dynamic air cushion in the region between the
ground surface and wing’s pressure surface. As
noticed in Figure 5, the maximum lift coefficient is
acquired at α=17° and the CL starts to decrease
beyond α=17° thus, it can be said that the stall
phenomena takes place after α=17°.  While the CL
attenuates up to the α=23°, it again increases when
the angle of attack alters from α=23° to α=26° and
29°. This situation can be interpreted to the high-
level fluid-structure interactions that end up with
remarkable lift augmentation in the post-stall region
which is also reported in the excellent review of
Gursul et al. [1]. This flow physics is a specific
property of non-slender delta wings. The regression
value, R which denotes the relation of real and
estimated lift coefficient, CL was found to very close
to the 1 for all ground distances, h/c=1, 0.7, 0.55,
0.25 and 0.1 during the training stage as observed
from Figures 6 and 7. So, it can be said that the
estimation performance of generated ANN model is

very accurate during the training stage. Table 2
displays the assessment of the performance of the
generated ANN model via MAPE, RMSE, and
MAE values during the training stage. Moreover, in
Table 3, these performance values are given
separately for all ground distances, h/c constituting
the training stage. Table 2 and Table 3 show that the
MAPE, RMSE, and MAE are within the acceptable
ranges. The MAPE value in the training stage which
consists of h/c=1, 0.7, 0.55, 0.25, and 0.1, is 1.77%
and higher than the MAPE value in the testing stage
consisting of h/c=0.4 which has already computed
as %1.6. When Table 3 is examined carefully, it can
be observed that the MAPE, RMSE, and MAE
values get higher with reducing ground distances,
h/c, during the training process. For example, when
the MAPE, RMSE and MAE are 1.18%, 0.0065,
0.0052 at h/c=0.7, 1.42%, 0.0082, 0.0065 at
h/c=0.55, they equal to 2.57%, 0.0136, 0.0123 at
h/c=0.1, respectively. This situation can be
attributed to the more unsteady, complex, and
disorganized flow structures by reducing the
normalized ground distance, h/c between wing and
ground surface. These complex and disorganized
flow structures may cause sudden changes in
aerodynamic forces and fluctuations in the values of
aerodynamic forces.

Table 2. The values of MAPE, RMSE, and MAE for the estimation of lift coefficient, CL during training
case including all h/c

TRAINING (including all cases)
MAPE RMSE MAE
1.77% 0.01 0.0080

Table 3. The values of MAPE, RMSE, and MAE for the estimation of lift coefficient, CL during training
case for h/c=1, 0.7, 0.55, 0.25 and 0.1 separately

TRAINING
Ground distance MAPE RMSE MAE

h/c=1 1.91% 0.0089 0.0076
h/c=0.7 1.18% 0.0065 0.0052

h/c=0.55 1.42% 0.0082 0.0065
h/c=0.25 1.76% 0.0110 0.0083
h/c=0.1 2.57% 0.0136 0.0123
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Figure 5. Comparison of actual and predicted lift
coefficients, CL of a non-slender delta
wing in case of ground distance, a) h/c=1,
b) h/c=0.7, c) h/c=0.55, d) h/c=0.25, e)
h/c=0.1 during training process

Figure 6. Relation between actual and predicted
values of lift coefficient, CL for training
case of a) h/c=1, b) h/c=0.7, c) h/c=0.55,
d) h/c=0.25, e) h/c=0.1
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Figure 7. Relation between actual and predicted
values of lift coefficient, CL for training
case including all h/c

4. CONCLUSIONS

The available experimental results were presented
to reveal the ground effect on the change of lift
coefficient, CL of a non-slender delta wing. The
purpose of the current study is to improve a model
that can be used to predict lift coefficient, CL acting
on the non-slender delta wing under the ground
effect by utilizing the input parameters of
normalized ground distance, h/c, and angle of
attack, α. The conclusions acquired with the ANN
model are compared with each other and measured
(actual) data. The founded error values are within
reasonable limits. For example, the MAPE, RMSE,
and MAE values are found as 1.60%, 0.0114 and
0.0086 respectively for the estimation of lift
coefficient, CL in case of normalized ground
distance, h/c=0.4 during the testing case. The
prediction of lift coefficient, CL with the ANN
model, follows the change of experimentally
measured values exactly in the testing stage. The
MAPE value in the training stage which consists of
the combination of predicted lift coefficients, CL in
cases of h/c=1, 0.7, 0.55, 0.25, and 0.1 was found as
1.8%, and this value is higher than the MAPE value
in the testing stage consisting of h/c=0.4 which has
already computed as 1.6%. In the training stage, the
MAPE, RMSE, and MAE values increase with
reducing ground distances, h/c. For instance, when
the MAPE, RMSE and MAE are 1.18%, 0.0065 and
0.0052 at h/c=0.7, they are equal to 2.57%, 0.0136
and 0.0123 at h/c=0.1 respectively. This situation
can be attributed to the more unsteady, complex,
and disorganized flow structures by reducing the

normalized ground distance, h/c between wing and
ground surface. The regression value, R which
denotes the relationship between actual and
estimated lift coefficients, CL was found as very
close to the 1 in training and testing stages which
shows the excellent prediction accuracy of the
developed ANN model. This study demonstrated
that the ANN model could be accurately employed
in the aerodynamic coefficient prediction in order to
decrease the number of experiments; thus, it is
possible to save time and cost
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