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Abstract
Weaving frames in separable Hilbert spaces have been recently introduced by Bemrose
et al. to deal with some problems in distributed signal processing and wireless sensor
networks. Likewise weaving K-frames have been proved to be useful during signal recon-
structions from the range of a bounded linear operator K. In this paper, we study the
notion of weaving and its connection to the duality of K-frames and construct several
pairs of woven K-frames. Also, we find a unique biorthogonal sequence for every K-Riesz
basis and obtain a K∗-frame which is woven by its canonical dual. Moreover, we describe
the excess for K-frames and prove that any two woven K-frames in a separable Hilbert
space have the same excess. Finally, we introduce the necessary and sufficient condition
under which a K-frame and its image under an invertible operator have the same excess.
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1. Introduction and motivation
Frame theory has been converted as a useful tools in order to solve many problems from

signal and image processing to differential equation and so on [9, 12,16,18].
The notion of K-frames has been introduced by Găvrua [28] to study the atomic system

with respect to a bounded linear operator K in a separable Hilbert space H. There exist
many differences between frames and K-frames. Indeed, K-frames are more general than
ordinary frames in the sense that the lower frame bound only holds for the elements in
the range of K. Also, a K-frame is the image of an orthonormal basis under a bounded
linear operator K, whereas a frame is the image of an orthonormal basis under a bounded
linear surjection [28].

Traditionally, frame coefficients of a given frame have been used to represent every
element of underlying Hilbert space as a linear combination of the frame elements. The
concept of woven frames, which is motivated by some problems in signal processing [11],
is used to write this linear combination by at least two frames. See [7, 17, 20, 23, 27, 29]
for more results on K-frames and weaving. Study and analysis of woven K-frames is the
main purpose of this article. Motivation of this work is study the dual of K-frames.
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2. Preliminaries and notations
2.1. Discrete frames

A sequence Φ = {ϕi}i∈I in a separable Hilbert space H is called a frame for H if there
exist constants 0 < AΦ ≤ BΦ < ∞ such that

AΦ‖f‖2 ≤
∑
i∈I

|〈f, ϕi〉|2 ≤ BΦ‖f‖2, (f ∈ H).

The constants AΦ and BΦ are called lower and upper frame bounds, respectively. If just
the right inequality in the above holds, then Φ is called a Bessel sequence. A sequence
Φ = {ϕi}i∈I in a Hilbert space H is called a Riesz sequence if there are constants 0 <
AΦ ≤ BΦ < ∞ such that for every sequence {ci}i∈I ∈ `2 we have

AΦ
∑

i∈I |ci|2 ≤ ‖
∑

i∈I ciϕi‖2 ≤ BΦ
∑

i∈I |ci|2.
The constants AΦ and BΦ are called lower and upper Riesz bounds, respectively. A subset
A subset H is called complete whenever 〈y, x〉 = 0 for all x ∈ A implies that y = 0. In
addition, if Φ is complete in H, then it is called a Riesz basis for H.

Given a Bessel sequence Φ = {ϕi}i∈I , the synthesis operator TΦ : `2 → H is defined
by TΦ{ci} =

∑
i∈I ciϕi. Its adjoint, T ∗

Φ : H → `2, which is called the analysis operator,
is given by T ∗

Φf = {〈f, ϕi〉}i∈I . Moreover, SΦ : H → H the frame operator of Φ, is
given by SΦf = TΦT

∗
Φf . If Φ is a frame with frame bounds AΦ and BΦ, then SΦ is

invertible and AΦIH ≤ SΦ ≤ BΦIH, for more details see Subsection 5.1 of [15]. The
sequence Φ̃ = {S−1

Φ ϕi}i∈I , which is also a frame, is called the canonical dual frame. A
frame {ψi}i∈I is called a dual of {ϕi}i∈I if

f =
∑
i∈I

〈f, ψi〉ϕi, (f ∈ H).

Also if Φ = {ϕi}i∈I is a frame, then every dual frame of Φ is of the form of Φd =
{S−1

Φ ϕi + ui}i∈I [19] where {ui}i∈I is a Bessel sequence such that

∑
i∈I

〈f, ϕi〉ui = 0, (f ∈ H).

Throughout the paper, H is a separable Hilbert space, I a countable index set, IH the
identity operator on Hilbert space H and K is a closed range operator in B(H), the set of
all bounded operators on H. Also, we denote the range of K ∈ B(H) by R(K), and the
orthogonal projection of H onto a closed subspace V ⊆ H is denoted by πV . Moreover we
denote Φ = {ϕi}i∈I for a frame with AΦ and BΦ as the lower and upper frame bounds.
Also we use of [m] to denote the set {1, 2, . . . ,m}.

2.2. K-frames
Now, we recall some definitions and primary results of K-frames, which are used in the

present paper. For more information see [4, 21]. Let K ∈ B(H), the set of all bounded
operators on a Hilbert space H. A sequence Φ := {ϕi}∞

i=1 in H is called a K-frame for H

if there exist constants 0 < AΦ ≤ BΦ such that

AΦ‖K∗f‖2 ≤
∑
i∈I

|〈f, ϕi〉|2 ≤ BΦ‖f‖2, (f ∈ H).

Every K-frame Φ = {ϕi}i∈I is a Bessel sequence. Hence TΦ, T ∗
Φ and in particular SΦ

are well-defined. For a Bessel sequence Φ, it is proved that Φ is K-frame if and only if
R(K) ⊆ R(TΦ) [21] where R(K) is the range of the operator K. Because of the higher
generality of K-frames, the associated K-frame operator need not be invertible and if K
has close range, then
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B−1
Φ ‖f‖ ≤ ‖S−1

Φ f‖ ≤ A−1
Φ ‖K†‖2‖f‖, (f ∈ R(K)),

where K† is the pseudo inverse of K, see [15] for more details. More precisely, KK† is the
orthogonal projection on R(K), this easily follows

‖K†‖−1‖Kf‖ ≤ ‖K∗Kf‖, (f ∈ H), (2.1)

i.e., K∗ is bounded below on R(K). Thus, SΦ is invertible on R(K). However, SΦ|R(K) :
R(K) → SΦ(R(K)) is not self-adjoint, in general. More precisely,

(SΦ|R(K))∗ = πR(K)SΦ, ((SΦ|R(K))−1πSΦ(R(K)))∗ = ((SΦ|R(K))−1)∗πR(K), (2.2)

where πR(K) is the orthogonal projection of H onto a closed subspace R(K). Indeed, for
every f, g ∈ H we have

πR(K)SΦ(S−1
Φ )∗f = SΦ(S−1

Φ )∗f = (S−1
Φ SΦ)f = f.

Hence,

(S−1
Φ )∗πR(K)SΦg = (S−1

Φ )∗S∗
Φg = ((SΦS

−1
Φ )∗g = g.

This proves the first equality of (2.2) . Also, for every f, g ∈ H we have〈
f, S−1

Φ πSΦ(R(K))g
〉

=
〈
f, πR(K)S

−1
Φ πSΦ(R(K))g

〉
=
〈
(S−1

Φ )∗πR(K)f, g
〉
.

So, we obtain the second equality in (2.2).
For simply, we denote (SΦ|R(K))−1 by S−1

Φ . Let {ϕi}i∈I be a Bessel sequence. A Bessel
sequence {ψi}i∈I ⊂ H is called a K-dual of {ϕi}i∈I if

Kf =
∑
i∈I

〈f, ψi〉πR(K)ϕi, (f ∈ H). (2.3)

In [4], it is shown that Φ := {ϕi}∞
i=1 and Ψ := {ψi}∞

i=1 in (2.3) are interchangeable if and
only if K is self adjoint [4]. In this case, Φ and Ψ are K-frame and K∗-frame with the
lower bounds B−1

Ψ and B−1
Φ [4]. Let K ∈ B(H) have close range and {ϕi}i∈I be a K-frame

with bounds AΦ and BΦ. Then {K∗S−1
Φ πSΦ(R(K))ϕi}i∈I is a K-dual of {ϕi}i∈I with the

bounds B−1
Φ and BΦA

−1
Φ ‖K‖2‖K†‖2, respectively, [25]. It is called the canonical K-dual

of Φ = {ϕi}i∈I and is denoted by Φ̃ for brevity.
The following theorem describes all K-duals of a K-frame with respect to its canonical

dual.

Theorem 2.1 ([4, 25]). Let K be a bounded linear operator on H with closed range.
Suppose Φ = {ϕi}i∈I is a K-frame. Then Ψ = {ψi}i∈I is K-dual of Φ if and only if

ψi = ϕ̃i + ui, (i ∈ I),

where {ui}i∈I is a Bessel sequence such that∑
i∈I

〈f, ϕi〉πR(K)ui = 0, (f ∈ H). (2.4)

For more information about frames and K-frames and its application in pure math-
ematics and engineering such as image processing, signal processing and sampling see
[2, 5, 6, 10,12–14].
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2.3. Woven frames
Recently a new notion in frame theory has been introduced by Bemrose et al. [11].

This fact help us to decompose elements of a Hilbert space by the partitions of frame
coefficients of at least two frames.

A family of frames {ϕij}i∈I for j ∈ {1, . . . ,m} for a Hilbert space H is said to be woven
[11] if there are universal constants A and B such that for every partition {σj}m

j=1 of
I, the family {ϕij}m

i∈σj ,j=1 is a frame for H with lower and upper frame bounds A and
B, respectively [11]. Each family {ϕij}m

i∈σj ,j=1 is called a weaving. Two frames {ϕi}i∈I

and {ψi}i∈I for Hilbert space H are weakly woven if for every subset σ ⊂ I, the family
{ϕi}i∈σ ∪ {ψi}i∈σc is a frame for H.

One of our aim is to find K-duals of a K-frame Φ which are woven with Φ, see Section
3. Moreover, in Section 4, we prove that the wovenness can be transferred from K-frames
to their K-duals and vise versa. Finally in Section 5, we study the weaving property for
K-Riesz bases. For example, a unique biorthogonal sequence for each K-Riesz basis is
given. Roughly speaking we show that every K-Riesz basis is woven as K-frame with its
canonical dual and two woven K-frames have the same excess.

3. Woven K-frames
In this section, the definition of woven K-frames is introduced. Then some results are

presented in regards to weaving families of vectors. Throughout the rest of the paper for
ease of notation, let [m] = {1, . . . ,m} and [m]c = N\[m] = {m+ 1,m+ 2, . . .} for a given
natural number m.

Definition 3.1. A family of K-frames
{

{ϕij}∞
j=1 : i ∈ [m]

}
for H is said to be woven [17]

if there exist universal positive constants A and B such that for any partition {σi}i∈[m]
of N, the family

⋃
i∈[m]{ϕij}j∈σi is a K-frame for H with the lower and upper K-frame

bounds A and B, respectively. Each family
⋃

i∈[m]{ϕij}j∈σi is called a weaving. A family
of K-frames {{ϕij}∞

j=1 : i ∈ [m]} for H is said to be weakly woven if for any partition
{σi}i∈[m] of N, the family

⋃
i∈[m]{ϕij}j∈σi is a K-frame for H. In fact, the frame bounds

for weakly woven K-frames depend on the partition {σi}i∈[m].

To show two K-frames are woven, due to Proposition 3.1 of [11], we only need to prove
the existence of a universal lower bound. In this section, we continue to study the concept
of woven K-frames and try to find some conditions under which two K-frames are woven.

Theorem 3.2 ([17]). Two K-frames are woven if and only if they are weakly woven.

A strategy to find woven K-frames is that we consider K-frames small enough closed to
each other. We begin with the following result whose proof is similar to Theorem 6.1 of
[11].

Proposition 3.3. Let Φ = {ϕi}i∈I and Ψ = {ψi}i∈I be K-frames for H, there exists
0 < λ < 1 such that

λ (‖TΦ‖ + ‖TΨ‖) ≤ AΦ
2 ‖K†‖−2,

and for every {ai}i∈I ∈ `2 we have∥∥∥∥∥∑
i∈I

ai(ϕi − ψi)
∥∥∥∥∥ ≤ λ‖{ai}‖. (3.1)

Then Φ and Ψ are woven K-frames with the bounds AΦ
2 and BΦ +BΨ.
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Proof. For each σ ⊂ I, denote

T σ
Φ ({ai}i∈I) =

∑
i∈σ

aiϕi,

T σ
Ψ({ai}i∈I) =

∑
i∈σ

aiψi.

By an argument similar to Theorem 6.1 of [11] we see that ‖T σ
Φ‖ ≤ ‖TΦ‖ and ‖T σ

Ψ‖ ≤ ‖TΨ‖.
Moreover by (3.1) we observe that ‖T σ

Φ − T σ
Ψ‖ ≤ ‖TΦ − TΨ‖ < λ. Hence, for every f ∈ H

we have

‖T σ
Φ(T σ

Φ)∗f − T σ
Ψ(T σ

Ψ)∗f‖ ≤ ‖T σ
Φ(T σ

Φ)∗f − T σ
Φ(T σ

Ψ)∗f‖ + ‖T σ
Φ(T σ

Ψ)∗f − T σ
Ψ(T σ

Ψ)∗f‖
≤ ‖T σ

Φ‖ ‖(T σ
Φ)∗ − (T σ

Ψ)∗‖ ‖f‖ + ‖T σ
Φ − T σ

Ψ‖ ‖(T σ
Ψ)∗‖‖f‖

≤ ‖TΦ‖ ‖TΦ − TΨ‖ ‖f‖ + ‖TΦ − TΨ‖ ‖TΨ‖‖f‖

≤ λ (‖TΦ‖ + ‖TΨ‖) ‖f‖ ≤ AΦ
2 ‖K†‖−2.

For each f ∈ H by the last inequality we have∥∥∥∥∥∑
i∈σ

|〈f, ψi〉|2 +
∑
i∈σc

|〈f, ϕi〉|2
∥∥∥∥∥

=
∥∥∥∥∥∑

i∈I

‖〈f, ϕi〉|2 +
(∑

i∈σ

|〈f, ψi〉|2 −
∑
i∈σ

|〈f, ϕi〉|2
)∥∥∥∥∥

≥
∥∥∥∥∥∑

i∈I

|〈f, ϕi〉|2
∥∥∥∥∥−

∥∥∥∥∥∑
i∈σ

|〈f, ψi〉|2 −
∑
i∈σ

|〈f, ϕi〉|2
∥∥∥∥∥

≥ AΦ‖K∗f‖2 − 〈(T σ
Ψ(T σ

Ψ)∗ − T σ
Φ(T σ

Φ)∗) f, f〉

≥ AΦ‖K∗f‖2 − AΦ
2 ‖K†‖−2‖f‖2

≥ AΦ‖K∗f‖2 − AΦ
2 ‖K†‖−2‖K∗f‖2‖K†‖2

= AΦ
2 ‖K∗f‖2.

So, the lower frame bound is AΦ
2 . �

Let H = R3 and {ei}3
i=1 be an orthonormal basis of H. Also, let Ke1 = e1 + e2,Ke2 =

e2,Ke3 = 0. Then K∗e1 = e1,K
∗e2 = e1 + e2,K

∗e3 = 0. So, for Φ = {e1, e2, e3} and
Ψ = {e1, e2,

109
108e3} we have

‖K∗f‖2 = ‖K∗∑ ciei‖2 = ‖c1e1 + c2(e1 + e2)‖2

= |c1 + c2|2 + |c2|2 ≤ 2|c1|2 + 3|c2|2 ≤ 3
3∑

i=1
|ci|2.

Therefore,

1
3‖K∗f‖2 ≤

3∑
i=1

|〈f, ϕi〉|2 =
3∑

i=1
|ci|2 = ‖f‖2.

Hence, Φ and Ψ are two K-frames with frame bounds AΦ = AΨ = 1
3 , BΦ = BΨ = 1. Also,

‖TΦ‖ = ‖TΨ‖ = 1. So if λ ≤ 1
108 , we have

λ (‖TΦ‖ + ‖TΨ‖) < AΦ
2 ‖K†‖−1 = 1

54 .
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Also,

‖
3∑

i=1
ai (ϕi − ψi) ‖ = 1

108 |a3| ≤ λ‖{ai}‖,

which satisfies to the condition of Propositions 3.3.

The following lemma is a generalization of Theorem 3.5 of [24].
Lemma 3.4. Let Φ and Ψ be woven K-frames for Hilbert space H and U ∈ B(H) a with
closed range such that UK = KU . Then

(1) UΦ and UΨ are woven UK-frames for H.
(2) If R(K∗) ⊆ R(U) (for example U is onto), then UΦ and UΨ are woven K-frames

for H.
Proof. Let Φ and Ψ be woven K-frames for H with a lower frame bound A. So for every
σ ⊂ I we have∑

i∈σ

|〈f, Uϕi〉|2 +
∑
i∈σc

|〈f, Uψi〉|2 =
∑
i∈σ

|〈U∗f, ϕi〉|2 +
∑
i∈σc

|〈U∗f, ψi〉|2

≥ A‖K∗U∗f‖2 ≥ A‖(UK)∗f‖2,

and this proves (1). Since U ∈ B(H) is closed range, so U∗ is bounded below on R(U)
and by the assumption we have∑

i∈σ

|〈f, Uϕi〉|2 +
∑
i∈σc

|〈f, Uψi〉|2 =
∑
i∈σ

|〈U∗f, ϕi〉|2 +
∑
i∈σc

|〈U∗f, ψi〉|2

≥ A‖K∗U∗f‖2 ≥ A‖U∗K∗f‖2

≥ A‖(U∗)−1‖−2‖K∗f‖2.

This proves (2). �

Proposition 3.5. Let Φ = {ϕi}∞
i=1 be a K-frame for H and U ∈ B(H) an onto operator

such that UK = KU and
‖ (IH − U∗) f‖ < α‖K∗f‖, (f ∈ H)

where α <
√

AΦ
BΦ

. Then UΦ is a K-frame woven by Φ with the universal lower bound(√
AΦ − α

√
BΦ
)2.

Proof. By the above lemma we can conclude that the condition UK = KU implies that
UΦ = {Uϕi}∞

i=1 is also a K-frame. Since Φ = {ϕi}∞
i=1 is a K-frame, so for every f ∈ H

and σ ⊂ I, a non trivial subset of I, we have(∑
i∈σ

|〈f, ϕi〉|2 +
∑
i∈σc

|〈f, Uϕi〉|2
) 1

2

=
(∑

i∈σ

|〈f, ϕi〉|2 +
∑
i∈σc

|〈f, ϕi〉 − 〈(I − U∗) f, ϕi〉|2
) 1

2

≥
(∑

i∈I

|〈f, ϕi〉|2
) 1

2

−
(∑

i∈σc

|〈(I − U∗) f, ϕi〉|2
) 1

2

≥
√
AΦ‖K∗f‖ −

√
BΦ‖(I − U∗)f‖

≥
√
AΦ‖K∗f‖ −

√
BΦα‖K∗f‖

≥
(√

AΦ − α
√
BΦ
)

‖K∗f‖.

�
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Now we introduce an example that satisfies in condition of Proposition 3.5. Let Ke1 =
e2,Ke2 = e1,Ke3 = 0. Then, K∗e1 = e2,K

∗e2 = e1,K
∗e3 = 0. Also, let U ∈ B(H) as

Ue1 = U∗e1 = 1+
√

2
2 e1, Ue2 = U∗e2 = 1+

√
2

2 e2, Ue3 = U∗e3 = e3. Then Φ = {2e1, e2, e3}
is a K-frame with bounds AΦ = 1, BΦ = 4. Also, for every f ∈ H we have UKf = KUf ,
and

‖K∗f‖2 = ‖c1e2 + c2e1‖2 = |c1|2 + |c2|2,

and

‖(I − U∗)f‖2 = 1
2
(
|c1|2 + |c2|2

)
< α‖K∗f‖ = α

(
|c1|2 + |c2|2 + |c3|2

)
,

which α <
√

AΦ
BΦ

= 1
2 . This gives the condition of the last proposition.

We end this section by discussing an example which shows that the woven property for
K-frames is not transitive, in general.

Example 3.6. Let H = `2(N) and K be the orthogonal projection of H onto {ei}∞
i=2. Con-

sider K-frames Φ = {e1, e2, 0, e3, e4, . . .}, Ψ = {0, e1, e2, e3, e4, . . .} and η = {e1, 0, e2, e3, e4, . . .}
on H where {e1, e2, . . .} is the standard orthonormal basis of H. Then Φ is woven with Ψ
and Ψ is woven with η by the universal bounds A1 = A2 = 1 and B1 = B2 = 2. However,
K-frames Φ and η are not woven. Indeed choose σ = N\{2}, then {ϕi}i∈σ ∪ {ηi}i∈σc =
{e1, 0, 0, e3, e4, . . .} which is not a K-frame.

In order to solve the above problem, we consider a condition on bounds. More precisely,
suppose that {ϕi}i∈I and {ψi}i∈I are woven K-frames by a universal lower bound A1,
and {ψi}i∈I is woven with a K-frame {ηi}i∈I by a universal lower bound A2 such that
A1 +A2 −BΨ > 0. Then for each σ ⊂ I and f ∈ H we obtain

(A1 +A2 −BΨ) ‖ K∗f ‖2 ≤
∑
i∈σ

|〈f, ϕi〉|2 +
∑
i∈σc

|〈f, ψi〉|2 +
∑
i∈σ

|〈f, ψi〉|2

+
∑
i∈σc

|〈f, ηi〉|2 −
∑
i∈I

|〈f, ψi〉|2

=
∑
i∈σ

|〈f, ϕi〉|2 +
∑
i∈σc

|〈f, ηi〉|2

≤ (BΦ +Bη) ‖ f ‖2 .

Hence, {ϕi}i∈I is woven with {ηi}i∈I .

4. Stability of dual Woven K-frames
In this section, we state some stability results for woven K-frames. Given two woven

K-frames. The following questions naturally arise: how can we construct more woven
K-frames and does the duality preserve the wovenness? The next proposition shows that
under some condition, there are infinitely many K-dual of one of them which they are
woven with the image of another one under a bounded operator.

Proposition 4.1. Let K be a self-adjoint operator, also let Φ = {ϕi}i∈I and Ψ = {ψi}i∈I

be woven K-frames for H such that SΦ(R(K)) ⊆ R(K). Then there are infinitely many
K-dual frames of Φ which are woven with K∗S−1

Φ πSΦ(R(K))Ψ.

Proof. By the assumption R(K) is invariant under SΦ, hence

R((S−1
Φ )∗) ⊆ SΦ(R(K)) ⊆ R(K).

Using the fact that K∗ is bounded below on R(K) (see (2.1)), we obtain

‖K†‖−1‖SΦ‖−1‖g‖ ≤
∥∥∥K∗(S−1

Φ )∗g
∥∥∥ , (g ∈ R(K)). (4.1)
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Assume that U = {ui}i∈I is a Bessel sequence satisfying in (2.4). Then∑
i∈I

〈f, ϕi〉πR(K)KK
†πR(K)ui = KK†∑

i∈I

〈f, ϕi〉πR(K)ui = 0, (f ∈ H).

So, Φd
ε = {ϕ̃i + εKK†πR(K)ui}i∈I is also a K-dual frame of Φ by Theorem 2.1. Let ε > 0

be small enough such that

A‖K†‖−1‖SΦ‖−1 − εBU ‖K†‖2 − 2ε
√
BUBΦ‖S−1

Φ ‖‖K†‖ > 0, (4.2)

where A is a universal lower bound of weaving Φ and Ψ . To see K∗S−1
Φ πSΦ(R(K))Ψ and

Φd
ε are woven, we only need to prove the existence of a universal lower bound. Suppose

σ ⊂ I, applying (2.2) and (4.1) we have∑
i∈σ

|〈f,K∗S−1
Φ πSΦ(R(K))Ψ〉|2 +

∑
i∈σc

|〈f,Φd
ε 〉|2

=
∑
i∈σ

|〈(S−1
Φ )∗Kf,ψi〉|2 +

∑
i∈σc

∣∣∣〈(S−1
Φ )∗Kf,ϕi〉 + 〈Kf, εK†πR(K)ui〉

∣∣∣2
≥

∑
i∈σ

|〈(S−1
Φ )∗Kf,ψi〉|2 +

∑
i∈σc

∣∣∣∣∣∣〈(S−1
Φ )∗Kf,ϕi〉

∣∣∣− ∣∣∣〈Kf, εK†πR(K)ui〉
∣∣∣∣∣∣2

≥
∑
i∈σ

|〈(S−1
Φ )∗Kf,ψi〉|2 +

∑
i∈σc

∣∣∣〈(S−1
Φ )∗Kf,ϕi〉

∣∣∣2 −
∑
i∈σc

∣∣∣〈Kf, εK†πR(K)ui〉
∣∣∣2

− 2
∑
i∈σc

∣∣∣〈(S−1
Φ )∗Kf,ϕi〉

∣∣∣ ∣∣∣〈Kf, εK†πR(K)ui〉
∣∣∣

≥ A
∥∥∥K∗(S−1

Φ )∗Kf
∥∥∥2

− εBU ‖K†‖2‖Kf‖2 − 2ε
√
BUBΦ‖S−1

Φ ‖‖K†‖‖Kf‖2

≥
(
A‖K†‖−1‖SΦ‖−1 − εBU ‖K†‖2 − 2ε

√
BUBΦ‖S−1

Φ ‖‖K†‖
)

‖Kf‖2,

So, by (4.2), we obtain infinitely many K-dual frames of Φ which satisfies the desired
condition. This completes the proof. �

Now, we construct a family of woven K-duals from a pair of woven K-frames.

Theorem 4.2. Let K be a self-adjoint operator, Φ = {ϕi}i∈I and Ψ = {ψi}i∈I be woven
K-frames with a universal lower bound A such that SΦ(R(K)) ⊆ R(K) and∥∥∥∥∥∑

i∈I

ci(ϕi − ψi)
∥∥∥∥∥ <

√
A‖K†‖−1‖SΦ‖−1

√
BΨ‖S−1

Φ ‖‖S−1
Ψ ‖

(√
BΨ +

√
BΦ
) ∑

i∈I

|ci|2, (4.3)

for every sequence {ci}i∈I ∈ `2. Then there are infinitely many K-dual frames Φd of Φ
and Ψd of Ψ which are woven K∗-frame.

Proof. By the assumption SΦ : R(K) → SΦ(R(K)) ⊆ R(K) is invertible and (4.1) holds.
Choose arbitrary K-dual frames Φd = {ϕ̃i + ui}i∈I and Ψd = {ψ̃i + vi}i∈I of Φ and Ψ,
respectively such that U = {ui}i∈I and V = {vi}i∈I are Bessel sequences satisfy (2.4). By
using (4.3) we have

‖S−1
Φ − S−1

Ψ ‖ = ‖S−1
Ψ (SΦ − SΨ)S−1

Φ ‖
≤ ‖S−1

Ψ ‖‖S−1
Φ ‖‖SΦ − SΨ‖

≤ ‖S−1
Ψ ‖‖S−1

Φ ‖ ‖TΦT
∗
Φ − TΦT

∗
Ψ + TΦT

∗
Ψ − TΨT

∗
Ψ‖

≤ ‖S−1
Ψ ‖‖S−1

Φ ‖‖TΦ − TΨ‖ (‖TΦ‖ + ‖TΨ‖)

< ‖K†‖−1‖SΦ‖−1

√
A

BΨ
.
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Choose 0 < α < 1 such that

‖S−1
Φ − S−1

Ψ ‖ + α‖K†‖
(√

BU +
√
BV√

BΨ

)
< ‖K†‖−1‖SΦ‖−1

√
A

BΨ
. (4.4)

So, Φd
α = {ϕ̃i + αKK†πR(K)ui}i∈I and Ψd

α = {ψ̃i + αKK†πR(K)vi}i∈I are also K-dual
frames of Φ and Ψ. Hence, by using (4.1) for every σ ⊂ I we have∑

σ

|〈f,Φd
α〉|2 +

∑
σc

|〈f,Ψd
α〉|2

=
∑

σ

|〈f, ϕ̃i + αKK†πR(K)ui〉|2 +
∑
σc

|〈f, ψ̃i + αKK†πR(K)vi〉|2

=
∑

σ

∣∣∣〈(S−1
Φ )∗Kf,ϕi〉 + 〈α(K†)∗K∗f, ui〉

∣∣∣2
+
∑
σc

∣∣∣〈(S−1
Ψ )∗Kf,ψi〉 + 〈α(K†)∗K∗f, vi〉

∣∣∣2
=
∑

σ

∣∣∣〈(S−1
Φ )∗Kf,ϕi〉 + 〈α(K†)∗K∗f, ui〉

∣∣∣2
+
∑
σc

∣∣∣〈(S−1
Φ )∗Kf,ψi〉 + 〈((S−1

Ψ )∗ − (S−1
Φ )∗)Kf,ψi〉 + 〈α(K†)∗K∗f, vi〉

∣∣∣2 .

Thus, using (2.1) follows that(∑
σ

|〈f,Φd
α〉|2 +

∑
σc

|〈f,Ψd
α〉|2

) 1
2

≥
(∑

σ

∣∣∣〈(S−1
Φ )∗Kf,ϕi〉

∣∣∣2 +
∑
σc

∣∣∣〈(S−1
Φ )∗Kf,ψi〉

∣∣∣2) 1
2

−
(∑

σ

∣∣∣〈α(K†)∗K∗f, ui〉
∣∣∣2) 1

2

−
(∑

σc

∣∣∣〈α(K†)∗K∗f, vi〉
∣∣∣2) 1

2

−
(∑

σc

∣∣∣〈((S−1
Ψ )∗ − (S−1

Φ )∗
)
Kf,ψi〉

∣∣∣2) 1
2

≥
√
A‖K∗(S−1

Φ )∗Kf‖ −
(√

BU +
√
BV

)
α‖K†‖‖K∗f‖ −

√
BΨ‖S−1

Ψ − S−1
Φ ‖‖Kf‖

≥
(√

A‖K†‖−1‖SΦ‖−1 − α‖K†‖
(√

BU +
√
BV

)
−
√
BΨ‖S−1

Ψ − S−1
Φ ‖

)
‖Kf‖

=
√
BΨ

(
‖K†‖−1‖SΦ‖−1

√
A

BΨ
− α‖K†‖

(√
BU +

√
BV√

BΨ

)
− ‖S−1

Ψ − S−1
Φ ‖

)
‖Kf‖,

where in last inequality we have used the fact that K is self-adjoint. By attention to (4.4),
K∗-frames Φd and Ψd are woven. �

We introduce an example that satisfies to the condition of the last theorem. Let

ϕi =
{
ei i = 2k
ei
i i = 2k + 1

, ψi =
{
ϕi i = 2k
0 i = 2k + 1

,

and K = πspan{e2k:k∈N}. Then Φ = {ϕi}i∈I and Ψ = {ψi}i∈I are two K-frames with frame
bounds AΦ = BΦ = AΨ = BΨ = 1. Then R(K) = span{e2k : k ∈ N} and SΦ|R(K) with
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SΦf =
∑∞

i=1〈f, e2k〉e2k is the identity operator. Also,

‖
∑
i∈I

ci(ϕi − ψi)‖ = ‖
∑
i∈I

c2k+1
e2k+1
2k + 1‖ =

∑
i∈I

|c2k+1|2

|2k + 1|2
<

1
2
∑
i∈I

|ci|2

=
√
A‖K†‖−1‖SΦ‖−1

√
BΨ‖S−1

Φ ‖‖S−1
Ψ ‖

(√
BΨ +

√
BΦ
) ∑

i∈I

|ci|2,

which is satisfied in the condition of Theorem 4.2.

Corollary 4.3. Let K be a self-adjoint operator and Φ, Ψ be woven K-frames with a
universal lower bound A such that SΦ(R(K)) ⊆ R(K) and

‖S−1
Φ − S−1

Ψ ‖ < ‖K†‖−1‖SΦ‖−1

√
A

BΨ
.

Then Φ̃ and Ψ̃ are woven K∗-frames.

In next theorem we check out under some condition the converse of the previous result
holds.

Theorem 4.4. Let K be a self-adjoint operator and Φ = {ϕi}i∈I and Ψ = {ψi}i∈I be
K-frames. If Φ̃ and Ψ̃ are woven K∗-frames with a universal lower bound A such that
SΦ(R(K)) ⊆ R(K) and

‖S−1
Φ − S−1

Ψ ‖ ≤
√
A√

BΨ‖K†‖‖K‖‖S−1
Φ ‖‖SΦ‖

. (4.5)

Then Φ and Ψ are woven K-frames on R(K).

Proof. Applying (2.1) easily shows that

‖K∗f‖
‖S−1

Φ ‖‖K‖
≤ ‖f‖

‖S−1
Φ ‖

≤ ‖S∗
Φf‖ ≤ ‖SΦ‖‖K†‖‖K∗f‖, (4.6)

for all f ∈ R(K). Now for every σ ⊂ I we have

∑
σ

|〈f, ϕi〉|2 +
∑
σc

|〈f, ψi〉|2

=
∑

σ

|〈(S−1
Φ )∗KK†S∗

Φf, ϕi〉|2 +
∑
σc

|〈(S−1
Φ )∗KK†S∗

Φf, ψi〉|2

=
∑

σ

|〈K†S∗
Φf, ϕ̃i〉|2 +

∑
σc

∣∣∣〈K†S∗
Φf,K

∗S−1
Φ πR(K)ψi〉

∣∣∣2
=
∑

σ

∣∣〈K†S∗
Φf, ϕ̃i〉〉

∣∣2
+
∑
σc

∣∣〈(S−1
Ψ )∗KK†S∗

Φf +
(
(S−1

Φ )∗ − (S−1
Ψ )∗

)
KK†S∗

Φf, ψi〉
∣∣2.
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By using (4.6) we obtain∑
σ

|〈f, ϕi〉|2 +
∑
σc

|〈f, ψi〉|2

=
∑

σ

∣∣〈K†S∗
Φf, ϕ̃i〉

∣∣2 +
∑
σc

∣∣〈K†S∗
Φf, ψ̃i〉 + 〈

(
(S−1

Φ )∗ − (S−1
Ψ )∗

)
KK†S∗

Φf, ψi〉
∣∣2

≥
[(∑

σ

∣∣〈K†S∗
Φf, ϕ̃i〉

∣∣2 +
∑
σc

∣∣〈K†S∗
Φf, ψ̃i〉

∣∣2) 1
2

−
(∑

σc

∣∣〈((S−1
Φ )∗ − (S−1

Ψ )∗
)
S∗

Φf, ψi〉
∣∣2) 1

2
]2

≥
(√

A‖KK†S∗
Φf‖ −

√
BΨ‖S−1

Φ − S−1
Ψ ‖‖S∗

Φf‖
)2

≥
(√

A‖S∗
Φf‖ −

√
BΨ‖S−1

Φ − S−1
Ψ ‖‖K†‖‖SΦ‖‖K∗f‖

)2

≥
(√

A‖S−1
Φ ‖−1‖K‖−1 −

√
BΨ‖K†‖‖SΦ‖ ‖ S−1

Φ − S−1
Ψ ‖

)2
‖K∗f‖2.

This completes the proof by using (4.5). �

Notice that the condition SΦ(R(K)) ⊆ R(K) in the above results can be reduced to the
condition K∗ is bounded below on SΦ(R(K)).

5. Weaving and excess
In this section we are focused on discussing the relation between weaving and the excess

of K-frames. The following proposition plays a key role in this respect. First, we recall
the definition of K-Riesz bases.
Definition 5.1. A family Φ = {ϕi}i∈I is called a K-Riesz sequence for H if there exists
an injective bounded operator U : H → H such that {πR(K)ϕi}i∈I = {Uei}i∈I , where
{ei}i∈I is an orthonormal basis for H [26]. In addition, if Φ is a K-frame, then Φ is called
a K-Riesz basis. A family Φ = {ϕi}i∈I is called near K-Riesz basis for H if there exists a
finite set σ for which {ϕi}i/∈σ is a K-Riesz basis for H.
Proposition 5.2 ([26]). Let {ϕi}i∈I be a Bessel sequence in H. The following are equiv-
alent:

(1) {ϕi}i∈I is K-Riesz sequence for H.
(2) {πR(K)ϕi}i∈I is a Riesz sequence.
(3) {πR(K)ϕi}i∈I is ω-independent.

Moreover, let {ϕi}i∈I be a K-frame. Then {ϕi}i∈I is K-Riesz basis if and only if {πR(K)ϕi}i∈I

is ω-independent.
The following proposition shows that associated to each K-frame there exists an ordinary

frame sequence. Applying this fact we obtain a pair of woven frames from woven K-frames.
Proposition 5.3. Let Φ = {ϕi}i∈I and Ψ = {ψi}i∈I be woven K-frames such that
span{ϕi}i∈I = span{ψi}i∈I . Then {πR(K)ϕi}i∈I and {πR(K)ψi}i∈I are woven frames on
πR(K)span{ϕi}i∈I .

Proof. Applying (2.1), for every f ∈ R(K) we have
AΦ‖K†‖−1‖f‖2 ≤ AΦ‖K∗f‖2

≤
∑
i∈I

|〈f, ϕi〉|2

=
∑
i∈I

|〈πR(K)f, ϕi〉|2 =
∑
i∈I

|〈f, πR(K)ϕi〉|2.
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Hence, {πR(K)ϕi}i∈I and {πR(K)ψi}i∈I are frames on the Hilbert space
M := πR(K)span{ϕi}i∈I ⊂ R(K).

Moreover, for every σ ⊂ I and f ∈ M we have

A‖K†‖−1‖f‖2 ≤ A‖K∗f‖2 ≤
∑
i∈σ

|〈f, ϕi〉|2 +
∑
i∈σc

|〈f, ψi〉|2

=
∑
i∈σ

|〈πR(K)f, ϕi〉|2 +
∑
i∈σc

|〈πR(K)f, ψi〉|2

=
∑
i∈σ

|〈f, πR(K)ϕi〉|2 +
∑
i∈σc

|〈f, πR(K)ψi〉|2,

where A is a universal lower bound for weaving Φ and Ψ. This completes the proof. �

It is well known that a Riesz basis has a unique biorthogonal sequence, see [15]. In the
following we prove this fact for K-Riesz bases.

Theorem 5.4. Let Φ = {ϕi}i∈I be a K-Riesz basis. Then {K†πR(K)ϕi}i∈I is the unique
biorthogonal sequence of {ϕ̃i}i∈I in R(K†).

Proof. By using (2.3) for f = K†πR(K)ϕj we obtain

πR(K)ϕj = KK†πR(K)ϕj =
∑
i∈I

〈K†πR(K)ϕj , ϕ̃i〉πR(K)ϕi.

Applying Proposition 5.2 follows that {πR(K)ϕi}i∈I is ω-independent. Hence,

〈K†πR(K)ϕj , ϕ̃i〉 = δi,j =
{

1, i = j,

0, i 6= j.

Now, suppose that Ψ = {ψi}i∈I ⊆ R(K†) is another biorthogonal sequence, then for
every f ∈ H we have

〈f, πR(K)ϕj〉 = 〈f,KK†πR(K)ϕj〉
= 〈K∗f,K†πR(K)ϕj〉

=
〈∑

i∈I

〈f, πR(K)ϕi〉ϕ̃i,K
†πR(K)ϕj

〉

=
∑
i∈I

〈
f, πR(K)ϕi

〉〈
ϕ̃i,K

†πR(K)ϕj

〉
=

∑
i∈I

〈
f, πR(K)ϕi

〉〈
ψi,K

†πR(K)ϕj

〉
.

Thus, by (2.3) we obtain

K∗f =
∑
j∈I

〈
f, πR(K)ϕj

〉
ϕ̃j

=
∑
j∈I

∑
i∈I

〈
f, πR(K)ϕi

〉〈
ψi,K

†πR(K)ϕj

〉
ϕ̃j

=
∑
i∈I

〈
f, πR(K)ϕi

〉∑
j∈I

〈
(K†)∗ψi, πR(K)ϕj

〉
ϕ̃j

=
∑
i∈I

〈
f, πR(K)ϕi

〉
K∗(K†)∗ψi =

∑
i∈I

〈
f, πR(K)ϕi

〉
ψi.

Therefore, Ψ is also a K-dual of Φ. On the other hand, every K-Riesz basis has a unique
K-dual, see Proposition 2.5 of [26]. Hence, ψi = K†πR(K)ϕi, for all i ∈ I. �
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As a consequence, by attention to Theorem 3.5 of [3], we obtain the following result.
Corollary 5.5. Let Φ = {ϕi}i∈I be a K-Riesz basis for H. Then

(1) {πR(K)ϕi}i∈I and {S−1
Φ πSΦ(R(K))ϕi}i∈I are woven frame on πR(K)span{ϕi}i∈I .

(2) {ϕi}i∈I and {S−1
Φ πSΦ(R(K))ϕi}i∈I are woven frames on R(K).

(3) {K†πR(K)ϕi}i∈I and {ϕ̃i}i∈I are woven K∗-frames.
The excess of a K-frame Φ, denoted by EK(Φ), is the greatest integer n so that n

elements can be deleted from the K-frame and still leave a K-frame, or +∞ if there
is no upper bound to the number of elements that can be removed. Every K-frame
Φ = {ϕi}i∈I with EK(Φ) = n can be written as Φ = {ϕi}i∈I\{i1,...in} ∪{ϕi1 , . . . ϕin}, where
{ϕi}i∈I\{i1,...in} is a K-Riesz basis for H and {ϕi1 , . . . ϕin} are redundant elements of Φ.
If K = IH, then Φ is a frame and EK(Φ), denoted by E(Φ), coincides with the usual
definition of excess of frames [8]. Dual frames and woven frames have the same excess
[1, 8].

The next lemma follows immediately from Theorem 5.4 of [11].
Lemma 5.6. Let Φ = {ϕi}i∈I be a Riesz sequence and Ψ = {ψi}i∈I be a frame sequence
such that span{ϕi}i∈I = span{ψi}i∈I . If Φ and Ψ are woven frames, then Ψ is also a
Riesz sequence.
Proposition 5.7. Let K be a closed range operator on a Hilbert space H, Φ = {ϕi}i∈I be
a K-Riesz sequence and Ψ = {ψi}i∈I be a K-frame for H. If Φ and Ψ are woven K-frames
such that span{ϕi}i∈I = span{ψi}i∈I , then Ψ must actually be a K-Riesz sequence.
Proof. Using Proposition 5.3 follows that {πR(K)ϕi}i∈I and {πR(K)ψi}i∈I are woven
frames on πR(K)span{ϕi}i∈I . On the other hand, {πR(K)ϕi}i∈I is a Riesz-sequence by
Proposition 5.2. Applying Lemma 5.6 gives that {πR(K)ψi}i∈I is a Riesz sequence. Using
again Proposition 5.2, follows that {ψi}i∈I is also a K-Riesz sequence. �

We are now ready to discuss the excess of K-frames.

Theorem 5.8. Let Φ = {ϕi}i∈I be a K-Riesz basis. Then dim
(
ker(πR(K)TΦ)

)
< ∞. In

fact, ker
(
πR(K)TΦ

)
is finite dimensional if and only if {ϕi}i∈I is near K-Riesz sequence.

Proof. Assume that {ϕi}i∈I is a K-Riesz basis, then {πR(K)ϕi}i∈I is a Riesz sequence
by Proposition 5.2. In [15], it is introduced that if {ϕi}i∈I is a Riesz sequence such
that

∑∞
i=1 aiϕi is convergent then {ai}∞

i=1 ∈ `2(N). So, if
∑∞

i=1 aiπR(K)ϕi is convergent
then {ai}∞

i=1 ∈ `2(N). Hence, by Theorem 2.3 of [22], it follows that ker
(
πR(K)TΦ

)
=

ker
(
TπR(K)Φ

)
must be finite dimensional. For the second part, let ker

(
TπR(K)Φ

)
be

finite dimensional. Then {πR(K)ϕi}i∈I is near Riesz basis by Theorem 2.4 of [22] and
so {ϕi}i∈I is near K-Riesz sequence by Proposition 5.2. Conversely, suppose that {ϕi}i∈I

is near K-Riesz sequence for H. So there is a finite set σ for which {ϕi}i/∈σ is a K-Riesz
sequence for H. Hence, by Proposition 5.2, {πR(K)ϕi}i/∈σ is a Riesz sequence and so
dim

(
ker(πR(K)TΦ)

)
< ∞ by Theorem 2.4 of [22]. �

As a consequence, we obtain the following result.
Theorem 5.9. Let Φ = {ϕi}i∈I be a near K-Riesz basis. The following are equivalent:

(1) ker(πR(K)TΦ) is finite dimensional.
(2) E(πR(K)Φ) < ∞.
(3) EK(Φ) < ∞.

Moreover, for a K-frame Φ we have

EK(Φ) = dim
(
ker

(
πR(K)TΦ

))
= E(πR(K)Φ). (5.1)
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Proof. (1) and (2) are equivalent by Theorem 5.8 and Proposition 5.2. Now suppose that
EK(Φ) < ∞. Similar the given argument in Theorem 5.8 we obtain EK(Φ) = E(πR(K)Φ).
Now applying Theorem 3.1 of [22] follows that

EK(Φ) = E(πR(K)Φ) = dim(ker(TπR(K)Φ)) = dim
(
ker(πR(K)TΦ)

)
.

Moreover, if EK(Φ) = ∞ and E(πR(K)Φ) < ∞, then there exists a finite set σ ⊂ I
such that {πR(K)ϕi}i/∈σ is a Riesz sequence. Using Proposition 5.2 follows that {ϕi}i/∈σ

is a K-Riesz sequence. In particular, EK(Φ) ≤ cardσ < ∞ which is contradiction. So,
E(πR(K)Φ) = ∞. In addition, by Lemma 4.1 of [8], we have

dim
(
ker

(
πR(K)TΦ

))
= dim

(
kerTπR(K)Φ

)
≥ E

(
πR(K)Φ

)
= ∞.

The proof of other parts are similar. �

Corollary 5.10. Let Φ = {ϕi}i∈I and Ψ = {ψi}i∈I be woven K-frames such that span{ϕi}i∈I =
span{ψi}i∈I . Then EK(Φ) = EK(Ψ).

Proof. Since Φ and Ψ are woven K-frames and span{ϕi}i∈I = span{ψi}i∈I then {πR(k)ϕi}i∈I

and {πR(k)ψi}i∈I are wove frames on πR(k)span{ϕi}i∈I by Corollary 5.3. So, by using The-
orem 3.1 of [1] and equation (5.1) we obtain

EK(Φ) = E
(
πR(K)Φ

)
= E

(
πR(K)Ψ

)
= EK(Ψ). (5.2)

�

Let Φ be a frame on H and U ∈ B(H) be an onto operator. Then UΦ is also a frame
on H. It is easy to see that E(Φ) = E(UΦ) if and only if U is also injective. Combining
our results with the fact that UπR(K) = πR(K)U if and only if R(K) and (R(K))⊥ are
invariant under U. We state this result for K-frames as following:

Corollary 5.11. Let Φ be a K-frame and U ∈ B(H) be an onto operator such that
UK = KU . Then UΦ is also a K-frame. Moreover assume that (R(K))⊥ is invariant
under U. Then EK(Φ) = E(UπR(K)Φ) = EK(UΦ) if and only if U is also an injective
operator.
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