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Abstract. In recent paper, the space
∣∣∣Er
ϕ

∣∣∣ (µ) which is the generalization of the absolute Euler Space on the space
l(µ), has been introduced and studied by Gökçe and Sarıgöl [3]. In this study, we give certain characterizations of
matrix transformations from the paranormed space

∣∣∣Er
ϕ

∣∣∣ (µ) to one of the classical sequence spaces c0, c, l∞. Also,
we show that such matrix operators are bounded linear operators.
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1. Introduction

The sequence spaces have an important place in summability theory, a wide field of mathematics, which have a
great number of applications in approximation theory, calculus, and basically in functional analysis. Constitutively,
the classical theory deals with the generalization of the concept of convergence for sequences and series. The aim is
to assign a limit value for non-convergent sequences and series by making use of an operator determined by infinite
matrices. The reason why matrices are used for a general linear operator is that a linear operator from a sequence space
to another one can be given by an infinite matrix. The literature in the field of summability theory continues to develop
not only on the generation of sequence spaces through the matrix domain of a particular limitation method and on
the investigation of their topological, algebraic structures and matrix transformations but also on examinations about
new series spaces derived by various absolute summability methods from a different perspective. In recent paper, the
paranormed space

∣∣∣∣Er
ϕ

∣∣∣∣ (µ) which is the generalization of the Absolute Euler Space on the space l(µ) has been introduced
and certain matrix operators on the space have been investigated by Gökçe and Sarıgöl. In the present study, we give
some characterizations of matrix transformation from the paranormed space

∣∣∣∣Er
ϕ

∣∣∣∣ (µ) to one of the classical sequence
spaces c0, c, l∞. Also, we show that such matrix operators are bounded linear operators. Finally, we express some
results.

Firstly, we recall certain known concepts. Let ω be the set of all sequences of complex numbers, U, V be arbitrary
sequence spaces, i.e., subsets of ω, and Λ = (λnv) be an infinite matrix of complex components. By Λ(u) = (Λn(u)),
we stand for the Λ-transform of a sequence u = (uv), if the series

Λn (u) =
∞∑

v=0

λnvuv
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is convergent for all n ≥ 0. If Λ(u) ∈ V, whenever u ∈ U, then Λ, denoted by Λ : U → V, is called a matrix
transformation from the space U into another space V, and, by (U,V), we mean the class of all infinite matrices Λ such
that Λ : U → V . The space of all convergent and bounded series are represented by cs, bs, respectively. Also, the
concept of matrix domain of an infinite matrix Λ in a sequence space U is defined by the set

ΛU = {u = (un) ∈ ω : Λ(u) ∈ U} ,

which is also a sequence space.
If a subspace U is a Frechet space, i.e, a complete locally convex linear metric space, with continuous coordinates

pn : U → C (n ∈ N), where pn(u) = un for all u ∈ U, then it is called to be an FK space; an FK space whose metric is
given by a norm is called to be a BK space. An FK-space U including the set of all finite sequences is said to have AK
property if

lim
m→∞

u[m] = lim
m→∞

m∑
j=0

u je( j) = u,

for each sequence u ∈ U where e( j) is a sequence whose only non-zero term is 1 in j-th place for j ≥ 0. For
instance [8–10], it is well known that the Maddox’s space

l(µ) =

u = (un) :
∞∑

n=1

|un|
µn < ∞


is an FK-space with AK property with respect to the paranorm

g(u) =

 ∞∑
n=0

|un|
µn

1/M

,

where M = max
{
1, supn µn

}
; also the space is even a BK- space if µn ≥ 1 for all n with respect to the norm

∥u∥ = inf

δ > 0 :
∞∑

n=0

|un/δ|
µn ≤ 1

 .
Throughout the whole paper, we assume that 0 < inf µn ≤ K < ∞ and µ∗n is conjugate of µn, i.e., 1/µn + 1/µ∗n = 1,

µn > 1, and 1/µ∗n = 0 for µn = 1.
Assume that

∑
av is a given infinite series, sn is its n-th partial sum, ϕ = (ϕn) is a sequence of positive real numbers

and µ = (µn) is a bounded sequence of positive real numbers. If

∞∑
n=1

(ϕn)µn−1 |Un (s) − Un−1 (s)|µn < ∞,

then the series
∑

av is said to be summable |U, ϕn| (µ) [4]. It should be point out that the summability |U, ϕn| (µ) includes
a lot of well known summability methods for special selections of the matrix U and the sequences ϕ, µ. For instance, if
we take U = Er ( µn = p for all n), then this method is reduced to the summability method |Er, ϕ| (µ) [3] (|Er, ϕ|p [5]).
Here, Euler matrix Er is described by

er
n j =

{ (
n
j

)
(1 − r)n− jr j, 0 ≤ j ≤ n

0, j > n,

for 0 < r < 1 and

e1
n j =

{
0, 0 ≤ j < n
1, j = n,

(see also [1, 2, 7, 13, 14]).
Now, we recall some lemmas which have important places in our study.
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2. Needed Lemmas

Lemma 2.1 ( [6]). Let µ = (µv) be arbitrary bounded sequence of strictly positive numbers.
(i) If µv ≤ 1, then

Λ ∈ (l(µ), c)⇔ (a) lim
n
λnv exists for each v, (b) sup

n,v
|λnv|

µv < ∞,

Λ ∈ (l(µ), c0)⇔ (c) lim
n
λnv = 0 for each v, (b) holds,

and
Λ ∈ (l(µ), l∞)⇔ (b) holds.

(ii) If µv > 1 for all v, then

Λ ∈ (l(µ), c)⇔ (a′) lim
n
λnv exists for each v, (b′) there is a number K > 1 such that

sup
n

∞∑
v=0

∣∣∣λnvK−1
∣∣∣µ∗v < ∞,

Λ ∈ (l(µ), c0)⇔ (c′) lim
n
λnv = 0 for each v, (b′) holds,

and
Λ ∈ (l(µ), l∞)⇔ (b′) holds.

Lemma 2.2 ( [12]). Let U be an FK-space with AK property, R be triangle, S be its inverse and V be any subset of ω.
Then, we have Λ ∈ (UR,V) if and only if Λ̂ ∈ (U,V) and W (n) ∈ (U, c) for all n, where

λ̂nv =

∞∑
j=v

λn js jv; n, v = 0, 1, ...

and

w(n)
mv =


m∑
j=v
λn js jv, 0 ≤ v ≤ m

0, v > m.

Lemma 2.3 ( [11]). Let R be a triangle. Then, for U,V ⊂ ω, Λ ∈ (U,VR) if and only B = RΛ ∈ (U,V).

3. Main Results

In this section, we give certain characterizations of matrix transformations between the paranormed series space∣∣∣∣Er
ϕ

∣∣∣∣ (µ) which is defined as the set of all series summable by the absolute summability method of Euler matrix and
classical sequence spaces c, c0, l∞. Also, we show that the operators are linear bounded operators.

As a beginning, we remind that, using the definition of the summability |Λ, ϕn| (µ), the space
∣∣∣∣Er
ϕ

∣∣∣∣ (µ) can be written
as ∣∣∣Er

ϕ

∣∣∣ (µ) = a ∈ ω :
∞∑

n=0

ϕ
µn−1
n

∣∣∣△Λr
n (s)

∣∣∣µn
< ∞

 ,
where

△Λr
n (s) = Λr

n(s) − Λr
n−1(s)

and

Λr
n(s) =

n∑
k=0

(
n
k

)
(1 − r)n−krk sk, n ≥ 0, Λr

−1(s) = 0.

After a few calculation, we can introduce the space
∣∣∣∣Er
ϕ

∣∣∣∣ (µ) as follows:

∣∣∣Er
ϕ

∣∣∣ (µ) = a = (ak) :
∞∑

n=1

∣∣∣∣∣∣∣ϕ1/µ∗n
n

n∑
k=1

(
n − 1
k − 1

)
(1 − r)n−krkak

∣∣∣∣∣∣∣
µn

< ∞

 .
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On the other hand, by considering T r
n(ϕ, µ)(a) = ϕ1/µ∗n

n △ Λr
n (s), we get T r

0(ϕ, µ)(a) = a0ϕ
1/µ∗0
0 and

T r
n(ϕ, µ)(a) = ϕ

1/µ∗n
n

n∑
k=1

(
n − 1
k − 1

)
rk(1 − r)n−kak

=

n∑
k=1

tr
nk(ϕ, µ)ak,

where

tr
nk(ϕ, µ) =


ϕ

1/µ∗0
0 , k = n = 0
ϕ

1/µ∗n
n

(
n−1
k−1

)
rk(1 − r)n−k, 1 ≤ k ≤ n

0, k > n.
According to the notation of domain, it is written that∣∣∣Er

ϕ

∣∣∣ (µ) = [
l(µ)

]
T r(ϕ,µ)

and so, the connection between Maddox’s space and the space
∣∣∣∣Er
ϕ

∣∣∣∣ (µ) is established. Also, it is obvious that if r = 1

and ϕn = 1 for all n ≥ 0, the space
∣∣∣∣Er
ϕ

∣∣∣∣ (µ) is reduced to the space l(µ).

It is noted that since every triangle matrix has a unique inverse which is a triangle (see [15]), the matrix T r(ϕ, µ) has
a unique inverse S r(ϕ, µ) = (sr

nk(ϕ, µ)) given by

sr
nk(ϕ, µ) =


ϕ
−1/µ∗0
0 , k = n = 0
ϕ
−1/µ∗k
k

(
n−1
k−1

)
(r − 1)n−kr−n, 1 ≤ k ≤ n

0, k > n.

Lemma 3.1 ( [3]). Let 0 < r < 1 and µ = (µn) be a bounded sequence of non-negative numbers. Then, the set
∣∣∣∣Er
ϕ

∣∣∣∣ (µ)
is a linear space with the coordinate-wise addition and scalar multiplication. Beside, this space is an FK-space with
the paranorm given by

g(x) =

 ∞∑
n=0

∣∣∣T r
n(ϕ, µ)(x)

∣∣∣µn

1/M

,

where M = max
{
1, sup µn

}
.

Moreover, the space
∣∣∣∣Er
ϕ

∣∣∣∣ (µ) is isometrically isomorphic to the space l(µ), i.e.,
∣∣∣∣Er
ϕ

∣∣∣∣ (µ) � l(µ).

Theorem 3.2. Let Λ = (λnv) be an infinite matrix of complex numbers, (ϕn) be sequence of positive numbers, µ = (µn)
be arbitrary bounded sequence of positive numbers with µn ≤ 1 for all n. Beside, let the matrix Λ̂ be defined by

λ̂nv =

∞∑
j=v

λn jb
(v)
j ,

where b(v)
j = ϕ

−1/µ∗v
v

(
j−1
v−1

)
(r − 1) j−vr− j, v ≥ 1; b(0)

0 = ϕ
−1/µ∗0
0 . Then, for n = 0, 1, ...

(a) Λ ∈
(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), c) if and only if

∞∑
j=v

b(v)
j λn j converges for each v, (3.1)

sup
m,v

∣∣∣∣∣∣∣∣
m∑
j=v

b(v)
j λn j

∣∣∣∣∣∣∣∣
µv

< ∞, (3.2)

lim
n→∞

∞∑
j=v

λn jb
(v)
j exists for each v, (3.3)
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and

sup
n,v

∣∣∣∣∣∣∣∣
∞∑
j=v

b(v)
j λn j

∣∣∣∣∣∣∣∣
µv

< ∞, (3.4)

(b) Λ ∈
(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), c0

)
if and only if (3.1), (3.2), (3.4) hold and

lim
n→∞

∞∑
j=v

λn jb
(v)
j = 0 for each v,

(c) Λ ∈
(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), l∞) if and only if (3.1), (3.2), (3.4) hold.

Proof. Since the remaining part can be proved similar way, we just prove (a) to avoid repetition.

(a) Let µv ≤ 1 for all v. Note that
∣∣∣∣Er
ϕ

∣∣∣∣ (µ) = [
l(µ)

]
T r(ϕ,µ). By Lemma 2.2, it is said that Λ ∈

(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), c) if and only if

Λ̂ ∈ (l(µ), c) and W (n) ∈ (l(µ), c) , where the matrix W (n) is described by

w(n)
mv =


m∑
j=v

b(v)
j λn j, 0 ≤ v ≤ m

0, v > m.

Now, if we apply Lemma 2.1 (i) to the matrices Λ̂ and W (n), it follows that W (n) ∈ (l(µ), c) if and only if the conditions
(3.1) and (3.2) hold, also Λ̂ ∈ (l(µ), c) if and only if the conditions (3.3) and (3.4) hold which concludes the proof of
(a).

□

Theorem 3.3. Assume that Λ = (λnv) is an infinite matrix of complex numbers and (ϕn) is any sequence of positive
numbers. If µ = (µn) is any bounded sequence of positive numbers such that µn > 1 for all n. Then,

(a) The necessary and sufficient conditions for Λ ∈
(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), c) are

∞∑
k=v

b(v)
k λnk converges for each v, (3.5)

sup
m

∞∑
v=0

∣∣∣∣∣∣∣
m∑

k=v

b(v)
k λnkK−1

∣∣∣∣∣∣∣
µ∗v

< ∞,∃K > 1, (3.6)

lim
n→∞

∞∑
j=v

λn jb
(v)
j exists for each v,

and

sup
n

∞∑
v=0

∣∣∣∣∣∣∣
∞∑

k=v

b(v)
k λnkK−1

∣∣∣∣∣∣∣
µ∗v

< ∞,∃K > 1, (3.7)

for n = 0, 1, ...,

(b) Λ ∈
(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), c0

)
if and only if (3.5), (3.6), (3.7) hold and

lim
n→∞

∞∑
k=v

b(v)
k λnk = 0 for each v, (3.8)

(c) Λ ∈
(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), l∞) if and only if (3.5), (3.6), (3.7) hold.
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Proof. (b) Let µn > 1 for each n ∈ N. It is obvious that
∣∣∣∣Er
ϕ

∣∣∣∣ (µ) = [
l(µ)

]
T r(ϕ,µ). So, by Lemma 2.2, it is seen that

Λ ∈

(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), c0

)
is equivalent that Λ̂ ∈ (l(µ), c0) and W (n) ∈ (l(µ), c) , where Λ̂ and W (n) are given in Theorem 3.2.

Hence, applying Lemma 2.1 (ii) to the matrix W (n), it is obtained that W (n) ∈ (l (µ) , c) if and only if the conditions (3.5)
and (3.6) are satisfied. Also, if we apply Lemma 2.1 (ii) to the matrix Λ̂, then we get Λ̂ ∈ (l(µ), c0) if and only if the
conditions (3.8) and (3.7) hold. This completes the proof of (b).
The other parts can be proved similarly. □

Theorem 3.4. Let Λ = (λnv) be an infinite matrix of complex numbers, ϕ = (ϕn) be any sequence of positive real
numbers, µ = (µv) be any bounded sequence of positive numbers and Λ ∈ {c, c0, l∞}. If Λ ∈ (

∣∣∣∣Er
ϕ

∣∣∣∣ (µ),Λ), then Λ defines
a bounded linear operator.

Proof. Because of matrix transformations between FK-spaces are continuous, it can be immediately seen that the
matrix operators between the spaces c, c0, l∞ which are BK-spaces, i.e, normed FK-spaces, and

∣∣∣∣Er
ϕ

∣∣∣∣ (µ) are bounded
linear operators. □

Take the matrix L = (ln j) defined by

ln j =

{
1, 0 ≤ j ≤ n
0, j > n.

Then, since bs = {l∞}L and cs = {c}L , the matrix classes
(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), cs

)
and

(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), bs

)
can be characterized as follows

with Lemma 2.3:

Corollary 3.5. Let 0 < r < 1, µ = (µn) be a bounded sequence of positive numbers and λ(n, j) =
n∑
k
λk j.

(i) If µn ≤ 1 for all n, Λ ∈
(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), cs

)
if and only if

(a)
∞∑
j=v

b(v)
j λ(n, j) converges for each v,

(b) sup
m,v

∣∣∣∣∣∣ m∑
j=v

b(v)
j λ(n, j)

∣∣∣∣∣∣µv

< ∞,

(c) lim
n→∞

∞∑
j=v
λ(n, j)b(v)

j exists for each v,

(d) sup
n,v

∣∣∣∣∣∣ ∞∑j=v
b(v)

j λ(n, j)

∣∣∣∣∣∣µv

< ∞,

and A ∈
(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), bs

)
⇔ (a), (b) and (d) hold.

(ii) If µn > 1 for all n, Λ ∈
(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), cs

)
if and only if

(a′)
∞∑
j=v

b(v)
j λ(n, j) converges for each v,

(b′) sup
m

∞∑
v=0

∣∣∣∣∣∣ m∑
j=v

b(v)
j λ(n, j)M−1

∣∣∣∣∣∣µ
∗
v

< ∞,

(c′) lim
n→∞

∞∑
j=v
λ(n, j)b(v)

j exists for each v,

(d′) sup
n

∞∑
v=0

∣∣∣∣∣∣ ∞∑j=v
b(v)

j λ(n, j)M−1

∣∣∣∣∣∣µ
∗
v

< ∞,

and Λ ∈
(∣∣∣∣Er
ϕ

∣∣∣∣ (µ), bs

)
⇔ (a′), (b′) and (d′) hold.
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