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Abstract. In this study, Volterra integral equation is solved by Hosoya Polynomials. The solutions obtained
with Hosoya method were compared on the figure and table. And error analysis was done. Matlab package
programming has been used to obtain results, tables and error analysis.

1. Introduction

Many mathematical models in disciplines such as engineering, physics and chemistry consist of integral
equations [1]. Integral equations are equations in which the unknown function is under the integral sign
[9]. Integral equations has been used in various applications such as geophysics, electricity and magnetism,
kinetic theory of gases, regeneration theory, quantum mechanics, radiation, optimization, optimal control
systems, mathematical economics, mathematical problems of radiative equilibrium, fluid mechanics, steady
state heat [11]. One of most important integral equation is Volterra integral equation. Recently, Volterra
integral equations have been increasingly used in engineering and applied mathematics studies. This
equation has been studied in many fields of study such as Banach space, Haar functions problems, potential
theory and Dirichlet problems, spectral methods, numerical computational problems and computer science
problems [10]. In addition, the method studied in this paper was applied to the Volterra integral equation.

2. Volterra Integral Equations

The third kind of Volterra integral equations is of the form

u(x)h(x) = f (x) + λ

x∫
α

K(x, t)u(t)dt (1)
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where the limits of integration are function of x and the unknown function u(x) appears linearly under the
integral sign. Second kind of Volterra integral equations is of the form

u(x) = f (x) + λ

x∫
α

K(x, t)u(t)dt (2)

where h(x) = 1. First kind of Volterra integral equations is of the form

f (x) = λ

x∫
α

K(x, t)u(t)dt (3)

3. Hosoya Polynomials

The Hosoya polynomial was initiated in 1988 by Haruo Hosoya [5, 8]. Hosoya polynomials count the
distance between vertices of the path graph [12]. It is obtained from path graphs of certain pairs of graphs
[3, 4]. Studies such as obtaining the physical and chemical properties of organic molecules with the Hosoya
polynomial of the graph were carried out [12]. For a path graph with the Hosoya polynomial is described
as,

H(P, δ) =
∑
l≥0

d(P, l)δl (4)

where d(P, l) is the distance between vertex pairs in the path graph [6, 7]. Sum of the path graph vertices
m with 1, 2, ...,m are multipled δ parameter. Then Hosoya values are calculated based on m vertex values
[13]. For m integer values we represent path as ρm , then Hosoya polynomial of path compute as:

H(ρ1, δ) =
∑
l≥0

d(ρ1, l)δl = 1

H(ρ2, δ) =
∑
l≥0

d(ρ2, l)δl = δ + 2

H(ρ3, δ) =
∑
l≥0

d(ρ3, l)δl = δ2 + 2δ + 3

...

H(ρm, δ) = m + (m − 1)δ + (m − 2)δ2 + ...

+ (m − (m − 2))δm−2 + (m − (m − 1))δm−1

A function w(x) ∈ L2[0; 1] is dilated as:

w(x) =

n∑
i=1

ziH(ρi, x) = ZTHρ(x), (5)

where Z and Hρ(x) are m × 1 matrices shown as:

Z = [z1, z2, z3, ..., zm]T (6)

and
Hρ(x) = [H(ρ1, x),H(ρ2, x), ...,H(ρm, x)]T. (7)
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4. Hosoya Polynomial Method

Consider The Volterra integral equation

y(x) = w(x) +

x∫
1

L(x, t)y(t)dt, 0 ≤ x, t ≤ 1 (8)

to solve equation (8), the method is as follows:

1. First we define y(x) as defined in Equation (5). This equation is,

y(x) = ZTHρ(x) (9)

2. Then using place of (9) in (8), we get,

ZTHρ(x) = w(x) +

x∫
1

L(x, t)
[
ZTHρ(t)

]
dt (10)

3. Replacing the collocation point x j =
j−0.5

m , j = 1, 2, · · · ,m in Equation (10). Then we get,

ZTHρ(x j) = w(x j) + ZT


x∫

1

L(x j, t)Hρ(t)dt

 (11)

ZT(Hρ(x j) − Y) = w

where

Y =
x∫

1
L(x j, t)Hρ(t)dt

4. In the last step, we get the conclutions of unknown Hosoya values,

ZTL = w

where

L = Hρ(x j) − Y

solving this system of equations we get coefficients Z and then use in place of these coefficients in (9),
we obtain the necessary result of (8) [2].

5. Numerical Example

5.1. Example
Consider Volterra integral equation,

u(x) = x +

x∫
1

(t − x)u(t)dt (12)
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which has the exact solution u(x) = sin(x). First we substitute u(x) = ZTHρ(x) in equation (12). We get,

ZTHρ(x) = x +

x∫
1

(t − x)
[
ZTHρ(t)

]
dt (13)

Because of that reason for m = 3,

Z1[H1(x) −


x∫

1

tH1(t)dt −

x∫
1

xH1(t)dt

]
+ Z2[H2(x) −


x∫

1

tH2(t)dt −

x∫
1

xH2(t)dt

]
+ Z3[H3(x) −


x∫

1

tH3(t)dt −

x∫
1

xH3(t)dt

] = x

(14)

Next, we achieve the Hosoya polynomials as

Z1[1 −


x∫

1

tdt −

x∫
1

xdt

]
+ Z2[(x + 2) −


x∫

1

t(t + 2)dt −

x∫
1

x(t + 2)dt

]
+ Z3[(x2 + 2x + 3) −


x∫

1

t(t2 + 2t + 3)dt −

x∫
1

x(t
2
+ 2t + 3)dt

] = x

(15)

Next,

Z1[
3
2

+
x2

2
− x]

+ Z2[
x3

6
+ x2
−

3x
2

+
10
3

]

+ Z3[5 −
x2

2
+

53x
12
−

x4

4
−

2x3

3
] = x

(16)
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If it is compute as x j =
j−0.5

m and putting instead of the collocation points x1, x2, x3 , we get the system of
three equations with three unknowns as,

Z1[
3
2

+
x1

2

2
− x1]

+ Z2[
x1

3

6
+ x1

2
−

3x1

2
+

10
3

]

+ Z3[5 −
x1

2

2
+

53x1

12
−

x1
4

4
−

2x1
3

3
] = x1

Z1[
3
2

+
x2

2

2
− x2]

+ Z2[
x2

3

6
+ x2

2
−

3x2

2
+

10
3

]

+ Z3[5 −
x2

2

2
+

53x2

12
−

x2
4

4
−

2x2
3

3
] = x2

Z1[
3
2

+
x3

2

2
− x3]

+ Z2[
x3

3

6
+ x3

2
−

3x3

2
+

10
3

]

+ Z3[5 −
x3

2

2
+

53x3

12
−

x3
4

4
−

2x3
3

3
] = x3

(17)

resolving these systems we get the three unknown Hosoya values,

Z1 = 0.5012, Z2 = 0.8672, Z3 = -0.4101

putting back with these coefficients in the approximation, we get

u(x) = Z1[H1(x)] + Z2[H2(x) + Z3[H3(x)]

If in (17) is written in place of the x1, x2, x3 values, approximate solutions are achieved.

u1(x) = Z1[H1(x1)] + Z2[H2(x1) + Z3[H3(x1)]
u2(x) = Z1[H1(x2)] + Z2[H2(x2) + Z3[H3(x2)]
u3(x) = Z1[H1(x3)] + Z2[H2(x3) + Z3[H3(x3)]

(18)

We get the approximate values,

u1 = -0.0682718, u2 = 0.397826, u3 = 0.820127

Maximum Error analyzed for m = 3 is,

Emax =

√√
m∑

i=1

(ue(xi) − ua(xi))2 =√
(x1 − u1)2 + (x2 − u2)2 + (x3 − u3)2 = 0.2605

(19)

and for m = 3, 8, 10 are shown in the Tables 1, 2, 3 and Figures 1, 2, 3.
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Table 1: Conclution of Hosoya Polynomial Method, for m = 3
x Hosoya Polynomial Method Exact Solution

0.1667 0.1659 -0.0682718

0.5 0.4794 0.397826

0.8333 0.7402 0.820127

Figure 1: Example 5.1 for m = 3

Table 2: Conclution of Hosoya Polynomial for m = 8
x Hosoya Polynomial Method Exact Solution

0.0625 0.5851 -0.214276

0.1875 0.1864 -0.0383231

0.3125 0.3125 0.138228

0.4375 0.3074 0.312622

0.5625 0.5333 0.482137

0.6875 0.6875 0.644129

0.8125 0.6346 0.79607

0.9375 0.9361 0.935588
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Figure 2: Example 5.1 for m = 8

Table 3: . Conclution of Hosoya Polynomial Method for m = 10
x Hosoya Polynomial Method Exact Solution

0.050 0.050 -0.231732

0.150 0.1494 -0.0912973

0.250 0.2474 0.0500501

0.350 0.3429 0.190897

0.450 0.4350 0.329837

0.550 0.5227 0.465482

0.650 0.6052 0.596475

0.750 0.6816 0.721508

0.850 0.7513 0.839333

0.950 0.9134 0.948771
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Figure 3: Example 5.1 for m = 10

6. Conclution

In this paper, the solution of Volterra integral equations with Hosoya method is examined. The method
was applied to test problem in the matlab achieved with a certain algorithm. The method is solved for
m = 3, m = 8, m = 10 values. The maximum error analysis was obtained according to the results exact and
approximate solutions. The results exact and approximate solutions are shown with tables and figures.
When the achieved conclutions are analyzed, it is seen that the Hosoya method is an useful method for
solving the Volterra integral equation.
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