DOI:10.25092/baunfbed. 1008069

J. BAUN Inst. Sci. Technol., 24(2), 515-525, (2022)

Co-derivative operators on BL-algebras

Ahmet HAMAL*

Ege University, Faculty of Science, Department of Mathematics, Izmir, Turkey

Geliş Tarihi (Received Date): 11.10.2021 Kabul Tarihi (Accepted Date): 16.03.2022

Abstract

In this study we establish and investigate multiplicative co-derivative operators on BLalgebras. We also indicate that multiplicative co-derivative operators are more general operators than multiplicative interior operators and modal operators on BL-algebras. Furthermore, we describe relations between multiplicative co-derivative operators on BL-algebras and on the algebras of their regular elements. Moreover, \mathbf{F} -filters (\mathbf{F} derivative systems) will be introduced on BL-algebras depending on any multiplicative co-derivative operator \mathbf{F} on BL-algebras. We also show that some sets of BL-algebras are \mathbf{F} -filters (\mathbf{F} -deductive systems) on BL-algebras. Next, we will define quotient BLalgebra by means of any multiplicative co-derivative operator \mathbf{F} on BL-algebra. Finally, we will define a new operator on the quotient BL-algebra with the aid of the operator \mathbf{F} and show that the new operator is a multiplicative co-derivative operator on the quotient BL-algebra.

Keywords: BL-algebras, multiplicative interior operator, modal operator, multiplicative co-derivative operator.

BL-cebirleri üzerindeki çarpımsal co-türev operatörleri

Öz

Bu çalışmada, BL-cebirleri üzerindeki çarpımsal co-türev operatörleri tanıtılacak ve incelenecektir. Aynı zamanda, çarpımsal co-türev operatörlerinin çarpımsal iç operatörler ve modal operatörlerden daha genel operatörler oldukları vurgulanacaktır. Ayrıca, BL-cebirleri ve bu cebirlerin regüler elemanlarının oluşturduğu cebirler üzerinde tanımlı çarpımsal co-türev operatörleri arasındaki ilişkiler betimlenecektir. Dahası, BLcebirleri üzerindeki herhangi bir çarpımsal co-türev operatörü \mathbf{F} ' e bağlı olarak BLcebirleri üzerinde \mathbf{F} -süzgeçler (\mathbf{F} -türetim sistemleri) tanıtılacaktır. Ek olarak, BL-

^{*}Ahmet HAMAL, <u>ahmet.hamal@ege.edu.tr</u>, https://orcid.org/ 0000-0002-4593-7054

cebirlerinin bazı kümelerinin **F**-süzgeçler (**F**-türetim sistemleri) oldukları gösterilecektir. Sonra, BL-cebiri üzerindeki herhangi bir çarpımsal türev operatörü **F** ve BL-cebirinin herhangi bir **F**-türetim sistemi yardımı ile bölüm BL-cebiri tanımlanacaktır. Son olarak, **F**-operatörü yardımı ile bölüm BL cebiri üzerinde yeni bir operatör tanımlanacak ve bu yeni operatörün çarpımsal bir co-türev operatörü olduğu gösterilecektir.

Anahtar kelimeler: BL-cebirleri, çarpımsal iç operatör, modal operatör, çarpımsal cotürev operatör.

1. Introduction

BL-algebras as the algebric structures of basic fuzzy logic were introduced by Hájeck in [1]. Product algebras, MV-algebras and Gödel algebras are special cases of BL-algebras.

Topological Boolean algebras defined with topological closure operators and interior operators in [2] are generalizations of topological spaces. Closure and interior MV-algebras which were defined with the aid of multiplicative interior operators and additive closure operators in [3] were introduced qua generalizations of topological Boolean algebras. Since that time, this operators are considered on some algebras, such as, R*l*-monoids and commutative bounded residuated lattice. Derivative and coderivative MV-algebras defined with additive derivative and multiplicative coderivative operators in [4] as generalizations of closure and interior MV-algebras were introduced and investigated.

Modal operators were introduced and investigated on Heyting algebras which are the algebric counterpart of the intuitionistic propositional logic in [5]. Properties of modal operators are investigated on some algebras, for example, commutative residuated lattice, MV-algebras, commutative R*l*-monoids and so on.

In this study, we establish and study multiplicative co-derivative operators on BLalgebras. We show that multiplicative co-derivative operators are more general operators than multiplicative interior operators and modal operators. We describe relations between multiplicative co-derivative operators on BL-algebras and on the MV-algebras of their reguler elements. At the same time, we introduce **f**-filters (**f**-deductive systems) and study on them. Finally, we study multiplicative co-derivative operators on quotient BLalgebras.

2. Preliminaries

We remember that an algebra $(A, \bigcirc, \land, \lor, \rightarrow, 0, 1)$ is named as a BL-algebra ([6-7]) if it satisfies the belows:

(B1) $(A, \bigcirc, 1)$ is a commutative monoid, (B2) $(A, \land, \lor, 0, 1)$ is a bounded lattice, (B3) $x \bigcirc y \le z$ iff $x \le y \rightarrow z$, (B4) $x \land y = x \odot (x \rightarrow y)$ (B5) $(x \rightarrow y) \lor (y \rightarrow x) = 1$. On any BL-algebra A we define a unary operator as $x^- = x \to 0$ and a binary operator \bigoplus such that $x \bigoplus y = (x^- \odot y^-)^-$.

2.1. Proposition ([6-8]) Suppose that A be a BL-algebra. In that case the belows hold:

1) $x \odot (x \to y) \le y$, 2) $x \odot y \le x \land y \le x \lor y$, 3) $1 \to x = x, \ x \to x = 1, \ x \to 1 = 1,$ 4) $(x \oplus y)^- = x^- \odot y^-, \ (x \odot y)^- = x^- \oplus y^-,$ 5) $(x \lor y)^- = x^- \land y^-, \ (x \land y)^- = x^- \lor y^-,$ 6) $x \le y$ implies $z \to x \le z \to y, \ y \to z \le x \to z$ and $x \odot z \le y \odot z,$ 7) $x \le x^{--}, x^{---} = x^-,$ 8) $1^- = 0, \ 0^- = 1, \ 1^{--} = 1, \ 0^{--} = 0,$ 9) $x \le y$ iff $x \to y = 1,$ 10) $(x \to y)^{--} = x \to y^{--},$ 11) $x \odot x^- = 0, \ x \oplus x^- = 1,$ 12) $(x \to y)^{--} = x^{--} \to y^{--},$ 13) $(x \oplus y)^{--} = x^{--} \oplus y^{--} = x^{--} \oplus y = x \oplus y,$

for any $x, y, z \in A$.

2.2. *Definition* ([8]) Suppose that A is a BL-algebra. If a nonempt subset F of A satisfies the below conditions

(F1) $x, y \in F$ implies $x \odot y \in F$, (F2) $x \in F, y \in A, x \leq y$ implies $y \in F$,

Then it is named as a *filter* of *A*.

2.3. *Definition* ([7-8]) Suppose that A is a BL-algebra. If a subset D of A provides the following conditions

 $\begin{array}{ll} (\mathrm{D1}) \ 1 \in D, \\ (\mathrm{D2}) \ x, \ x \to y \in D \ \Rightarrow \ y \in D, \end{array}$

Then it is named as a *deductive system* of *A*. We will write a *dsystem* of *A* shortly instead of a *deductive system* of *A* from now on.

It is known that a subset of A is a dsystem of A iff it is a filter of A.

2.4. *Theorem* ([7]) Assume that *D* is a dsystem of BL-algebra *A*. Define $x \sim_D y$ iff $(x \rightarrow y) \odot (y \rightarrow x) \in D$. Then \sim_D is a congruence relation with respect to \bigcirc , \land , \lor , \rightarrow , $\overline{}$.

2.5. *Theorem* ([7]) Assume that *D* is a dsystem of a BL-algebra *A*. Define the operators on A/D, the set of equivalence classes, as follows:

 $[x] \sqcap [y] = [x \land y], [x] \sqcup [y] = [x \lor y], [x] \otimes [y] = [x \odot y], [x] \rightarrow [y] = [x \rightarrow y]$ and $[\times] \leq [y]$ iff $x \rightarrow y \in D$ for all $[x], [y] \in A/D$.

Then $(A / D, \otimes, \sqcap, \sqcup, \rightarrow, [0], [1])$ is a BL-algebra.

3. BL-algebras with co-derivative operators

In this part of the study, we establish and study multiplicative co-derivative operators on BL-algebras.

3.1. Definition Suppose that A is a BL-algebra. We say that a mapping $\mathbf{F}: A \to A$ is a multiplicative co-derivative operator (mcd-operator) if for all $x, y \in A$, it satisfies following conditions:

(t1) $\mathbf{F}(x) \odot \mathbf{F}(y) = \mathbf{F}(x \odot y),$ (t2) $x \odot \mathbf{F}(x) \le \mathbf{FF}(x),$ (t3) $\mathbf{F}(1)=1.$

When **F** has the following property

(t4) $\mathbf{F}(x) \leq \mathbf{FF}(x)$

call it is a stronger mcd-operator on A.

3.2. Theorem The conditions of an mcd-operator on BL-algebra A are independet.

Proof. We have to find a function on BL-algebra A where the property is false while the others are true.

(t1) Let $A = \{0, p, q, 1\}$ be a set, where $0 \le p, q \le 1$. Define \bigcirc and \rightarrow as in Table 1:

Table 1. Cayley tables of the binary operations \odot and \rightarrow

\odot	0	р	q	1	\rightarrow	0	р	q	1
		0			0				
		р			р	q	1	q 1	1
q	0	0	q	q	q	р	р	1	1
1	0	р	q	1	1	0	р	q	1

Then A is a BL-algebra ([6]). We define $\mathbf{F}: A \to A$ as in Table 2:

Table 2.

	Х	0	р	q	1
-	F (<i>x</i>)	0	q	q	1

f satisfies (t2) and (t3) properties. We able to demonstrate that (t1) is not provided. Really, we get x=p and y=q.

$$\mathbf{f}(x \odot y) = \mathbf{f}(p \odot q) = \mathbf{f}(0) = 0, \tag{1}$$

$$\mathbf{f}(x) \odot \mathbf{f}(y) = \mathbf{f}(p) \odot \mathbf{f}(q) = q \odot q = q, \tag{2}$$

Then,

$$\mathbf{f}(x) \odot \mathbf{f}(y) \neq \mathbf{f}(x \odot y) \tag{3}$$

(t2) Let $A = \{0, a, b, p, 1\}$ be a set, where $0 \le p \le a, b \le 1$. Define \bigcirc and \rightarrow as in Table 3 :

\odot	0	р	а	b	1	\rightarrow	0	р	а	b	1
0						0					
р	0	р	р	р	р					1	
а	0	р	а	р	а					b	
b	0	р	р	p b	b	b	0	а	а	1	1
1	0	р	а	b	1	1	0	р	а	b	1

Table 3. Cayley tables of the binary operations \bigcirc and \rightarrow

In that case, A is a BL-algebra ([9]). We set the function $\mathbf{f}: A \to A$ as in Table 4:

Table 4.

x
 0
 p
 a
 b
 1

$$\mathbf{F}(x)$$
 0
 0
 b
 0
 1

Then it is express that **F** satisfies (t1) and (t3) axioms. We take x = a. Then

$$a \odot_{\mathbf{f}}(a) = a \odot b = p, \tag{4}$$

$$\mathbf{f}\mathbf{f}(a) = \mathbf{f}(\mathbf{f}(a)) = \mathbf{f}(b) = 0, \tag{5}$$

We have $p \leq 0$. Thus, axiom (t2) is not satisfied.

(t3) Suppose that A is a BL-algebra. We describe the function $\mathbf{F}: A \to A$ by $\mathbf{F}(x) = 0$ for all $x \in A$. Then it is easy to see that \mathbf{F} provides (t1) and (t3) axioms but axiom (t3) is not satisfied.

3.3. *Example* Let $A = \{0, p, q, 1\}$ be a set, where $0 \le p, q \le 1$. Define \bigcirc and \rightarrow as in Table 1. We know that A is a BL-algebra. We define $\mathbf{f}: A \rightarrow A$ as in Table 5:

Table 5.

x
 0
 p
 q
 1

$$\mathbf{f}(x)$$
 0
 q
 0
 1

Then it is easy to see that \mathbf{f} provides (t1) - (t3) axioms. So, \mathbf{f} is an mcd-operator. However, \mathbf{f} does not satisfy (t4) axiom. Indeed, we take x = p. Then $\mathbf{f}(p) = q \leq \mathbf{f}(\mathbf{f}(p)) = \mathbf{f}(q) = 0$. Thus, \mathbf{f} isn't a stronger mcd-operator.

3.4. *Proposition* If $\mathbf{f}: A \to A$ is an mcd-operator on BL-algebra A and $x \le y$ for x, $y \in A$, then $\mathbf{f}(x) \le \mathbf{f}(y)$.

Proof. Let $x \le y$ for x, $y \in A$. Then

$$\mathbf{f}(x) = \mathbf{f}(x \land y) = \mathbf{f}(y \land x) = \mathbf{f}(y \odot (y \to x)) \text{ by (B4)}$$

= $\mathbf{f}(y) \odot \mathbf{f}(y \to x) \text{ by (t1)}$
 $\leq \mathbf{f}(y) \land \mathbf{f}(y \to x) \leq \mathbf{f}(y) \text{ by 2.1. Proposition (2).}$ (6)

3.5. *Definition* ([3,8]) Suppose that *A* is a BL-algebra. If a mapping $f: A \to A$ satisfies the following conditions

(i1) $f(x) \odot f(y) = f(x \odot y)$, (i2) $f(x) \le x$, (i3) f(x) = ff(x), (i4) f(1)=1,

for x, $y \in A$, then it is named as a multiplicative interior operator (mi-operator) on A.

3.6. *Remark* Let f be an mi-operator on BL-algebra A. It is clear that f satisfies (t1) - (t3) and (t4) axioms. Then f is a strong mcd-operator. But, an mcd-operator \mathbf{F} may not be an mi-operator.

3.7. *Example* Suppose that A is a BL-algebra. We take the operator $\mathbf{F}: A \to A$ as $\mathbf{F}(x) = 1$ for all $x \in A$. It is clear that \mathbf{F} is an mcd-operator. But \mathbf{F} isn't an mi-operator. Because \mathbf{F} does not satisfy (i2) axiom.

3.8. *Definition* ([10-11]) Suppose that *A* is a BL-algebra. We say that a unary mapping $f: A \rightarrow A$ is a modal operator on *A* if for any $x, y \in A$

(m1) $f(x) \odot f(y) = f(x \odot y)$, (m2) $x \le f(x)$, (m3) f(x) = ff(x), for any $x, y \in A$.

3.9. *Remark* Let f be a modal operator on BL-algebra A. It is obvious that f satisfies (t1) - (t3) and (t4) axioms. Then f is a strong mcd-operator. But, an mcd-operator \mathbf{F} may not be an modal operator.

.

3.10. *Example* Suppose that A is a BL-algebra. We take the operator $\mathbf{f}: A \to A$ as

$$\mathbf{f}(x) = \begin{cases} 1, & x = 1\\ 0, & otherwise \end{cases}, \tag{7}$$

for all $x \in A$. It is clear that \mathbf{F} is an mcd-operator. But \mathbf{F} isn't a modal operator. Because \mathbf{F} does not satisfy (m2) axiom.

3.11. Proposition Let **F** be an mcd-operator on BL-algebra A. Then we get

(i) $\mathbf{f}(x \to y) \leq \mathbf{f}(x) \to \mathbf{f}(y)$, (ii) $\mathbf{f}(x \land y) \leq \mathbf{f}(x) \land \mathbf{f}(y)$, (iii) $x \leq \mathbf{f}(x) \to \mathbf{f}\mathbf{f}(x)$ and $\mathbf{f}(x) \leq x \to \mathbf{f}\mathbf{f}(x)$,

for any $x, y \in A$.

Proof. (i) Let $x, y \in A$. Then,

$$\mathbf{f}(x \odot (x \to y)) \le f(y) \text{ by } 2.1. \text{ Proposition (1) and } 3.4. \text{ Proposition.}$$
(8)

$$\mathbf{f}(x \odot (x \to y)) = \mathbf{f}(x) \odot \mathbf{f}(x \to y) = \mathbf{f}(x \to y) \odot \mathbf{f}(x) \le \mathbf{f}(y).$$
(9)

We have,

$$\mathbf{f}(x \to y) \le \mathbf{f}(x) \to \mathbf{f}(y) \qquad \text{by} \qquad (B3)$$
(10)

(ii)
$$\mathbf{f}(x \wedge y) = \mathbf{f}(x \odot (x \rightarrow y)) = \mathbf{f}(x) \odot \mathbf{f}(x \rightarrow y)$$
 by (B4) and (t1)
 $\leq \mathbf{f}(x) \odot (\mathbf{f}(x) \rightarrow \mathbf{f}(y))$ by 2.1. Proposition (6)
 $= \mathbf{f}(x) \wedge \mathbf{f}(y)$ by (B4).

(11)

(iii) We have,

$$x \odot \mathbf{f}(x) = \mathbf{f}(x) \odot x \le \mathbf{f}\mathbf{f}(x)$$
 by (t2) and (B1). (12)

It is clear that

$$x \le \mathbf{f}(x) \to \mathbf{f}\mathbf{f}(x) \text{ and } \mathbf{f}(x) \le x \to \mathbf{f}\mathbf{f}(x) \text{ by (B3)}$$
 (13)

3.12. Theorem Let \mathbf{F}_1 and \mathbf{F}_2 be two strong mcd-operator on BL-algebra A. If $\mathbf{F}_1\mathbf{F}_2 = \mathbf{F}_2\mathbf{F}_1$, then $\mathbf{F}_1\mathbf{F}_2$ is a strong mcd-operator on BL-algebra A.

Proof. (t1)
$$(\mathbf{f}_1\mathbf{f}_2)(x \odot y) = \mathbf{f}_1(\mathbf{f}_2(x \odot y)) = \mathbf{f}_1(\mathbf{f}_2(x) \odot \mathbf{f}_2(y))$$

= $\mathbf{f}_1(\mathbf{f}_2(x)) \odot \mathbf{f}_1(\mathbf{f}_2(y)) = (\mathbf{f}_1\mathbf{f}_2)(x) \odot (\mathbf{f}_1\mathbf{f}_2)(y).$ (14)

(t3)
$$(\mathbf{f}_1\mathbf{f}_2)(1) = \mathbf{f}_1(\mathbf{f}_2(1)) = \mathbf{f}_1(1) = 1$$
 by (t3). (15)

(t4) We have,

$$\mathbf{f}_{2}(x) \le \mathbf{f}_{2}\mathbf{f}_{2}(x)$$
 by (t4) (16)

Then,

$$\mathbf{f}_1(\mathbf{f}_2(x)) \le \mathbf{f}_1(\mathbf{f}_2\mathbf{f}_2(x)) \le \mathbf{f}_1(\mathbf{f}_1(\mathbf{f}_2\mathbf{f}_2(x))) \text{ by 3.4. Proposition and (t4)}$$
(17)

So,

$$(\mathbf{f}_{1}\mathbf{f}_{2})(x) \le (\mathbf{f}_{1}\mathbf{f}_{2})(\mathbf{f}_{1}\mathbf{f}_{2})(x).$$
 (18)

Meanwhile, $\mathbf{F_1}\mathbf{F_2}$ satisfies (t2) axiom.

(t2) We know that $x \odot (\mathbf{f_1}\mathbf{f_2})(x) \le x \land (\mathbf{f_1}\mathbf{f_2})(x) \le (\mathbf{f_1}\mathbf{f_2})(x)$ by 2.1. Proposition (2). Then $x \odot (\mathbf{f_1}\mathbf{f_2})(x) \le (\mathbf{f_1}\mathbf{f_2})(x) \le (\mathbf{f_1}\mathbf{f_2})(x)$ by (t4).

3.13. *Proposition* Suppose that *A* is a BL-algebra. In that case $^{--}: A \to A$ is a strong mcd-operator on BL-algebra *A*.

Proof. Let $x, y \in A$.

(t1)
$$(x \odot y)^{--} = x^{--} \odot y^{--}$$
 by 2.1. Proposition (4). (19)

$$(t3) 1^{--} = (1^{-})^{-} = 0^{-} = 1.$$
(20)

(t4) We have $x^{----} = x^{--}$ by 2.1. Proposition (7). Then $x^{---} \le x^{----}$.

An element x of a BL-algebra A is called regular if $x^{--} = x$. We will denote by Reg(A) to the set of all regular elements in A. We set $x \lor y = (x \lor y)^{--}, x \land y = (x \land y)^{--}, x \odot y = (x \odot y)^{--}, x \sim y = (x \to y)^{--}$ for any $x, y \in Reg(A)$.

We known that If A is a BL-algebra, then $x \odot y = (x \odot y)^{--} = x^{--} \odot y^{--}$ for all $x, y \in A$. Because of this, $x \odot y = x \odot y$ for any $x, y \in Reg(A)$. If A is a BL-algebra, then $x \sim y = (x \rightarrow y)^{--} = x^{--} \rightarrow y^{--}$ by 2.1. Proposition (12). So, $x \sim y = x \rightarrow y$ for any $x, y \in Reg(A)$. It is obvious that $x \land y = x \land y$.

3.14. *Proposition* ([12]) If *A* is a BL-algebra, then $(Reg(A), \bigcirc, \land, \lor, \circ, 0, 1)$ is the largest subalgebra of *A* that is an MV-algebra.

3.15. Theorem Suppose that A is a BL-algebra, $\mathbf{f} : A \to A$ is an (a strong) mcd-operator on A and $\hat{\mathbf{f}} : Reg(A) \to Reg(A)$ is the mapping such that $\hat{\mathbf{f}}(x) = (\mathbf{f}(x))^{--}$ for any $x \in Reg(A)$. Then $\hat{\mathbf{f}}$ is an (a strong) mcd-operator on Reg(A).

Proof. Let $x, y \in Reg(A)$.

(t1)
$$\hat{\mathbf{f}}(x \odot y) = (\mathbf{f}(x \odot y))^{--} = (\mathbf{f}(x) \odot \mathbf{f}(y))^{--} = (\mathbf{f}(x))^{--} \odot (\mathbf{f}(y))^{--}$$

= $\hat{\mathbf{f}}(x) \odot \hat{\mathbf{f}}(y) = \hat{\mathbf{f}}(x) \odot \hat{\mathbf{f}}(y).$

$$(t2) x \underbrace{\odot}_{\mathbf{f}} \mathbf{\hat{f}}(x) = x \odot_{\mathbf{f}} \mathbf{\hat{f}}(x) = x \odot_{\mathbf{f}} \mathbf{\hat{f}}(x) = x^{--} \odot_{\mathbf{f}} \mathbf{\hat{f}}(x)^{--} = (x \odot_{\mathbf{f}} \mathbf{f}(x))^{--} \le (\mathbf{f}(\mathbf{f}(x))^{--})^{--} \text{ by } 2.1. \text{ Proposition (7) and } 3.4.$$
Proposition
$$= (\mathbf{f}(\mathbf{\hat{f}}(x)))^{--} = \mathbf{\hat{f}}(\mathbf{\hat{f}}(x)) = \mathbf{\hat{f}}\mathbf{\hat{f}}(x) \qquad (22)$$

$$= (\mathbf{f}(\hat{\mathbf{f}}(x)))^{--} = \hat{\mathbf{f}}(\hat{\mathbf{f}}(x)) = \hat{\mathbf{f}}\hat{\mathbf{f}}(x).$$
(22)

$$(t3)\,\hat{\mathbf{f}}(1) = (\mathbf{f}(1))^{--} = (1)^{--} = 1.$$
(23)

(t4) If \mathbf{F} has the stronger property, then

$$\hat{\mathbf{f}}(x) = (\mathbf{f}(x))^{--} \le (\mathbf{f}\mathbf{f}(x))^{--} \le (\mathbf{f}(\mathbf{f}(x))^{--}))^{--} = (\mathbf{f}(\hat{\mathbf{f}}(x)))^{--} = \hat{\mathbf{f}}(\hat{\mathbf{f}}(x))
= \hat{\mathbf{f}}\hat{\mathbf{f}}(x).$$
(24)

3.16. Theorem Suppose that A is a BL-algebra, $\mathbf{f}^* : Reg(A) \to Reg(A)$ is an (a strong) mcd-operator on Reg(A). Then the mapping $\mathbf{F}: A \to A$ as $\mathbf{F}(x) = \mathbf{F}^*(x^{--})$ for any $x \in A$ A is an (a strong) mcd-operator on A.

Proof. Let $x, y \in A$.

(t1)
$$\mathbf{F}(x \odot y) = \mathbf{F}^*((x \odot y)^{--}) = \mathbf{F}^*(x^{--} \odot y^{--}) = \mathbf{F}^*(x^{--} \odot y^{--})$$

= $\mathbf{F}^*(x^{--}) \odot \mathbf{F}^*(y^{--}) = \mathbf{F}^*(x^{--}) \odot \mathbf{F}^*(y^{--}) = \mathbf{F}(x) \odot \mathbf{F}(y).$
(25)

$$(t2) \ x \odot \mathbf{F}(x) = x \odot \mathbf{F}^*(x^{--}) \le x^{--} \odot \mathbf{F}^*(x^{--}) = x^{--} \odot \mathbf{F}^*(x^{--}) \le \mathbf{F}^*\mathbf{F}^*(x^{--}) \le \mathbf{F}^*((\mathbf{F}^*(x^{--}))^{--}) = \mathbf{F}^*((\mathbf{F}(x))^{--}) = \mathbf{F}(\mathbf{F}(x)) = \mathbf{F}(\mathbf{F}(x)).$$
(26)

(t3)
$$\mathbf{f}(1) = \mathbf{f}^*(1^{--}) = \mathbf{f}^*(1) = 1.$$
 (27)

(t4) If \mathbf{F}^* has the stronger property, then

$$\mathbf{f}(x) = \mathbf{f}^{*}(x^{--}) \le \mathbf{f}^{*}\mathbf{f}^{*}(x^{--}) \le \mathbf{f}^{*}((\mathbf{f}^{*}(x^{--}))^{--}) = \mathbf{f}^{*}((\mathbf{f}(x))^{--}) = \mathbf{f}(\mathbf{f}(x)) = \mathbf{f}\mathbf{f}(x).$$
(28)

3.17. Definition Let A be a BL-algebra with mcd-operator **F** and F (D) be a filter (dsystem) of A. Then F (D) is called a *f*-filter (*f*-dsystem) if $f(x) \in F$ ($f(x) \in D$) for every $x \in D$ $F(x \in D)$.

3.18. Proposition Let A be a BL-algebra with mcd-operator \mathbf{f} . Then the subset D = $\{x \in A: \mathbf{f}(x) = 1\}$ of A is a **f**-dsystem of A.

Proof.

(D1) $1 \in D$ by (t3).

(D2) Let $x, x \to y \in D$. Then $\mathbf{f}(x) = 1, \mathbf{f}(x \to y) = 1$ We have $x \odot (x \to y) \le y$ from 2.1. Proposition (1). Since \mathbf{f} is a monotone mapping, we must have $\mathbf{f}(x \odot (x \to y)) = \mathbf{f}(x) \odot \mathbf{f}(x \to y) = 1 \odot 1 = 1 \le \mathbf{f}(y)$. So, $\mathbf{f}(y) = 1$ and $y \in D$.

Finally, Let $x \in D$. Then we get $\mathbf{f}(x) = 1$. Hence, $\mathbf{f}\mathbf{f}(x) = \mathbf{f}(\mathbf{f}(x)) = \mathbf{f}(1) = 1$. It means that $\mathbf{f}(x) \in D$.

3.19. Theorem Suppose that A is a BL-algebra, $\mathbf{F}: A \to A$ be an (a strong) mcd-operator and D is a \mathbf{F} -dsystem of A. Then the mapping $\mathbf{F}^*: A/D \to A/D$ such that $\mathbf{F}^*([x]) = [\mathbf{F}(x)]$ is an (a strong) mcd-operator on the quotient BL-algebra A /D.

Proof. We know by 2.4. Theorem that \sim_D is a congruence relation according to \bigcirc , \land , \lor , \rightarrow , \neg . Suppose that $x \sim_D y$. Then $(x \rightarrow y) \odot (y \rightarrow x) \in D$. We have $(x \rightarrow y) \odot (y \rightarrow x) \leq (x \rightarrow y)$ and $\mathbf{f}((x \rightarrow y) \odot (y \rightarrow x)) \leq \mathbf{f}(x \rightarrow y) \leq \mathbf{f}(x) \rightarrow \mathbf{f}(y)$ by 3.10. Proposition (i). Since D is a \mathbf{f} -dsystem of A, $\mathbf{f}(x) \rightarrow \mathbf{f}(y) \in D$ and similarly, $\mathbf{f}(y) \rightarrow \mathbf{f}(x) \in D$. So, $(\mathbf{f}(x) \rightarrow \mathbf{f}(y)) \odot (\mathbf{f}(y) \rightarrow \mathbf{f}(x)) \in D$. That means $\mathbf{f}(x) \sim_D \mathbf{f}(y)$. Therefore, the relation \sim_D is a congruence relation with respect to \bigcirc , \land , \lor , \rightarrow , \neg and \mathbf{f} . Finally, we have to show that \mathbf{f}^* is an mcd operator on A/D.

(t1)
$$\mathbf{f}^*([x] \otimes [y]) = \mathbf{f}^*([x \odot y]) = [\mathbf{f}(x \odot y)] = [\mathbf{f}(x) \odot \mathbf{f}(y)]$$
 by 2.5. Theorem
= $[\mathbf{f}(x)] \otimes [\mathbf{f}(y)] = \mathbf{f}^*([x]) \otimes \mathbf{f}^*([y])$ by 2.5. Theorem
(29)

(t2)
$$[x] \otimes \mathbf{f}^*([x]) = [x] \otimes [\mathbf{f}(x)] = [x \odot \mathbf{f}(x)] \le [\mathbf{f}\mathbf{f}(x)]$$
 by 2.5. Theorem
= $[\mathbf{f}(\mathbf{f}(x))] = \mathbf{f}^*[\mathbf{f}(x)] = \mathbf{f}^*\mathbf{f}^*([x]).$ (30)

$$(t3) \mathbf{f}^*([1]) = [\mathbf{f}(1)] = [1]. \tag{31}$$

If \mathbf{F} has the stronger property, then

$$(t4) \mathbf{F}^{*}([x]) = [\mathbf{F}(x)] \le [\mathbf{F}\mathbf{F}(x)] = \mathbf{F}^{*}[\mathbf{F}(x)] = \mathbf{F}^{*}\mathbf{F}^{*}([x]).$$
(32)

Acknowledgement

We would like to thank the referees for their comments and suggestions on the paper.

References

- [1] Hájeck, P., **Metamathematics of Fuzzy Logic**, Trends in Logic Studia Logica Library, Volume 4, Kluwer Academic Publishers, Dordrecht, (1998).
- [2] Rasiowa, H. and Sikorski, R., **The Mathematics of Metamathematics**, Panstwowe Wydawnictwo Naukowe, (1963).

- [3] Rachůnek, J. and Švrček F., MV-algebras with additive closure operators, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium, Mathematica, 39, 183-189, (2000).
- [4] Hamal, A., Additive derivative and multiplicative coderivative operators on MValgebras, **Turkish Journal of Mathematics**, 43, no. 2, pp. 879–893, (2019).
- [5] Macnab, D. S., Modal operators on Heyting algebras, Algebra Universalis, 12, 5–29, (1981).
- [6] Zou, Y. X., Xin, X. L. and He, X. L., On annihilators in BL-algebras, **Open Mathematics**, 14, 324–337, (2016).
- [7] Mi Ko, J. and Kim, Y. C., Closure operators on BL-algebras, **Communications** of the Korean Mathematical Society, 19 (2), 219-232, (2004).
- [8] Rachůnek, J. and Svoboda, Z., Interior and closure operators on commutative bounded residuated lattices, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 52, 121–134, (2013).
- [9] Borzooei, R.A. and Paad, A., Integral filters and integral BL-algebras, *Italian Journal of Pure and Applied Mathematics*, 30, 303–316, (2013).
- [10] Kondo M., Modal operators on commutative residuated lattices, *Mathematica Slovaca*, 61, 1-14, (2011).
- [11] Khorami, R.T. and Saeid, A.B., Some unitary operators on hoop-algebras, *Fuzzy Information* **and** *Engineering*, 9, 205–223, (2017).
- [12] Bělohlávek, R., Boolean Part of BL-algebras, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 42, 7-11, (2003).