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Abstract

In this study we establish and investigate multiplicative co-derivative operators on BL-
algebras. We also indicate that multiplicative co-derivative operators are more general
operators than multiplicative interior operators and modal operators on BL-algebras.
Furthermore, we describe relations between multiplicative co-derivative operators on
BL-algebras and on the algebras of their regular elements. Moreover, g-filters (g-
derivative systems) will be introduced on BL-algebras depending on any multiplicative
co-derivative operator g on BL-algebras. We also show that some sets of BL-algebras
are g-filters (p-deductive systems) on BL-algebras. Next, we will define guotient BL-
algebra by means of any multiplicative co-derivative operator g on BL-algebra and any
f-derivative systems on BL-algebra. Finally, we will define a new operator on the
quotient BL-algebra with the aid of the operator g and show that the new operator is a
multiplicative co-derivative operator on the quotient BL-algebra.

Keywords: BL-algebras, multiplicative interior operator, modal operator, multiplicative
co-derivative operator.

BL-cebirleri tizerindeki ¢arpimsal co-tiirev operatorleri

Oz

Bu ¢aliymada, BL-cebirleri tizerindeki ¢arpimsal co-tiirev operatorleri tanitilacak ve
incelenecektir. ~ Aymi zamanda, c¢arpimsal co-tiirev operatérlerinin ¢arpimsal ig
operatorler ve modal operatorlerden daha genel operatorler olduklar: vurgulanacaktir.
Ayrica, BL-cebirleri ve bu cebirlerin regiiler elemanlarinin olusturdugu cebirler iizerinde
tammli carpimsal co-tiivev operatorleri arasindaki iliskiler betimlenecektir. Dahasi, BL-
cebirleri iizerindeki herhangi bir ¢arpimsal co-tiirev operatérii ¢’ e bagh olarak BL-
cebirleri iizerinde g-siizgegler (f-tiiretim sistemleri) tamitilacaktir. Ek olarak, BL-
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cebirlerinin bazi kiimelerinin g-siizgegler (g-tiiretim sistemleri) olduklar: gosterilecektir.
Sonra, BL-cebiri tizerindeki herhangi bir ¢arpimsal tiirev operatorii g ve BL-cebirinin
herhangi bir g-tiiretim sistemi yardimu ile boliim BL-cebiri tamimlanacaktir. Son olarak,
f-operatorii yardimi ile boliim BL cebiri iizerinde yeni bir operatér tanimlanacak ve bu
veni operatoriin ¢arpimsal bir co-tiirev operatorii oldugu gosterilecektir.

Anahtar kelimeler: BL-cebirleri, carpimsal i¢ operator, modal operator, ¢arpimsal co-
tiirev operator.

1. Introduction

BL-algebras as the algebric structures of basic fuzzy logic were introduced by Hajeck in
[1]. Product algebras, MV-algebras and Godel algebras are special cases of BL-algebras.

Topological Boolean algebras defined with topological closure operators and interior
operators in [2] are generalizations of topological spaces. Closure and interior MV-
algebras which were defined with the aid of multiplicative interior operators and additive
closure operators in [3] were introduced qua generalizations of topological Boolean
algebras. Since that time, this operators are considered on some algebras, such as, RI-
monoids and commutative bounded residuated lattice. Derivative and coderivative MV-
algebras defined with additive derivative and multiplicative coderivative operators in [4]
as generalizations of closure and interior MV-algebras were introduced and investigated.

Modal operators were introduced and investigated on Heyting algebras which are the
algebric counterpart of the intuitionistic propositional logic in [5]. Properties of modal
operators are investigated on some algebras, for example, commutative residuated lattice,
MV-algebras, commutative RI-monoids and so on.

In this study, we establish and study multiplicative co-derivative operators on BL-
algebras. We show that multiplicative co-derivative operators are more general operators
than multiplicative interior operators and modal operators. We describe relations between
multiplicative co-derivative operators on BL-algebras and on the MV-algebras of their
reguler elements. At the same time, we introduce g-filters (f-deductive systems) and
study on them. Finally, we study multiplicative co-derivative operators on quotient BL-
algebras.

2. Preliminaries

We remember that an algebra (4,®,A,V, —,0,1) is named as a BL-algebra ([6-7]) if it
satisfies the belows:

(B1) (A,©,1) is a commutative monoid,
(B2) (A,AV,0,1) is abounded lattice,
B3)x OQy<z iff x<y—z

BHxAy = xOx-y)

(B5) (x—>y) vV (y—=x) = 1.
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On any BL-algebra A we define a unary operator as x~ = x — 0 and a binary operator &
such that x@®y = (x~ QO y7)".

2.1. Proposition ([6-8]) Suppose that A be a BL-algebra. In that case the belows hold:

DxO&->y)<v,

2)xQy<xANy<xVy,
l1-x=x,x-x=1x-1=1,
Hx®y) =x" 0y, xOy)” =x" Dy,
5)(xVy) =x"AyT, (xAy)” =x"Vy",
B)x <yimpliesz->x<z-y, y—-z<x-zandxOz<yQOz,
Nx<x",x " =x,

81" =0,0=1,1"=1, 00~ =0,
Nx<yiff x -y=1,

10)(x=>y) " =x->y"",

1MxOx =0, xPx™ =1,

12) (x> y) " =xT -y,

13) (x®y) " =x"" @y " =x @y =x@y,

forany x, y, z € A.

2.2. Definition ([8]) Suppose that A is a BL-algebra. If a nonempt subset F of A satisfies
the below conditions

(F1) x, y € F implies x O y € F,
(F2)xeF, ye A, x <yimpliesy € F,

Then it is named as a filter of A.

2.3. Definition ([7-8]) Suppose that A is a BL-algebra. If a subset D of A provides the
following conditions

(D1)1 €D,
D2)x, x >y€ED = €D,
y y

Then it is named as a deductive system of A. We will write a dsystem of A shortly instead
of a deductive system of A from now on.

It is known that a subset of A is a dsystem of A iff it is a filter of A.

2.4. Theorem ([7]) Assume that D is a dsystem of BL-algebra A. Define x ~, y iff (x -
Y)O(y = x) € D. Then ~, is a congruence relation with respectto ©, A, Vv, =, ~

2.5. Theorem ([7]) Assume that D is a dsystem of a BL-algebra A. Define the operators
on A/D, the set of equivalence classes, as follows:

[x

}jl‘[l [i]] =[xAylxlulyl=[xvyl [xX]® [yl =[x Oyl [x] = [y] =[x > y]
an

x] <[y] iff x — y € Dforall [x],[y] € A/D.

Then (A / D,®,n,u,—,[0],[1]) is a BL-algebra.
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3. BL-algebras with co-derivative operators

In this part of the study, we establish and study multiplicative co-derivative operators on
BL-algebras.

3.1. Definition Suppose that A is a BL-algebra. We say that a mapping f: A - A is a

multiplicative co-derivative operator (mcd-operator) if for all x, y € A, it satisfies
following conditions:

(t1) f(x) O f¥) = f(x O ),

(t2) x O f(x) < fF(x),

(t3) r(1)=1.

When ¢ has the following property
(t4) F(x) < Fr(x)

call it is a stronger mcd-operator on A.

3.2. Theorem The conditions of an mcd-operator on BL-algebra A are independet.

Proof. We have to find a function on BL-algebra A where the property is false while the
others are true.

(t1) Let A = {0,p, q, 1} be a set, where 0 < p,q < 1. Define © and — as in Table 1:

Table 1. Cayley tables of the binary operations © and —

©|0 p q 1 -0 p q 1
010 O 0 oj1 1 1 1
p|0 p p P q q 1
q({0 0 a q qp p 1 1
110 p q 1 110 p q 1

Then A is a BL-algebra ([6]). We define g: A — A as in Table 2:
Table 2.

X‘Opql
F(x)‘qul

f satisfies (t2) and (t3) properties. We able to demonstrate that (t1) is not provided.
Really, we get x=p and y=q.

FxOy) =flp O q) =¢(0) =0, 1)
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FOOF =FP) Of(@ =q0Oq=aq,

Then,

FX) O () # F(x O y)

()

@)

(t2) Let A = {0,a,b,p,1} beaset,where 0 < p < a,b < 1. Define © and — asin Table

3:

Table 3. Cayley tables of the binary operations © and —

In that case, A is a BL-algebra ([9]). We set the function f: A — A as in Table 4:

|0 p a b 1
0|0 0O 0O O O
PO p p p p
a|0 p a p a
b |0 p p b b
110 p a b 1

Table 4.

X‘Opabl

f(x)‘o 0b o1

-0 p a b 1
o1 1 1 1 1
plo 1 1 1 1
al0 b 1 b 1
b0 a a 1 1
110 p a b 1

Then it is express that g satisfies (t1) and (t3) axioms. We take x = a. Then

a®@f@=a®@b=np,

FF(a) = f(F(a)) = f(b) = 0,

We have p £ 0. Thus, axiom (t2) is not satisfied.

(4)
()

(t3) Suppose that A is a BL-algebra. We describe the function g: A — A by f(x) = 0 for
all x € A. Then it is easy to see that g provides (t1) and (t3) axioms but axiom (t3) is

not satisfied.

O

3.3. Example Let A = {0,p, q, 1} be a set, where 0 < p,q < 1. Define © and — as in
Table 1. We know that A is a BL-algebra. We define g: A — A as in Table 5:
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Table 5.

X‘Opql
F(x)’0q01

Then it is easy to see that g provides (t1) - (t3) axioms. So, g is an mcd-operator.
However, ¢ does not satisfy (t4) axiom. Indeed, we take x = p. Then f(p) = q £
F(F(»)) = £(q) = 0. Thus,  isn’t a stronger mcd-operator.

3.4. Proposition If g: A — A is an mcd-operator on BL-algebra Aand x <y forx,y €
A, then g(x) < e(y).

Proof. Letx <y forx,y € A. Then

FC) =G AY) = ey Ax) = f(y © (¥ - x)) by (B4)
=F(y) O f(y = x) by (t1)
< F) AFQY = x) < f(y) by 2.1. Proposition (2). (6)
m

3.5. Definition ([3,8]) Suppose that A is a BL-algebra. If a mapping f: A — A satisfies
the following conditions

(D) f)OfO)=fxOy),
(i2) f(x) < x,

(i3) f(x) = ff(x),

(i4) f(1)=1,

for x, y € A, then it is named as a multiplicative interior operator (mi-operator) on A.

3.6. Remark Let f be an mi-operator on BL-algebra A. It is clear that f satisfies (t1) -
(t3) and (t4) axioms. Then f is a strong mcd-operator. But, an mcd-operator g may not
be an mi-operator.

3.7. Example Suppose that A is a BL-algebra. We take the operator g: A — A as f(x) =
1forall x € A. Itisclearthat g isan mcd-operator. But fisn’t an mi-operator. Because
£ does not satisfy (i2) axiom.

3.8. Definition ([10-11]) Suppose that A is a BL-algebra. We say that a unary mapping
f:A — Aisamodal operator on A if forany x,y € A

(M1) f(x) © f(¥) = fF(x O ),
(m2) x < f(x),

(M3) f(x) = ff (),

forany x,y € A.

3.9. Remark Let f be a modal operator on BL-algebra A. It is obvious that f satisfies

(t1) - (t3) and (t4) axioms. Then f is a strong mcd-operator. But, an mcd-operator g may
not be an modal operator.
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3.10. Example Suppose that A is a BL-algebra. We take the operator f: A — A as

1, x=1
FOx) = {0, otherwise

, (7)

forall x € A. Itisclearthat ¢ isan mcd-operator. But g isn’t a modal operator. Because
f does not satisfy (m2) axiom.

3.11. Proposition Let g be an mcd-operator on BL-algebra A. Then we get

(i) F(x = Y)<F(x) = £,

(ii) Fx A y) < () AR(Y),

(iii) x < f(x) - pr(x) and p(x) < x - fF(x),

forany x,y € A.

Proof. (i) Let x, y € A. Then,

f(x © (x > y)) < f(y) by 2.1. Proposition (1) and 3.4. Proposition. (8)

FxO(x =) =) Oflx > y) =flx = y) O flx) < FO).
9)

We have,

Flx = y) < flx) = f(y) by (B3)
(10)

(i) f(x Ay) = f(x O (x » ¥)) = f(x) O £(x - y) by (B4) and (t1)
< f(x) O (r(x) = f(y)) by 2.1. Proposition (6)

) = F(x) AF(Y) by (B4).
(iii) We have,
x O F(x) = f(x) O x < ff(x) by (t2) and (B1). (12)
It is clear that
x < f(x) = fF(x) and f(x) < x - fr(x) by (B3) (13)

O

3.12. Theorem Let g; and g, be two strong mcd-operator on BL-algebra A. If
F1F2 = F2F1, then fLF, is a strong mcd-operator on BL-algebra A.

Proof. (t1) (f1F2)(x O ¥) = F1(F2(x O ¥)) = F1(F2(X) O F2(1))
=1 (F200) O F(FR2)) = (F1F) () O (F1F2) (). (14)
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(t3) (F1F2)(1) = F1(F2(1)) = f1(1) = 1 by (13). (15)
(t4) We have,

F2(x) < F2F2(x) by (t4) (16)
Then,

F1(F2(%)) < F1(F2F2(X)) < F1(F1(F2F2(x))) by 3.4. Propositionand (t4) (17)
So,

(F1F2)(X) < (F1F2) (F1F2) (%) (18)

Meanwhile, g, g, satisfies (t2) axiom.

(t2) We know that x O (F1F2) (%) < x A (F1F2) (%) < (F1F2)(x) by 2.1. Proposition (2).
Thenx © (F1F2)(x) < (F1F2) (%) < (F1F2) (F1F2)(x) by (t4). O

3.13. Proposition Suppose that A is a BL-algebra. In that case
mcd-operator on BL-algebra A.

~:A - Aisastrong

Proof. Letx, y € A.

(t1) (x ®y)™~" = x~~ © y~~ by 2.1. Proposition (4). (19)
1~ =1")"=0" =1. (20)
(t4) We have x =~~~ = x~~ by 2.1. Proposition (7). Thenx™™ <x~ 7" ". O
An element x of a BL-algebra A is called regular if x™= = x. We will denote by Reg(A)

to the set of all regular elementsin A. Wesetx Vy = (x Vy) ", x Ay = (x A
YV T ,xQy=x0y) T, xvy=(x-y)  foranyx,y € Reg(4).

We known that If A is a BL-algebra, then x Oy = (x ©Qy)"" =x"~ © y~~ for all
x,y €A . Because of this, x Oy =x©y for any x,y € Reg(4) . If AisaBL-
algebra,thenx »y = (x » y)™~ =x~~ - y~~ by 2.1. Proposition (12). So,x ~»y =
x - yforanyx, y € Reg(A). Itisobviousthatx A y = x A y.

3.14. Proposition ([12]) If A is a BL-algebra, then (Reg(4),O,A v, ~,0,1) is the largest
subalgebra of A that is an MV-algebra.

3.15. Theorem Suppose that A isa BL-algebra, f: A — A is an (a strong) mcd-operator
onAandf: Reg(A) — Reg(A) is the mapping such that f(x) = (¢(x))~~ forany x €
Reg(A). Then g is an (a strong) mcd-operator on Reg(A).

Proof . Let x,y € Reg(A).
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MEEQY)=FEx O™ =F® O™ = )™ OGN
=FfFDOFO=F& OFO.
(21)

@)xOFx) = xOF) = xO(FG)DT™ =x7" O(FX)D =xOF)"
< (fF))™™ < (F(f(X))™7))~~ by 2.1. Proposition (7) and 3.4
Proposition

= (FFD) ™™ = #(p()) = FF(). (22)
©B)F(D) = (f1)" =D =1 (23)

(t4) If g has the stronger property, then

FOO = (FO) ™ < (fFCD) ™™ < (FECD) ™)™ = (FFEE)) ™ = #(F ()

FRC).

(24)
O

3.16. Theorem Suppose that A is a BL-algebra, g : Reg(A) — Reg(A) isan (astrong)
mcd-operator on Reg(A). Thenthe mappingg: A —» Aasg(x) = g'(x~ ") foranyx €
A is an (a strong) mcd-operator on A.

Proof. Letx,y € A.

MFxOY=F(OY I)=F(x" Oy D=F(x"0y )

=fFE)O FO) =FxX ) OFO ) =Ffx) OF).
(25)
RxOFX)=xOF@ )<x " OFE ) =x"0OF& )SFFx)
< FFETNT) =FFE) ™) = f(f(0) = pr(x). (26)
W) FD =)= =1 (27)

(t4) If £ has the stronger property, then

FOO)=FO D) SFFE)SFUFET ™)
= £ ((FO)) ™) = () = FF(x). (28)

O
3.17. Definition Let A be a BL-algebra with mcd-operator g and F (D) be a filter (dsystem)
of A. Then F (D) is called a g-filter (g-dsystem) if p(x) € F (¢(x) € D) for every x €
F (x € D).

3.18. Proposition Let A be a BL-algebra with mcd-operator g. Then the subset D =
{x € A:f(x) = 1} of A is a g-dsystem of A.
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Proof.
(D1) 1 € D by (t3).

(D2) Letx, x >y €D. Thenf(x) =1,f(x = y) =1 We have x © (x = y) < y from
2.1. Proposition (1). Since g is a monotone mapping, we must have

F(xO@x->»)=fx)Ofx->y)=10 1=1<¢g(y).S0,f(y) =1andy € D.

Finally, Let x € D. Then we get f(x) = 1. Hence, ff(x) = f(f(x)) = f(1) = 1. It
means that g(x) € D. O

3.19. Theorem Suppose that A is a BL-algebra, f: A — A be an (a strong) mcd-operator
and D is a g-dsystem of A. Then the mapping ¢*: A/D — A/D such that ¢*([x]) = [f(x)]
is an (a strong) mcd-operator on the quotient BL-algebra A /D.

Proof. We know by 2.4. Theorem that ~, is a congruence relation accordingto ©, A, V,
—, ~. Suppose that x ~, y. Then (x - y) © (y > x)€D. We have (x - y) ©
=)< @Ex-y)and f((x > y) O~ x)<flx - y) < flx) - Fly) by 3.10.
Proposition (i). Since D is a g-dsystem of A, f(x) — g(y) € D and similarly, g(y) =
F(x) €D. So, (F(x) = f(¥)) O (f(y) > f(x)) €D. That means f(x) ~p ().
Therefore, the relation ~ is a congruence relation with respectto ©, A, Vv, =, ~ and f.
Finally, we have to show that ¢* is an mcd operator on A/D.

M) Fx] @ YD = F(x O yD = [f(x ©y)] = [¢(x) O (y)] by 2.5. Theorem
=[F]Q[eWM] = FUxD Q¢ ([y]) by 25. Theorem

(29)
(t2) [x] @ ¢ ([xD) = [x] ® [F(x)] = [x O f(x)] < [fr(x)] by 2.5. Theorem

= [f(f())] = FlFCO] = £ ([x]). (30)
(t3) ¢ ([1D) = [¢(D] = [1]. (31)
If f has the stronger property, then
(t4) £ ([xD) = [f(0)] < [pr(0)] = FIFCO] = £ F ([xD. (32D)
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