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Abstract 

 

In this study we establish and investigate multiplicative co-derivative operators on BL-

algebras.  We also indicate that multiplicative co-derivative operators are more general 

operators than multiplicative interior operators and modal operators on BL-algebras. 

Furthermore, we describe relations between multiplicative co-derivative operators on 

BL-algebras and on the algebras of their regular elements.  Moreover, 𝟋-filters (𝟋-

derivative systems) will be introduced on BL-algebras depending on any multiplicative 

co-derivative operator 𝟋 on BL-algebras.  We also show that some sets of BL-algebras 

are 𝟋-filters (𝟋-deductive systems) on BL-algebras.  Next, we will define quotient BL-

algebra by means of any multiplicative co-derivative operator 𝟋 on BL-algebra and any 

𝟋-derivative systems on BL-algebra.  Finally, we will define a new operator on the 

quotient BL-algebra with the aid of the operator 𝟋 and show that the new operator is a 

multiplicative co-derivative operator on the quotient BL-algebra. 

 

Keywords: BL-algebras, multiplicative interior operator, modal operator, multiplicative 

co-derivative operator. 

 

 

BL-cebirleri üzerindeki çarpımsal co-türev operatörleri 
 

 

Öz 

 

Bu çalışmada, BL-cebirleri üzerindeki çarpımsal co-türev operatörleri tanıtılacak ve 

incelenecektir.  Aynı zamanda, çarpımsal co-türev operatörlerinin çarpımsal iç 

operatörler ve modal operatörlerden daha genel operatörler oldukları vurgulanacaktır.  

Ayrıca, BL-cebirleri ve bu cebirlerin regüler elemanlarının oluşturduğu cebirler üzerinde 

tanımlı çarpımsal co-türev operatörleri arasındaki ilişkiler betimlenecektir.  Dahası, BL-

cebirleri üzerindeki herhangi bir çarpımsal co-türev operatörü 𝟋’ e bağlı olarak BL-

cebirleri üzerinde 𝟋-süzgeçler (𝟋-türetim sistemleri) tanıtılacaktır.  Ek olarak, BL-
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cebirlerinin bazı kümelerinin 𝟋-süzgeçler (𝟋-türetim sistemleri) oldukları gösterilecektir.  

Sonra, BL-cebiri üzerindeki herhangi bir çarpımsal türev operatörü 𝟋 ve BL-cebirinin 

herhangi bir 𝟋-türetim sistemi yardımı ile bölüm BL-cebiri tanımlanacaktır.  Son olarak, 

𝟋-operatörü yardımı ile bölüm BL cebiri üzerinde yeni bir operatör tanımlanacak ve bu 

yeni operatörün çarpımsal bir co-türev operatörü olduğu gösterilecektir. 

 

Anahtar kelimeler: BL-cebirleri, çarpımsal iç operatör, modal operatör, çarpımsal co-

türev operatör. 

 

 

1.  Introduction  

 

BL-algebras as the algebric structures of basic fuzzy logic were introduced by Hájeck in 

[1].  Product algebras, MV-algebras and Gödel algebras are special cases of BL-algebras. 

 

Topological Boolean algebras defined with topological closure operators and interior 

operators in [2] are generalizations of topological spaces. Closure and interior MV-

algebras which were defined with the aid of multiplicative interior operators and additive 

closure operators in [3] were introduced qua generalizations of topological Boolean 

algebras.  Since that time, this operators are considered on some algebras, such as, Rl-

monoids and commutative bounded residuated lattice.  Derivative and coderivative MV-

algebras defined with additive derivative and multiplicative coderivative operators in [4] 

as generalizations of closure and interior MV-algebras were introduced and investigated. 

 

Modal operators were introduced and investigated on Heyting algebras which are the 

algebric counterpart of the intuitionistic propositional logic in [5].  Properties of modal 

operators are investigated on some algebras, for example, commutative residuated lattice, 

MV-algebras, commutative Rl-monoids and so on. 

 

In this study, we establish and study multiplicative co-derivative operators on BL-

algebras.  We show that multiplicative co-derivative operators are more general operators 

than multiplicative interior operators and modal operators.  We describe relations between 

multiplicative co-derivative operators on BL-algebras and on the MV-algebras of their 

reguler elements.  At the same time, we introduce 𝟋-filters (𝟋-deductive systems) and 

study on them.  Finally, we study multiplicative co-derivative operators on quotient BL-

algebras. 

 
 

2.  Preliminaries 

 

We remember that an algebra (𝐴,⊙,∧,∨, →, 0,1) is named as a BL-algebra ([6-7]) if it 

satisfies the belows: 

 

(B1) (𝐴,⊙ ,1) is a commutative monoid, 

(B2) (𝐴,∧,∨, 0,1)  is a bounded lattice, 

(B3) 𝑥 ⊙ 𝑦  𝑧  iff 𝑥  𝑦𝑧, 
(B4) 𝑥 ∧ 𝑦 =  𝑥 ⊙ (𝑥 → 𝑦) 

(B5) (𝑥𝑦) ∨ (𝑦𝑥) = 1. 
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On any BL-algebra 𝐴 we define a unary operator as 𝑥− = 𝑥 → 0 and a binary operator ⨁ 

such that 𝑥⨁𝑦 = (𝑥− ⊙ 𝑦−)−.   

 

2.1. Proposition ([6-8]) Suppose that 𝐴 be a BL-algebra.  In that case the belows hold: 

 

1) 𝑥 ⊙ (𝑥 → 𝑦) ≤ 𝑦, 

2) 𝑥 ⊙ 𝑦 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥 ∨ 𝑦, 

3) 1 → 𝑥 = 𝑥 ,  𝑥 → 𝑥 = 1,  𝑥 → 1 = 1, 

4) (𝑥⨁𝑦)− =  𝑥− ⊙ 𝑦−,  (𝑥 ⊙ 𝑦)− =  𝑥− ⊕ 𝑦−, 

5) (𝑥 ∨ 𝑦)− = 𝑥− ∧ 𝑦−,  (𝑥 ∧ 𝑦)− = 𝑥− ∨ 𝑦−, 
6) 𝑥 ≤ 𝑦 implies 𝑧 → 𝑥 ≤ 𝑧 → 𝑦,  𝑦 → 𝑧 ≤ 𝑥 → 𝑧 and 𝑥 ⊙ 𝑧 ≤ 𝑦 ⨀ 𝑧, 

7) 𝑥 ≤ 𝑥−−, 𝑥−−− = 𝑥−, 

8) 1− = 0,  0− = 1,  1−− = 1,   0−− = 0, 

9) 𝑥 ≤ 𝑦  iff  𝑥 ⟶ 𝑦 = 1, 

10) (𝑥 → 𝑦)−− = 𝑥 → 𝑦−−, 

11) 𝑥 ⊙ 𝑥− = 0,  𝑥 ⊕ 𝑥− = 1, 

12) (𝑥 → 𝑦)−− = 𝑥−− → 𝑦−−, 

13) (𝑥⨁𝑦)−− = 𝑥−−⨁𝑦−− = 𝑥−−⨁𝑦 = 𝑥⨁𝑦, 

 

for any 𝑥, 𝑦, 𝑧 ∈ 𝐴. 

 

2.2. Definition ([8]) Suppose that 𝐴 is a BL-algebra.  If a nonempt subset 𝐹 of 𝐴 satisfies 

the below conditions 

 

(F1) 𝑥,  𝑦 ∈ 𝐹 𝑖𝑚𝑝𝑙𝑖𝑒𝑠  𝑥 ⊙ 𝑦 ∈ 𝐹, 

(F2) 𝑥 ∈ 𝐹,  𝑦 ∈ 𝐴,  𝑥 ≤ 𝑦 implies 𝑦 ∈ 𝐹, 
 

Then it is named as a filter of 𝐴. 

 

2.3. Definition ([7-8]) Suppose that 𝐴 is a BL-algebra.  If a subset 𝐷 of 𝐴 provides the 

following conditions 

 

(D1) 1 ∈ 𝐷, 

(D2) 𝑥,  𝑥 → 𝑦 ∈ 𝐷 ⇒   𝑦 ∈ 𝐷, 

 

Then it is named as a deductive system of 𝐴. We will write a dsystem of 𝐴 shortly instead 

of a deductive system of 𝐴 from now on. 

 

It is known that a subset of A is a dsystem of A iff it is a filter of A. 

 

2.4. Theorem ([7]) Assume that 𝐷 is a dsystem of BL-algebra 𝐴.  Define 𝑥 ∼𝐷 𝑦 iff (𝑥 →
𝑦)⨀(𝑦 → 𝑥) ∈ 𝐷. Then ∼𝐷 is a congruence relation with respect to ⊙, ∧, ∨, →,  −. 

 

2.5. Theorem ([7]) Assume that 𝐷 is a dsystem of a BL-algebra 𝐴.  Define the operators 

on 𝐴 𝐷⁄ , the set of equivalence classes, as follows: 

 
[𝑥] ⊓ [𝑦] = [𝑥 ∧ 𝑦], [𝑥] ⊔ [𝑦] = [𝑥 ∨ 𝑦], [𝑥] ⊗ [𝑦] = [𝑥 ⊙ 𝑦], [𝑥] ⇀ [𝑦] = [𝑥 → 𝑦] 
and [×] ≤ [𝑦]  iff  𝑥 ⟶ 𝑦 ∈ 𝐷 for all [𝑥], [𝑦] ∈ 𝐴/𝐷.  

 

Then (𝐴 ⁄ 𝐷,⊗,⊓,⊔, ⇀, [0], [1]) is a BL-algebra. 
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3.  BL-algebras with co-derivative operators 

 

In this part of the study, we establish and study multiplicative co-derivative operators on 

BL-algebras. 

 

3.1. Definition Suppose that 𝐴 is a BL-algebra.  We say that a mapping 𝟋: 𝐴 → 𝐴 is a 

multiplicative co-derivative operator (mcd-operator) if for all 𝑥, 𝑦 ∈ 𝐴, it satisfies 

following conditions: 

 

(t1)  𝟋(𝑥) ⊙ 𝟋(𝑦) = 𝟋(𝑥 ⊙ 𝑦), 

(t2)  𝑥 ⊙ 𝟋(𝑥) ≤ 𝟋𝟋(𝑥), 

(t3)  𝟋(1)=1. 

 

When 𝟋 has the following property 

 

(t4) 𝟋(𝑥) ≤ 𝟋𝟋(𝑥) 

 

call it is a stronger mcd-operator on 𝐴. 

 

3.2. Theorem The conditions of an mcd-operator on BL-algebra 𝐴 are independet. 

 

Proof. We have to find a function on BL-algebra 𝐴 where the property is false while the 

others are true.   

 

(t1) Let 𝐴 = {0, 𝑝, 𝑞, 1} be a set, where 0 ≤ 𝑝, 𝑞 ≤ 1.  Define ⊙ and → as in Table 1: 

 

Table 1. Cayley tables of the binary operations ⊙ and → 

 

⊙ 0 p q 1    → 0 p q 1 

0 0 0 0 0    0 1 1 1 1 

p 0 p 0 p    p q 1 q 1 

q 0 0 q q    q p p 1 1 

1 0 p q 1    1 0 p q 1 

 

Then A is a BL-algebra ([6]).  We define 𝟋: 𝐴 → 𝐴 as in Table 2: 

 

Table 2. 

 

x 0 p q 1 

𝟋(𝑥)  0 q q 1 

 

𝟋 satisfies (t2) and (t3) properties.  We able to demonstrate that (t1) is not provided. 

Really, we get x=p and y=q. 

 

𝟋(𝑥 ⊙ 𝑦) = 𝟋(𝑝 ⊙ 𝑞) = 𝟋(0) = 0,                                                                                  (1) 
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𝟋(𝑥) ⊙ 𝟋(𝑦) = 𝟋(𝑝) ⊙ 𝟋(𝑞) = 𝑞 ⊙ 𝑞 = 𝑞,                                                                     (2) 

 

Then, 

 

 𝟋(𝑥) ⊙ 𝟋(𝑦) ≠ 𝟋(𝑥 ⊙ 𝑦)                                                                                                   (3) 

 

(t2) Let 𝐴 = {0, 𝑎, 𝑏, 𝑝, 1} be a set, where 0 ≤ 𝑝 ≤ 𝑎, 𝑏 ≤ 1.  Define ⊙ and → as in Table 

3 : 

 

Table 3. Cayley tables of the binary operations ⊙ and → 

 

⊙ 0 p a b 1    → 0 p a b 1 

0 0 0 0 0 0    0 1 1 1 1 1 

p 0 p p p p    p 0 1 1 1 1 

a 0 p a p a    a 0 b 1 b 1 

b 0 p p b b    b 0 a a 1 1 

1 0 p a b 1    1 0 p a b 1 

 

 In that case, 𝐴 is a BL-algebra ([9]).  We set the function 𝟋: 𝐴 → 𝐴 as in Table 4: 

 

Table 4. 

 

x 0 p a b 1 

𝟋(𝑥) 0 0 b 0 1 

 

Then it is express that 𝟋 satisfies (t1) and (t3) axioms.  We take 𝑥 = 𝑎.  Then  

 

𝑎 ⊙ 𝟋(𝑎) = 𝑎 ⊙ 𝑏 = 𝑝,                                                                                                     (4) 

 

𝟋𝟋(𝑎) = 𝟋(𝟋(𝑎)) = 𝟋(𝑏) = 0,                                                                                          (5) 

 

We have 𝑝 ≰ 0. Thus, axiom (t2) is not satisfied. 

 

(t3) Suppose that 𝐴 is a BL-algebra.  We describe the function 𝟋: 𝐴 → 𝐴 by 𝟋(𝑥) = 0 for 

all   𝑥 ∈  𝐴.  Then it is easy to see that 𝟋 provides (t1) and (t3) axioms but axiom (t3) is 

not satisfied.                                                                                                                                              ⧠ 

 

3.3. Example Let 𝐴 = {0, 𝑝, 𝑞, 1} be a set, where 0 ≤ 𝑝, 𝑞 ≤ 1.  Define ⊙ and → as in 

Table 1.  We know that 𝐴 is a BL-algebra.  We define 𝟋: 𝐴 → 𝐴 as in Table 5: 
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Table 5. 

 

x 0 p q 1 

𝟋(𝑥)  0 q 0 1 

 

Then it is easy to see that 𝟋 provides (t1) - (t3) axioms.  So, 𝟋 is an mcd-operator.  

However, 𝟋 does not satisfy (t4) axiom.  Indeed, we take 𝑥 = 𝑝.  Then 𝟋(𝑝) = 𝑞 ≰
𝟋(𝟋(𝑝)) = 𝟋(𝑞) = 0.  Thus, 𝟋 isn’t a stronger mcd-operator.                                                                           

 

3.4. Proposition If 𝟋: 𝐴 → 𝐴 is an mcd-operator on BL-algebra 𝐴 and   𝑥 ≤ 𝑦  for x, y ∈
𝐴, then 𝟋(𝑥) ≤ 𝟋(𝑦). 

 

Proof. Let 𝑥 ≤ 𝑦  for x, y ∈ 𝐴.  Then  

 

𝟋(𝑥) = 𝟋(𝑥 ∧ 𝑦) = 𝟋(𝑦 ∧ 𝑥) = 𝟋(𝑦 ⊙ (𝑦 → 𝑥)) by (B4) 

        = 𝟋(𝑦) ⊙ 𝟋(𝑦 → 𝑥) by (t1)    

        ≤ 𝟋(𝑦) ∧ 𝟋(𝑦 → 𝑥) ≤ 𝟋(𝑦) by 2.1. Proposition (2).                                                   (6) 

   ⧠ 

 

3.5. Definition ([3,8]) Suppose that 𝐴 is a BL-algebra.  If a mapping 𝑓: 𝐴 → 𝐴 satisfies 

the following conditions  

 

(i1) 𝑓(𝑥) ⊙ 𝑓(𝑦) = 𝑓(𝑥 ⊙ 𝑦), 

(i2) 𝑓(𝑥) ≤ 𝑥, 

(i3) 𝑓(𝑥) = 𝑓𝑓(𝑥), 

(i4) f(1)=1, 

 

for 𝑥,  𝑦 ∈ 𝐴, then it is named as a multiplicative interior operator (mi-operator) on 𝐴. 

 

3.6. Remark Let 𝑓 be an mi-operator on BL-algebra 𝐴.  It is clear that 𝑓  satisfies (t1) - 

(t3) and (t4) axioms.  Then 𝑓 is a strong mcd-operator.  But, an mcd-operator 𝟋 may not 

be an mi-operator. 

 

3.7. Example Suppose that 𝐴 is a BL-algebra.  We take the operator 𝟋: 𝐴 → 𝐴 as 𝟋(𝑥) =
1 for all   𝑥 ∈  𝐴.  It is clear that 𝟋  is an mcd-operator.  But 𝟋 isn’t an mi-operator.  Because 

𝟋 does not satisfy (i2) axiom. 

  

3.8. Definition ([10-11]) Suppose that 𝐴 is a BL-algebra.  We say that a unary mapping 

𝑓: 𝐴 → 𝐴 is a modal operator on 𝐴 if for any 𝑥, 𝑦 ∈ 𝐴 

 

(m1) 𝑓(𝑥) ⊙ 𝑓(𝑦) = 𝑓(𝑥 ⊙ 𝑦), 

(m2) 𝑥 ≤ 𝑓(𝑥), 

(m3) 𝑓(𝑥) = 𝑓𝑓(𝑥), 

for any 𝑥, 𝑦 ∈ 𝐴. 
 

3.9. Remark Let 𝑓 be a modal operator on BL-algebra 𝐴.  It is obvious  that 𝑓 satisfies 

(t1) - (t3) and (t4) axioms.  Then 𝑓 is a strong mcd-operator.  But, an mcd-operator 𝟋 may 

not be an modal operator. 
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3.10. Example Suppose that 𝐴 is a BL-algebra.  We take the operator 𝟋: 𝐴 → 𝐴 as 

 

𝟋(𝑥) = {
1,               𝑥 = 1   
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

,                                                                                                              (7) 

 

for all   𝑥 ∈  𝐴.  It is clear that 𝟋  is an mcd-operator.  But 𝟋 isn’t a modal operator. Because 

𝟋 does not satisfy (m2) axiom. 

 

3.11. Proposition Let 𝟋 be an mcd-operator on BL-algebra 𝐴.  Then we get 

 

(i) 𝟋(𝑥 → 𝑦)≤𝟋(𝑥) → 𝟋(𝑦), 

(ii) 𝟋(𝑥 ∧ 𝑦) ≤ 𝟋(𝑥) ∧ 𝟋(𝑦), 

(iii) 𝑥 ≤ 𝟋(𝑥) → 𝟋𝟋(𝑥) and 𝟋(𝑥) ≤ 𝑥 → 𝟋𝟋(𝑥), 

 

for any 𝑥, 𝑦 ∈ 𝐴. 

 

Proof. (i) Let 𝑥,  𝑦 ∈ 𝐴.  Then, 

 

𝟋(𝑥 ⊙ (𝑥 → 𝑦)) ≤ 𝑓(𝑦) by 2.1. Proposition (1) and 3.4. Proposition.                          (8) 

 

𝟋(𝑥 ⊙ (𝑥 → 𝑦)) = 𝟋(𝑥) ⊙ 𝟋(𝑥 → 𝑦) = 𝟋(𝑥 → 𝑦) ⊙  𝟋(𝑥) ≤ 𝟋(𝑦).                                       

(9) 

 

We have, 

 

𝟋(𝑥 → 𝑦) ≤ 𝟋(𝑥) → 𝟋(𝑦) by (B3) .                                                                                                              

(10) 

 

(ii) 𝟋(𝑥 ∧ 𝑦) = 𝟋(𝑥 ⊙ (𝑥 → 𝑦)) = 𝟋(𝑥) ⊙ 𝟋(𝑥 → 𝑦) by (B4) and (t1) 

                         ≤  𝟋(𝑥)  ⊙ (𝟋(𝑥) → 𝟋(𝑦)) by 2.1. Proposition (6)         

                        = 𝟋(𝑥) ∧ 𝟋(𝑦) by (B4).                                                                                                                  

(11) 

 

(iii) We have, 

 

 𝑥 ⊙ 𝟋(𝑥) = 𝟋(𝑥) ⊙ 𝑥 ≤ 𝟋𝟋(𝑥) by (t2) and (B1).                                                                          (12) 

 

It is clear that  

 

𝑥 ≤ 𝟋(𝑥) → 𝟋𝟋(𝑥) and 𝟋(𝑥) ≤ 𝑥 → 𝟋𝟋(𝑥) by (B3)                                                               (13) 

                                                                                                                                                             

⧠ 

 

 3.12. Theorem Let 𝟋1 and 𝟋2 be two strong mcd-operator on BL-algebra 𝐴.  If 

𝟋1𝟋2 =  𝟋2𝟋1, then 𝟋1𝟋2 is a strong mcd-operator on BL-algebra 𝐴. 

 

Proof. (t1) (𝟋1𝟋2)(𝑥 ⊙ 𝑦) = 𝟋1(𝟋2(𝑥 ⊙ 𝑦)) = 𝟋1( 𝟋2(𝑥) ⊙ 𝟋2(𝑦)) 

                                            = 𝟋1( 𝟋2(𝑥)) ⊙  𝟋1(𝟋2(𝑦)) = (𝟋1𝟋2)(𝑥) ⊙ (𝟋1𝟋2)(𝑦).  (14) 
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(t3)  (𝟋1𝟋2)(1) = 𝟋1(𝟋2(1)) = 𝟋1(1) = 1 by (t3).                                                                     (15) 

 

(t4) We have, 

 

 𝟋2(𝑥) ≤ 𝟋2𝟋2(𝑥) by (t4)                                                                                              (16) 

 

Then,  

 

 𝟋1(𝟋2(𝑥)) ≤ 𝟋1(𝟋2𝟋2(𝑥)) ≤  𝟋1(𝟋1(𝟋2𝟋2(𝑥))) by 3.4. Proposition and (t4)                     (17) 

 

So, 

 

(𝟋1𝟋2)(𝑥) ≤ (𝟋1𝟋2)(𝟋1𝟋2)(𝑥).                                                                                              (18) 

 

Meanwhile, 𝟋1𝟋2 satisfies (t2) axiom. 

 

(t2) We know that 𝑥 ⊙ (𝟋1𝟋2)(𝑥) ≤ 𝑥 ∧ (𝟋1𝟋2)(𝑥) ≤ (𝟋1𝟋2)(𝑥) by 2.1. Proposition (2).  

Then 𝑥 ⊙ (𝟋1𝟋2)(𝑥) ≤ (𝟋1𝟋2)(𝑥) ≤ (𝟋1𝟋2)(𝟋1𝟋2)(𝑥) by (t4).                                                   ⧠ 

 

3.13. Proposition Suppose that 𝐴 is a BL-algebra. In that case  −− ∶ 𝐴 → 𝐴 is a strong 

mcd-operator on BL-algebra 𝐴. 

 

Proof. Let 𝑥, 𝑦 ∈ 𝐴. 

 

(t1) (𝑥 ⊙ 𝑦)−− =  𝑥−− ⊙ 𝑦−−  by 2.1. Proposition (4).                                                (19) 

 

(t3) 1−− = (1−)− = 0− = 1.                                                                                           (20) 

 

(t4) We have 𝑥−−−− = 𝑥−− by 2.1. Proposition (7).  Then 𝑥−− ≤ 𝑥−−−−.                         ⧠ 

 

An element 𝑥 of a BL-algebra 𝐴 is called regular if 𝑥−−  =  𝑥.  We will denote by 𝑅𝑒𝑔(𝐴) 

to the set of all regular elements in 𝐴.  We set 𝑥 ∨  𝑦 =  (𝑥 ∨  𝑦)−−, 𝑥 ∧  𝑦 =  (𝑥 ∧
 𝑦)−− , 𝑥 ⊙ 𝑦 = (𝑥 ⊙ 𝑦)−−, 𝑥 ↝ 𝑦 = (𝑥 → 𝑦)−− for any 𝑥, 𝑦 ∈  𝑅𝑒𝑔(𝐴). 

 

We known that If 𝐴 is a BL-algebra, then 𝑥 ⊙ 𝑦 = (𝑥 ⊙ 𝑦)−− = 𝑥−− ⊙ 𝑦−− for all 

𝑥, 𝑦 ∈ 𝐴 .  Because of this, 𝑥 ⊙ 𝑦 = 𝑥 ⊙ 𝑦 for any 𝑥, 𝑦 ∈  𝑅𝑒𝑔(𝐴) .  If 𝐴 is a BL-

algebra, then 𝑥 ↝ 𝑦 = (𝑥 → 𝑦)−− = 𝑥−− → 𝑦−− by 2.1. Proposition (12).  So, 𝑥 ↝ 𝑦 =
𝑥 → 𝑦 for any 𝑥, 𝑦 ∈  𝑅𝑒𝑔(𝐴).  It is obvious that 𝑥 ∧   𝑦 =  𝑥 ∧  𝑦. 

 

3.14. Proposition ([12]) If 𝐴 is a BL-algebra, then (𝑅𝑒𝑔(𝐴),⊙,∧ ,∨, ↝ ,0,1) is the largest 

subalgebra of 𝐴 that is an MV-algebra. 

 

3.15. Theorem Suppose that 𝐴 is a BL-algebra, 𝟋 ∶  𝐴 →  𝐴 is an (a strong) mcd-operator 

on 𝐴 and 𝟋̂ ∶  𝑅𝑒𝑔(𝐴)  →  𝑅𝑒𝑔(𝐴) is the mapping such that 𝟋̂(𝑥) = (𝟋(𝑥))−− for any 𝑥 ∈
 𝑅𝑒𝑔(𝐴).  Then 𝟋̂ is an (a strong) mcd-operator on 𝑅𝑒𝑔(𝐴).  

 

Proof . Let 𝑥, 𝑦 ∈  𝑅𝑒𝑔(𝐴). 
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(t1) 𝟋̂ (𝑥 ⊙ 𝑦) = (𝟋(𝑥 ⊙ 𝑦))−− = (𝟋(𝑥) ⊙ 𝟋(𝑦))−− =  (𝟋(𝑥))−− ⊙ (𝟋(𝑦))−− 

                           =  𝟋̂(𝑥) ⊙ 𝟋̂ (𝑦) =  𝟋̂ (𝑥) ⊙ 𝟋̂ (𝑦).                                                                       

(21) 

 

(t2) 𝑥 ⊙ 𝟋̂(𝑥) =  𝑥 ⊙ 𝟋̂(𝑥) =  𝑥 ⊙ (𝟋(𝑥))−− = 𝑥−−  ⊙ (𝟋(𝑥))−− = (𝑥 ⊙ 𝟋(𝑥))−−   

                      ≤ (𝟋𝟋(𝑥))−− ≤ (𝟋(𝟋(𝑥))−−))−− by 2.1. Proposition (7) and 3.4. 

Proposition 

                         =  (𝟋(𝟋̂(𝑥)))−− = 𝟋̂(𝟋̂(𝑥)) = 𝟋̂𝟋̂(𝑥).                                                            (22) 

 

(t3) 𝟋̂(1) = (𝟋(1))−− = (1)−− = 1.                                                                                            (23) 

 

(t4) If 𝟋 has the stronger property, then  

 

𝟋̂(𝑥) =  (𝟋(𝑥))−− ≤ (𝟋𝟋(𝑥))−− ≤ (𝟋(𝟋(𝑥))−−))−− =  (𝟋(𝟋 ̂(𝑥)))−− = 𝟋̂(𝟋̂(𝑥)) 

                = 𝟋̂𝟋̂(𝑥).                                                                                                                                                   

(24) 

                                                                                                                     ⧠ 

 

3.16. Theorem Suppose that 𝐴 is a BL-algebra, 𝟋∗ ∶  𝑅𝑒𝑔(𝐴)  →  𝑅𝑒𝑔(𝐴) is an ( a strong) 

mcd-operator on 𝑅𝑒𝑔(𝐴).  Then the mapping 𝟋 ∶  𝐴 → 𝐴 as 𝟋(𝑥)  =  𝟋∗(𝑥−−) for any 𝑥 ∈
𝐴 is an (a strong) mcd-operator on 𝐴. 

 

Proof. Let 𝑥, 𝑦 ∈  𝐴 . 

 

(t1) 𝟋(𝑥 ⊙ 𝑦) = 𝟋∗((𝑥 ⊙ 𝑦)−−) = 𝟋∗( 𝑥−− ⊙ 𝑦−−) = 𝟋∗( 𝑥−− ⊙ 𝑦−−) 

                         =  𝟋∗(𝑥−−) ⊙ 𝟋∗(𝑦−−) =𝟋∗(𝑥−−) ⊙ 𝟋∗(𝑦−−) = 𝟋(𝑥) ⊙ 𝟋(𝑦).              

(25) 

 

(t2) 𝑥 ⊙ 𝟋(𝑥) = 𝑥 ⊙ 𝟋∗(𝑥−−) ≤ 𝑥−− ⊙ 𝟋∗(𝑥−−) =  𝑥−− ⊙ 𝟋∗(𝑥−−) ≤ 𝟋∗𝟋∗(𝑥−−)  

                          ≤  𝟋∗((𝟋∗(𝑥−− ))−−) = 𝟋∗((𝟋(𝑥))−−) = 𝟋(𝟋(𝑥)) = 𝟋𝟋(𝑥).                       (26) 

 

(t3)  𝟋(1) = 𝟋∗(1−−) =  𝟋∗(1) = 1.                                                                                    (27) 

 

(t4) If 𝟋∗ has the stronger property, then 

 

         𝟋(𝑥) = 𝟋∗(𝑥−−) ≤ 𝟋∗𝟋∗(𝑥−−)≤ 𝟋∗((𝟋∗(𝑥−− ))−−) 

                  = 𝟋∗((𝟋(𝑥))−−) = 𝟋(𝟋(𝑥)) = 𝟋𝟋(𝑥).                                                                             (28) 

  ⧠ 

 

3.17. Definition Let 𝐴 be a BL-algebra with mcd-operator 𝟋 and F (D) be a filter (dsystem) 

of 𝐴.  Then F (D) is called a 𝟋-filter (𝟋-dsystem) if 𝟋(𝑥) ∈ 𝐹 (𝟋(𝑥) ∈ 𝐷) for every 𝑥 ∈
𝐹 (𝑥 ∈ 𝐷). 

 

3.18. Proposition Let 𝐴 be a BL-algebra with mcd-operator 𝟋.  Then the subset   𝐷 =
{𝑥 ∈ 𝐴: 𝟋(𝑥) = 1} of 𝐴 is a 𝟋-dsystem of 𝐴. 
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Proof. 

 

(D1) 1 ∈ 𝐷 by (t3). 

 

(D2) Let 𝑥, 𝑥 → 𝑦 ∈ 𝐷.  Then 𝟋(𝑥) = 1, 𝟋(𝑥 → 𝑦) =1 We have 𝑥 ⊙ (𝑥 → 𝑦) ≤ 𝑦 from 

2.1. Proposition (1).  Since 𝟋  is a monotone mapping, we must have  

𝟋(𝑥 ⊙ (𝑥 → 𝑦)) = 𝟋(𝑥) ⊙ 𝟋(𝑥 → 𝑦) = 1 ⊙  1 = 1 ≤ 𝟋(𝑦). So, 𝟋(𝑦) = 1 and 𝑦 ∈ 𝐷. 

 

Finally, Let 𝑥 ∈ 𝐷.  Then we get 𝟋(𝑥) = 1.  Hence, 𝟋𝟋(𝑥) = 𝟋(𝟋(𝑥)) = 𝟋(1) = 1. It 

means that 𝟋(𝑥) ∈ 𝐷.                                                                                                                     ⧠ 

 

3.19. Theorem Suppose that 𝐴 is a BL-algebra, 𝟋: 𝐴 → 𝐴 be an (a strong) mcd-operator 

and 𝐷 is a 𝟋-dsystem of 𝐴.  Then the mapping 𝟋∗: 𝐴/𝐷 → 𝐴/𝐷 such that 𝟋∗([𝑥]) = [𝟋(𝑥)] 
is an (a strong) mcd-operator on the quotient BL-algebra 𝐴 /D. 

 

Proof. We know by 2.4. Theorem that ∼𝐷 is a congruence relation according to ⊙, ∧, ∨,
→,  −.  Suppose that 𝑥 ∼𝐷  𝑦. Then (𝑥 → 𝑦) ⊙  (𝑦 → 𝑥) ∈ 𝐷.  We have (𝑥 → 𝑦) ⊙
 (𝑦 → 𝑥) ≤ (𝑥 → 𝑦) and 𝟋((𝑥 → 𝑦) ⊙ (𝑦 → 𝑥)) ≤ 𝟋(𝑥 → 𝑦) ≤ 𝟋(𝑥) → 𝟋(𝑦) by 3.10. 

Proposition (i).  Since D is a 𝟋-dsystem of 𝐴, 𝟋(𝑥) → 𝟋(𝑦) ∈ 𝐷  and similarly, 𝟋(𝑦) →
𝟋(𝑥) ∈ 𝐷.  So, (𝟋(𝑥) → 𝟋(𝑦)) ⊙ (𝟋(𝑦) → 𝟋(𝑥)) ∈ 𝐷.  That means 𝟋(𝑥) ∼𝐷  𝟋(𝑦).  

Therefore, the relation ∼𝐷 is a congruence relation with respect to ⊙, ∧, ∨, →,  − and 𝟋. 

Finally, we have to show that 𝟋∗ is an mcd operator on 𝐴/𝐷. 

 

(t1) 𝟋∗([𝑥] ⊗ [𝑦]) = 𝟋∗([𝑥 ⊙ 𝑦]) = [𝟋(𝑥 ⊙ 𝑦)] = [𝟋(𝑥) ⊙ 𝟋(𝑦)] by 2.5. Theorem 

                                  = [𝟋(𝑥)] ⊗ [𝟋(𝑦)] =  𝟋∗([𝑥]) ⊗ 𝟋∗([𝑦]) by 2.5. Theorem               

(29) 

 

(t2) [𝑥] ⊗ 𝟋∗([𝑥]) =   [𝑥] ⊗ [𝟋(𝑥)] = [𝑥 ⊙ 𝟋(𝑥)] ≤ [𝟋𝟋(𝑥)] by 2.5. Theorem    

                                  = [𝟋(𝟋(𝑥))] =  𝟋∗[𝟋(𝑥)] = 𝟋∗𝟋∗([𝑥]).                                                 (30) 

 

(t3) 𝟋∗([1]) = [𝟋(1)] = [1].                                                                                                              (31) 

 

If 𝟋 has the stronger property, then 

 

(t4) 𝟋∗([𝑥]) = [𝟋(𝑥)] ≤ [𝟋𝟋(𝑥)] = 𝟋∗[𝟋(𝑥)] = 𝟋∗𝟋∗([𝑥]).                                                          (32) 

                                  ⧠ 
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