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Abstract

Let Kn (n > 1) be an n–punctured non–orientable surface of genus 2 with 1 boundary
component. We give formulae for calculating the geometric intersection number of an
arbitrary multicurve with a relaxed multicurve on Kn given their generalized Dynnikov
coordinates.

1. Introduction

Throughout the paper we work on a standard model of Kn (n > 1) as depicted in Figure 1.1. That is, all the punctures and the crosscaps of Kn
are aligned along the x-axis, and that each disk with an asterisk represents a crosscap, which is a graphical representation of a Möbius band
(i.e. interior of such disks are removed and antipodal points on the remaining boundary are identified). We say that a simple closed curve in
Kn is essential if it satisfies the following properties: it is not the core curve of a Möbius band and it doesn’t bound an unpunctured disk, a
once punctured disk or a Möbius band. A multicurve L is the homotopy class of a finite union of essential simple closed curves in Kn. We
say that a multicurve is relaxed if each of its connected components intersects the x-axis at most twice (see for instance Figure 3.1). We
denote by Ln the set of multicurves in Kn. Let L1,L2 ∈ Ln. Then the geometric intersection number ι(L1,L2) is defined as

min{|L1∩L2| : L1 ∈L1,L2 ∈L2}

where |L1∩L2| denotes the number of intersections between L1 and L2.
The fact that the geometric intersection number is preserved under homeomorphisms yields a two step algorithm which works as follows.
The first step of the algorithm is a relaxation algorithm finding a homeomorphism sending one of the multicurves to a relaxed one [1, 2] and
the second provides formulae to calculate the geometric intersection number between an arbitrary multicurve and a relaxed one. This idea is
realized in [1] for finitely many times punctured disks coordinatizing multicurves with Dynnikov coordinates and describing the action of the
mapping class group (group of isotopy classes of homeomorphisms) using the update rules [3, 1]. In this paper we establish the second step
of the aforementioned approach providing formula for each relaxed curve in Kn (n > 1).
There are various combinatorial descriptions for multicurves on non–orientable surfaces [4, 5]. In this paper, we shall make use of the
generalized Dynnikov coordinate system [5], which provides a one–to–one correspondence between Ln and a certain subset of Z2n+2 \{0},
to generalize the approach in [2] for multicurves in Kn.
In Section 2 we present necessary terminology and background related with generalized Dynnikov coordinates of multicurves, and introduce
some notions which will be important for developing the formulae stated in Section 3.

2. Generalized Dynnikov Coordinates of Multicurves

Consider the arcs αi (1≤ i≤ 2n−2), βi (1≤ i≤ n+1) and γ , and the core curves c1,c2 of crosscap 1 and crosscap 2 as shown in Figure
1.1. Given a multicurve L ∈ Ln we can always find a taut representative L of L that is a representative of L which intersects each of the
arcs and curves minimally. We write (α; β ; γ; c1,c2) for the set of intersection numbers of L with these arcs and curves.
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Figure 1.1: The arcs αi, βi, γ and curves c1,c2 on Kn

Let 1≤ i≤ n−1. Then Si denotes the region which is a subset of Kn bounded by βi and βi+1, and contains puncture i+1. Note the special
interpretation for S0 which is bounded by the boundary and β1. Let Sn denote the region bounded by βn and βn+1, and contains crosscap 1.

Similarly, Sn+1 contains crosscap 2 and bounded by the boundary and βn+1. We write Si, j =
j⋃

k=i

Sk for each i and j with 0≤ i < j ≤ n+1.

Then Si, j is the subset of Kn bounded by the arcs βi and β j+1. Note the special interpretation for S0, j , j 6= n+1 (resp. Si,n+1, i 6= 0) which is
bounded by the boundary and β j+1 (resp. βi).

Path components

Given a taut representative L ∈L ∈ Ln we have the following possibilities of a connected component of L∩Si and L∩Si, j:

Definition 2.1 (Above components). An above component of L∩Si has one endpoint on βi and the other on βi+1 passing under puncture
i+1. Therefore, while it intersects the arc α2i−1 it does not intersect the arc α2i. Similarly, an above component of L∩Sn has one endpoint
on βn and the other on βn+1 passing over crosscap 1. Therefore, it intersects the arc γ but not the core curve c1. An above component of
L∩Si, j (i≥ 1, j ≤ n) has one end point on βi and the other on β j+1 and passing entirely over the x–axis.

For example, in Figure 2.1 there are 2 above components of L∩Si and 1 above component of L∩Si, j for each 2≤ j ≤ n.

Si Sn

βi α2i−1

α2i

βi+1 βi+2 βn+1βn

Figure 2.1: Above and below components denoted red and green respectively

Definition 2.2 (Below components). A below component of L∩Si has one endpoint on βi and the other on βi+1 passing under puncture
i+1. Therefore, while it intersects the arc α2i it does not intersect the arc α2i−1. Similarly, a below component of L∩Sn has one endpoint
on βn and the other on βn+1 passing under crosscap 1. Therefore, it neither intersects the arc γ nor the core curve c1. A below component of
L∩Si, j (i≥ 1, j ≤ n) has one end point on βi and the other on β j+1 and passing entirely below the x–axis.

For example, in Figure 2.1 there are 2 below components of L∩Si and L∩Si, j for each 2≤ j ≤ n.

Definition 2.3 (Left loop components). A left loop component of L∩Si intersects each αk (k = 2i,2i−1) exactly once and has each of its
endpoints on βi+1. Similarly, a left loop component of L∩Sn intersects γ exactly twice having each of its end points on βn+1. If it intersects
the core curve c1, we call it a left core loop component, and if it doesn’t we call it a left non-core loop component. A left loop component of
L∩Si, j, j ≤ n−1 intersects the x–axis between βi and the puncture i+1 having each of its end points on β j+1. A left loop component of
L∩Si,n intersects the x–axis between βi and the puncture i+1 having each of its end points on βn+1. There are no left loop components of
L∩Si,n+1 since there are no above or below components of L∩Sn+1.
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Definition 2.4 (Right loop components). A right loop component of L∩Si intersects each αk (k = 2i,2i−1) exactly once and has each of its
endpoints on βi. Similarly, a right loop component of L∩Sn intersects γ exactly twice having each of its end points on βn. If it intersects the
core curve c1, we call it a right core loop component, and if it doesn’t we call it a right non-core loop component. A right loop component of
L∩Si, j , j ≤ n−1 intersects the x–axis between β j+1 and the puncture j+1 having each of its end points on βi. A right loop component of
L∩Si,n, i≥ 1 (respectively L∩Si,n+1) intersects the x–axis only between crosscap 1 (respectively crosscap 2) and βn+1 (respectively the
boundary) having each of its end points on βi. There are no right loop components of L∩S0, j since there are no above or below components
of L∩S0.

α2i−1

α2i

βi βi+1 βi+2 βn+1βn α2i−1

α2i

βi βi+1 βn βn+1

Si Sn Si Sn

Figure 2.2: Examples for left and right loop components

Definition 2.5 (Straight core components). A straight core component of L∩Sn intersects c1 exactly once having one of its endpoints on βn
and the other on βn+1. There are no straight core components of L∩Sn+1.

Consider for example the left hand side of Figure 2.2. We have 1 left loop component of L∩Si, 1 core loop component and 1 straight core
component (depicted red) of L∩Sn and 1 left loop component of L∩Si, j for each 2≤ j ≤ n. Similarly, consider the right hand side of Figure
2.2. We have 1 right core and 1 right non–core loop component L∩Sn and 1 right loop component of L∩Si,n+1.
See Lemma 2.3 and Lemma 2.4 in [5] for the proofs of the following lemmas.

Lemma 2.6. Let 1≤ i≤ n. There are
∣∣bi =

βi−βi+1
2

∣∣ loop components of L∩Si. If bi > 0 the loop components are right and if bi < 0 they

are left. The number of loop components of L∩S0 is given by β1
2 , and the number of right loop components of L∩Sn+1 is given by βn+1

2 . We
denote by λci and λi the number of core loop and non–core loop components of L∩Si (i = n,n+1), and by ψ the number of straight core
components of L∩Sn.

λ1 = max(|bn|− c1,0) and λc1 = min(|bn|,c1)

λ2 =
βn+1

2
− c2 and λc2 = c2

ψ = max(c1−|bn|,0).

Since above and below components of L∩Si intersect α2i−1 and α2i respectively; and above and below components of L∩Sn pass above
and below crosscap 1 respectively, and that below and above components of L∩Si, j form the lowest and highest components of each L∩Si
respectively we immediately get Lemma 2.7.

Lemma 2.7. Denote by Bk and Ak the number of below and above components of L∩Sk (1≤ k ≤ n). Let Bi, j and Ai, j denote the number of
below and above components of L∩Si, j respectively. Then, we have

Ai = α2i−1−|bi| and Bi = α2i−|bi|, for 1≤ i≤ n−1

An =
γ

2
−|bn|−ψ and Bn = max(βn+i,βn+i+1)−|bn|−

γ

2
Ai, j = min

i≤k≤ j
Ak and Bi, j = min

i≤k≤ j
Bk

Notation 1. Let λk (k = 1,2) be as given in Lemma 2.6. We write

λ
+
1 =

{
λ1 if bn > 0
0 if bn < 0

and λ
−
i =

{
λi if bn < 0
0 if bn > 0

We set λ
+
2 = λ2 since there are only right loop components of L∩Sn+1.
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2.1. The generalized Dynnikov coordinates

The function ρ : Ln→ Z2n+2 \{0} defined by

ρ(L ) = (a; b; t; c1,c2) := (a1, . . . ,an−1; b1, . . . ,bn; t;c1,c2)

where

ai =
α2i−α2i−1

2
;1≤ i≤ n−1, bi =

βi−βi+1

2
;1≤ i≤ n, t = An−Bn, (2.1)

where An and Bn are as given in Lemma 2.7 is called the generalized Dynnikov coordinate function.

Notation 2. Let S = Z2n+2 \{0} and S1 = {(a; b; t; c1,c2) :∈S : |t|+ψ is even} where ψ is as given in Lemma 2.6.

Next, we give Theorem 2.8 [5] which presents formulae to compute the intersection numbers (α; β ; γ; c1,c2) from the generalized Dynnikov
coordinates (a; b; t; c1,c2); and hence reconstructs the corresponding multicurve as depicted in Figure 2.3.

Theorem 2.8. Let (a; b; t; c1,c2) ∈S1, and

X = 2 max
1≤r≤n−1

{
|ar|+max(br,0)+

r−1

∑
j=1

b j

}

Y =

{
|t|+2max(bn,0)+ψ +2

n−1

∑
j=1

b j

}

β
∗
i = max(X ,Y )−2

i−1

∑
j=1

b j and R = max(0,2c2−β
∗
n+1)

Then (a; b; t; c1; c2) is the generalized Dynnikov coordinate of exactly one element L ∈ Ln with

βi = β
∗
i +2R

αi =

{
(−1)iadi/2e+

βdi/2e
2 if bdi/2e ≥ 0,

(−1)iadi/2e+
β1+di/2e

2 if bdi/2e ≤ 0,

γ = 2(An + |bn|+ψ).

Example 2.9. Let L ∈ L2 be a multicurve with generalized Dynnikov coordinates ρ(L ) = (2; 1,0;−2; 2,0). Theorem 2.8 gives that L
has intersection numbers α1 = 1, α2 = 5, β1 = 6, β2 = 4, β3 = 4, γ = 4. From Lemma 2.6 and Lemma 2.7 we get that b1 = 1 and b2 = 0
that is there is one right loop component of L∩S1 and no loop components of L∩S2; A1 = 0,B1 = 4 that is there are four below components
and no above components of L∩S1; and A2 = 0,B2 = 2 that is there are 2 below components and no above components of L∩S2. Also,
λ2 = 2,λc2 = 0 and hence there are no core loop components of L∩S2 and two core loop components of L∩S2. Pasting the pieces of these
connected components in each region together uniquely determine the curve as depicted in Figure 2.3.

Figure 2.3: Gluing components of L∩Si together determines L uniquely up to homotopy

3. Geometric intersection of multicurves with relaxed curves

Definition 3.1 (Relaxed curves). A relaxed curve in Kn is the homotopy class of an essential simple closed curve in Kn which intersects the
x–axis at most twice, and is represented by one of the following curves:

• Ci, j is contained in the region Si, j. It has ρ(Ci, j) = (0; b; 0; 0) ∈S1 such that if 0 < i < j < n+1, bi = −1 and b j = 1. If i = 0
each bk = 0 except for b j = 1, and if j = n+1, each bk = 0 except for bi =−1.

• D is contained in the region Sn,n+1. It has ρ(D) = (0; b; 0; c) ∈S1 such that b j = 0 (1 ≤ j ≤ n−1) and bn =−1, bn+1 = 1 and
c1 = c2 = 1.

Notation 3. For convenience we shall denote by C the homotopy class of the relaxed curve bounding both crosscap 1 and crosscap 2.
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D

Figure 3.1: Some relaxed curves Ci, j and D on Kn

Note that different values for indices i and j give different topological types of curves. Some examples for relaxed curves in Kn are illustrated
in Figure 3.1. A multicurve L ∈ Ln is relaxed if each of its components is relaxed.

Notation 4. Let λ
+
j ( j = n,n+1) and λ

−
j ( j = n) be as given in Notation 1. For the sake of brevity we shall write b j = λ j for 1≤ j ≤ n

(this is always possible since there are no core loops about puncture j).

Lemma 3.2. Let 1≤ i < j ≤ n. There are R right and L left loop components of L∩Si, j respectively given by

R = min(Ai, j−1−Ai, j, Bi, j−1−Bi, j, λ
+
j ), and

L = min(Ai+1, j−Ai, j, Bi+1, j−Bi, j, λ
−
i ).

βi β j β j+1
βi βn βn+1

Ai, j

Ai, j−1−Ai, j

Bi, j

Bi, j−1−Bi, j
λ
+
j

Ai,n

Ain−1−Ai,n

Bi,n

Bi,n−1−Bi,n λ+
n λn+1

Figure 3.2: Calculation of right loop components of L∩Si, j

Proof. Consider the above components of Si, j−1 which are not contained in above components of L∩Si, j. Number of such components is
given by Ai, j−1−Ai, j . Similarly, number of below components of Si, j−1 which are not contained in below components of L∩Si, j is given by
Bi, j−1−Bi, j. Since there are λ

+
j non–core loop components of S j ( j = n,n+1) it is immediate from Figure 3.2 that R is the minimum of

these three numbers. Number of left loop components of L∩Si, j is calculated similarly.

Theorem 3.3 (Intersections with Ci, j). Let L ∈Ln be a multicurve with ρ(L ) = (a; b; t; c1,c2) ∈S1. Let 0 ≤ i < j ≤ n with (i, j) 6=
(0,n+1). Then the geometric intersection number ι(L ,Ci, j) is given by

ι(L ,Ci, j) = βi +β j+1−2(R+L+Ai, j +Bi, j).

Proof. Let γi, j be a taut representative of the relaxed curve Ci, j , and let L be a taut representative of L with respect to each arc αi,βi,γ , each
curve ci, and to γi, j. With the set up in Section 2 the proof is identical to that of Lemma 7 in [1] which is based on computing explicitly
the number of connected components of L∩Si, j which are disjoint from γi, j. We first note that the number of connected components of

L∩Si, j that are not simple closed curves is given by βi+β j+1
2 . Each such component either has zero intersection with γi, j or intersects it twice.

Those which are disjoint from Ci, j are above, below, left and right loop components of L∩Si, j (Figure 3.3) number of which are given by
Ai, j, Bi, j, L and R respectively as given above. Therefore, we get

ι(L ,Ci, j) = βi +β j+1−2(R+L+Ai, j +Bi, j)

as required.

Theorem 3.4. Let L ∈Ln be a multicurve with ρ(L ) = (a; b; t; c1,c2)∈S1. Let ι(L ,C ) and ι(L ,D) denote the geometric intersection
numbers between L and the relaxed curves C and D respectively. Then,

ι(L ,D) =

{
ι(L ,C ) ; c1 = c2 = 0,
|c1− c2| ; otherwise

Proof. There are two cases: Either c1 = c2 = 0 or ci 6= 0 for some k ∈ {1,2}. The former case is immediate from Figure 3.4(a). For the
latter case assume without loss of generality that c1 ≥ c2. Then any curve intersecting c1 must intersect c2 or D as illustrated in Figure 3.4(b)
and Figure 3.4(c). That is, c1 = D + c2 as required.

Example 3.5. Let L ∈ L2 be a multicurve with ρ(L ) = (−1; 1,0; 1; 1,1) (Figure 3.5). By Theorem 2.8, L has intersection numbers
(α1,α2;β1,β2,β3;γ1;c1,c2) = (3,1;4,2,2;4;1,1). Since c1 = c2 = 0, we get from Theorem 3.4 that ι(L ,D) = |c1− c2|= 0.
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Figure 3.3: Connected components of L∩Si, j that are disjoint from Ci, j
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Figure 3.4: Proof for D

L

D

Figure 3.5: ι(L ,L2) = 0

4. Conclusion

The results stated in Theorem 3.3 and Theorem 3.4 are obtained only for genus 2 non–orientable surfaces in this paper. We note that the
formulae for relaxed curves which have zero intersection with the crosscaps can be generalized to a higher genus non–orientable surface N
immediately using the similar techniques given in Theorem 3.3. Similarly, the formula for D can be used for the two sided curves Fi,i+1
on N which intersects crosscap i and crosscap i+1 exactly once, and has zero intersection with the diameter of the surface. However, for
relaxed curves Fi, j on N which intersects crosscaps i through j ( j > i+1) the method given in Theorem 3.4 fails. The main reason the
method doesn’t work is that if the arcs intersecting Fi, j are complicated, then it is far from straightforward to describe components which are
disjoint from Fi, j or to determine a relation between the number of intersections on Fi, j , the core curves and the other relaxed curves Ci, j .

Question 1. Generalize the geometric intersection formulae between arbitrary curves and relaxed curves for higher genus non–orientable
surfaces. In particular, what is the formula for L ∈ Lg,n and the relaxed curves Fi, j ( j > i+1) in terms of their generalized Dynnikov
coordinates on higher genus surfaces?
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