

RESEARCH ARTICLE

New aspects of weaving K-frames: the excess and duality

Elahe Agheshteh Moghaddam[�](https://orcid.org/0000-0002-5058-3377), Ali Akbar Arefijamaal[∗](#page-0-0)[�](https://orcid.org/0000-0003-2153-352X)

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran

Abstract

Weaving frames in separable Hilbert spaces have been recently introduced by Bemrose et al. to deal with some problems in distributed signal processing and wireless sensor networks. Likewise weaving K-frames have been proved to be useful during signal reconstructions from the range of a bounded linear operator K. In this paper, we study the notion of weaving and its connection to the duality of K-frames and construct several pairs of woven K-frames. Also, we find a unique biorthogonal sequence for every K-Riesz basis and obtain a *K*[∗] -frame which is woven by its canonical dual. Moreover, we describe the excess for K-frames and prove that any two woven K-frames in a separable Hilbert space have the same excess. Finally, we introduce the necessary and sufficient condition under which a K-frame and its image under an invertible operator have the same excess.

Mathematics Subject Classification (2020). 42C15, 42C40

K[e](#page-0-1)ywords. frames, dual frames, Riesz bases, woven frames, excess of frames, K-frames

1. Introduction and motivation

Frame theory has been converted as a useful tools in order to solve many problems from signal and image processing to differential equation and so on $[9, 12, 16, 18]$ $[9, 12, 16, 18]$ $[9, 12, 16, 18]$ $[9, 12, 16, 18]$ $[9, 12, 16, 18]$ $[9, 12, 16, 18]$ $[9, 12, 16, 18]$.

The notion of K-frames has been introduced by *Gavrua* [\[28\]](#page-14-3) to study the atomic system with respect to a bounded linear operator K in a separable Hilbert space \mathcal{H} . There exist many differences between frames and K-frames. Indeed, K-frames are more general than ordinary frames in the sense that the lower frame bound only holds for the elements in the range of K. Also, a K-frame is the image of an orthonormal basis under a bounded linear operator K, whereas a frame is the image of an orthonormal basis under a bounded linear surjection [\[28\]](#page-14-3).

Traditionally, frame coefficients of a given frame have been used to represent every element of underlying Hilbert space as a linear combination of the frame elements. The concept of woven frames, which is motivated by some problems in signal processing [\[11\]](#page-14-4), is used to write this linear combination by at least two frames. See [\[7,](#page-13-1) [17,](#page-14-5) [20,](#page-14-6) [23,](#page-14-7) [27,](#page-14-8) [29\]](#page-14-9) for more results on *K*-frames and weaving. Study and analysis of woven K-frames is the main purpose of this article. Motivation of this work is study the dual of K-frames.

[∗]Corresponding Author.

Email addresses: elahe.moghadam@gmail.com (E. A. Moghaddam), arefijamaal@hsu.ac.ir (A. Arefijamaal)

Received: 12.10.2021; Accepted: 06.07.2023

2. Preliminaries and notations

2.1. Discrete frames

A sequence $\Phi = {\varphi_i}_{i \in I}$ in a separable Hilbert space $\mathcal H$ is called a *frame* for $\mathcal H$ if there exist constants $0 < A_{\Phi} \leq B_{\Phi} < \infty$ such that

$$
A_{\Phi}||f||^2 \leq \sum_{i \in I} |\langle f, \varphi_i \rangle|^2 \leq B_{\Phi}||f||^2, \qquad (f \in \mathcal{H}).
$$

The constants A_{Φ} and B_{Φ} are called lower and upper frame bounds, respectively. If just the right inequality in the above holds, then Φ is called a *Bessel* sequence. A sequence $\Phi = {\varphi_i}_{i \in I}$ in a Hilbert space $\mathcal H$ is called a *Riesz sequence* if there are constants $0 <$ $A_{\Phi} \leq B_{\Phi} < \infty$ such that for every sequence $\{c_i\}_{i \in I} \in \ell^2$ we have

$$
A_{\Phi} \sum_{i \in I} |c_i|^2 \le ||\sum_{i \in I} c_i \varphi_i||^2 \le B_{\Phi} \sum_{i \in I} |c_i|^2.
$$

The constants A_{Φ} and B_{Φ} are called lower and upper Riesz bounds, respectively. A subset *A* subset $\mathcal H$ is called *complete* whenever $\langle y, x \rangle = 0$ for all $x \in A$ implies that $y = 0$. In addition, if Φ is complete in H, then it is called a *Riesz basis* for H.

Given a Bessel sequence $\Phi = {\varphi_i}_{i \in I}$, the *synthesis operator* $T_{\Phi}: \ell^2 \to \mathcal{H}$ is defined by $T_{\Phi}\{c_i\} = \sum_{i \in I} c_i \varphi_i$. Its adjoint, $T_{\Phi}^* : \mathcal{H} \to \ell^2$, which is called the *analysis operator*, is given by $T_{\Phi}^* f = \{ \langle f, \varphi_i \rangle \}_{i \in I}$. Moreover, $S_{\Phi} : \mathcal{H} \to \mathcal{H}$ the *frame operator* of Φ , is given by $S_{\Phi} f = T_{\Phi} T_{\Phi}^* f$. If Φ is a frame with frame bounds A_{Φ} and B_{Φ} , then S_{Φ} is invertible and $A_{\Phi}I_{\mathcal{H}} \leq S_{\Phi} \leq B_{\Phi}I_{\mathcal{H}}$, for more details see Subsection 5.1 of [\[15\]](#page-14-10). The sequence $\tilde{\Phi} = \{S_{\Phi}^{-1} \varphi_i\}_{i \in I}$, which is also a frame, is called the *canonical dual frame*. A frame $\{\psi_i\}_{i \in I}$ is called a *dual* of $\{\varphi_i\}_{i \in I}$ if

$$
f = \sum_{i \in I} \langle f, \psi_i \rangle \varphi_i, \qquad (f \in \mathcal{H}).
$$

Also if $\Phi = {\varphi_i}_{i \in I}$ is a frame, then every dual frame of Φ is of the form of $\Phi^d =$ ${S_{\Phi}^{-1}\varphi_i + u_i}_{i \in I}$ [\[19\]](#page-14-11) where ${u_i}_{i \in I}$ is a Bessel sequence such that

$$
\sum_{i \in I} \langle f, \varphi_i \rangle u_i = 0, \qquad (f \in \mathcal{H}).
$$

Throughout the paper, \mathcal{H} is a separable Hilbert space, *I* a countable index set, $I_{\mathcal{H}}$ the identity operator on Hilbert space H and K is a closed range operator in $B(H)$, the set of all bounded operators on H . Also, we denote the range of $K \in B(H)$ by $R(K)$, and the orthogonal projection of $\mathcal H$ onto a closed subspace $V \subseteq \mathcal H$ is denoted by π_V . Moreover we denote $\Phi = {\varphi_i}_{i \in I}$ for a frame with A_{Φ} and B_{Φ} as the lower and upper frame bounds. Also we use of $[m]$ to denote the set $\{1, 2, \ldots, m\}$.

2.2. K-frames

Now, we recall some definitions and primary results of K-frames, which are used in the present paper. For more information see [\[4,](#page-13-2) [21\]](#page-14-12). Let $K \in B(\mathcal{H})$, the set of all bounded operators on a Hilbert space \mathcal{H} . A sequence $\Phi := \{\varphi_i\}_{i=1}^{\infty}$ in \mathcal{H} is called a *K-frame* for \mathcal{H} if there exist constants $0 < A_{\Phi} \leq B_{\Phi}$ such that

$$
A_{\Phi} ||K^* f||^2 \le \sum_{i \in I} |\langle f, \varphi_i \rangle|^2 \le B_{\Phi} ||f||^2, \qquad (f \in \mathcal{H}).
$$

Every K-frame $\Phi = {\varphi_i}_{i \in I}$ is a Bessel sequence. Hence T_{Φ} , T_{Φ}^* and in particular S_{Φ} are well-defined. For a Bessel sequence Φ , it is proved that Φ is K-frame if and only if $R(K) \subseteq R(T_{\Phi})$ [\[21\]](#page-14-12) where $R(K)$ is the range of the operator *K*. Because of the higher generality of K-frames, the associated K-frame operator need not be invertible and if *K* has close range, then

$$
B_{\Phi}^{-1}||f|| \le ||S_{\Phi}^{-1}f|| \le A_{\Phi}^{-1}||K^{\dagger}||^{2}||f||, \qquad (f \in R(K)),
$$

where K^{\dagger} is the pseudo inverse of K, see [\[15\]](#page-14-10) for more details. More precisely, KK^{\dagger} is the orthogonal projection on $R(K)$, this easily follows

$$
||K^{\dagger}||^{-1}||Kf|| \le ||K^*Kf||, \qquad (f \in \mathcal{H}), \tag{2.1}
$$

i.e., K^* is bounded below on $R(K)$. Thus, S_{Φ} is invertible on $R(K)$. However, $S_{\Phi}|_{R(K)}$: $R(K) \to S_{\Phi}(R(K))$ is not self-adjoint, in general. More precisely,

$$
(S_{\Phi}|_{R(K)})^* = \pi_{R(K)}S_{\Phi}, \quad ((S_{\Phi}|_{R(K)})^{-1}\pi_{S_{\Phi}(R(K))})^* = ((S_{\Phi}|_{R(K)})^{-1})^*\pi_{R(K)}, \tag{2.2}
$$

where $\pi_{R(K)}$ is the orthogonal projection of H onto a closed subspace $R(K)$. Indeed, for every $f, g \in \mathcal{H}$ we have

$$
\pi_{R(K)} S_{\Phi}(S_{\Phi}^{-1})^* f = S_{\Phi}(S_{\Phi}^{-1})^* f = (S_{\Phi}^{-1} S_{\Phi}) f = f.
$$

Hence,

$$
(S_{\Phi}^{-1})^* \pi_{R(K)} S_{\Phi} g = (S_{\Phi}^{-1})^* S_{\Phi}^* g = ((S_{\Phi} S_{\Phi}^{-1})^* g = g.
$$

This proves the first equality of [\(2.2\)](#page-2-0). Also, for every $f, g \in \mathcal{H}$ we have

$$
\left\langle f, S_{\Phi}^{-1} \pi_{S_{\Phi}(R(K))} g \right\rangle = \left\langle f, \pi_{R(K)} S_{\Phi}^{-1} \pi_{S_{\Phi}(R(K))} g \right\rangle = \left\langle (S_{\Phi}^{-1})^* \pi_{R(K)} f, g \right\rangle.
$$

So, we obtain the second equality in [\(2.2\)](#page-2-0).

For simply, we denote $(S_{\Phi}|_{R(K)})^{-1}$ by S_{Φ}^{-1} . Let $\{\varphi_i\}_{i\in I}$ be a Bessel sequence. A Bessel sequence $\{\psi_i\}_{i \in I} \subset \mathcal{H}$ is called a *K-dual* of $\{\varphi_i\}_{i \in I}$ if

$$
Kf = \sum_{i \in I} \langle f, \psi_i \rangle \pi_{R(K)} \varphi_i, \qquad (f \in \mathcal{H}). \tag{2.3}
$$

In [\[4\]](#page-13-2), it is shown that $\Phi := {\varphi_i}_{i=1}^{\infty}$ and $\Psi := {\psi_i}_{i=1}^{\infty}$ in [\(2.3\)](#page-2-1) are interchangeable if and only if K is self adjoint [\[4\]](#page-13-2). In this case, Φ and Ψ are *K*-frame and *K*^{*}-frame with the lower bounds B_{Ψ}^{-1} and B_{Φ}^{-1} [\[4\]](#page-13-2). Let $K \in B(\mathcal{H})$ have close range and $\{\varphi_i\}_{i \in I}$ be a K-frame with bounds A_{Φ} and B_{Φ} . Then $\{K^*S_{\Phi}^{-1}\pi_{S_{\Phi}(R(K))}\varphi_i\}_{i\in I}$ is a K-dual of $\{\varphi_i\}_{i\in I}$ with the bounds B_{Φ}^{-1} and $B_{\Phi}A_{\Phi}^{-1}||K||^2||K^{\dagger}||^2$, respectively, [\[25\]](#page-14-13). It is called the canonical K-dual of $\Phi = {\varphi_i}_{i \in I}$ and is denoted by $\tilde{\Phi}$ for brevity.

The following theorem describes all K-duals of a K-frame with respect to its canonical dual.

Theorem 2.1 ([\[4,](#page-13-2) [25\]](#page-14-13))**.** *Let K be a bounded linear operator on* H *with closed range. Suppose* $\Phi = {\varphi_i}_{i \in I}$ *is a K-frame. Then* $\Psi = {\psi_i}_{i \in I}$ *is K-dual of* Φ *if and only if*

$$
\psi_i = \widetilde{\varphi_i} + u_i, \qquad (i \in I),
$$

where $\{u_i\}_{i \in I}$ *is a Bessel sequence such that*

$$
\sum_{i \in I} \langle f, \varphi_i \rangle \pi_{R(K)} u_i = 0, \qquad (f \in \mathcal{H}). \tag{2.4}
$$

For more information about frames and K-frames and its application in pure mathematics and engineering such as image processing, signal processing and sampling see $[2, 5, 6, 10, 12–14].$ $[2, 5, 6, 10, 12–14].$ $[2, 5, 6, 10, 12–14].$ $[2, 5, 6, 10, 12–14].$ $[2, 5, 6, 10, 12–14].$ $[2, 5, 6, 10, 12–14].$ $[2, 5, 6, 10, 12–14].$ $[2, 5, 6, 10, 12–14].$ $[2, 5, 6, 10, 12–14].$ $[2, 5, 6, 10, 12–14].$ $[2, 5, 6, 10, 12–14].$

2.3. Woven frames

Recently a new notion in frame theory has been introduced by Bemrose et al. [\[11\]](#page-14-4). This fact help us to decompose elements of a Hilbert space by the partitions of frame coefficients of at least two frames.

A family of frames $\{\varphi_{ij}\}_{i\in I}$ for $j \in \{1,\ldots,m\}$ for a Hilbert space $\mathcal H$ is said to be *woven* [\[11\]](#page-14-4) if there are universal constants *A* and *B* such that for every partition $\{\sigma_j\}_{j=1}^m$ of *I*, the family $\{\varphi_{ij}\}_{i\in\sigma_j,j=1}^m$ is a frame for H with lower and upper frame bounds *A* and *B*, respectively [\[11\]](#page-14-4). Each family $\{\varphi_{ij}\}_{i \in \sigma_j, j=1}^m$ is called a *weaving*. Two frames $\{\varphi_i\}_{i \in I}$ and $\{\psi_i\}_{i\in I}$ for Hilbert space $\mathcal H$ are *weakly woven* if for every subset $\sigma \subset I$, the family $\{\varphi_i\}_{i \in \sigma} \cup \{\psi_i\}_{i \in \sigma^c}$ is a frame for \mathfrak{H} .

One of our aim is to find K-duals of a K-frame Φ which are woven with Φ , see Section 3. Moreover, in Section 4, we prove that the wovenness can be transferred from K-frames to their K-duals and vise versa. Finally in Section 5, we study the weaving property for K-Riesz bases. For example, a unique biorthogonal sequence for each K-Riesz basis is given. Roughly speaking we show that every K-Riesz basis is woven as K-frame with its canonical dual and two woven K-frames have the same excess.

3. Woven K-frames

In this section, the definition of woven K-frames is introduced. Then some results are presented in regards to weaving families of vectors. Throughout the rest of the paper for ease of notation, let $[m] = \{1, \ldots, m\}$ and $[m]^c = N\backslash [m] = \{m+1, m+2, \ldots\}$ for a given natural number m.

Definition 3.1. A family of K-frames $\{\{\varphi_{ij}\}_{j=1}^{\infty} : i \in [m]\}$ for \mathcal{H} is said to be *woven* [\[17\]](#page-14-5) if there exist universal positive constants A and B such that for any partition $\{\sigma_i\}_{i\in[m]}$ of N, the family $\bigcup_{i\in[m]}\{\varphi_{ij}\}_{j\in\sigma_i}$ is a K-frame for H with the lower and upper K-frame bounds A and B, respectively. Each family $\bigcup_{i\in[m]} \{\varphi_{ij}\}_{j\in\sigma_i}$ is called a *weaving*. A family of *K*-frames $\{\{\varphi_{ij}\}_{j=1}^{\infty}: i \in [m]\}$ for H is said to be *weakly woven* if for any partition ${\{\sigma_i\}}_{i \in [m]}$ of N, the family $\bigcup_{i \in [m]} {\{\varphi_{ij}\}}_{j \in \sigma_i}$ is a K-frame for H. In fact, the frame bounds for weakly woven K-frames depend on the partition $\{\sigma_i\}_{i \in [m]}$.

To show two K-frames are woven, due to Proposition 3.1 of [\[11\]](#page-14-4), we only need to prove the existence of a universal lower bound. In this section, we continue to study the concept of woven K-frames and try to find some conditions under which two K-frames are woven.

Theorem 3.2 ([\[17\]](#page-14-5))**.** *Two K-frames are woven if and only if they are weakly woven.*

A strategy to find woven K-frames is that we consider K-frames small enough closed to each other. We begin with the following result whose proof is similar to Theorem 6.1 of [\[11\]](#page-14-4).

Proposition 3.3. Let $\Phi = {\varphi_i}_{i \in I}$ and $\Psi = {\psi_i}_{i \in I}$ be K-frames for H , there exists $0 < \lambda < 1$ *such that*

$$
\lambda (\|T_{\Phi}\| + \|T_{\Psi}\|) \le \frac{A_{\Phi}}{2} \|K^{\dagger}\|^{-2},
$$

and for every $\{a_i\}_{i \in I} \in \ell^2$ *we have*

$$
\left\| \sum_{i \in I} a_i (\varphi_i - \psi_i) \right\| \leq \lambda \| \{a_i\} \|.
$$
\n(3.1)

Then Φ *and* Ψ *are woven K*-*frames with the bounds* $\frac{A_{\Phi}}{2}$ *and* $B_{\Phi} + B_{\Psi}$ *.*

Proof. For each $\sigma \subset I$, denote

$$
T_{\Phi}^{\sigma}(\{a_i\}_{i \in I}) = \sum_{i \in \sigma} a_i \varphi_i,
$$

$$
T_{\Psi}^{\sigma}(\{a_i\}_{i \in I}) = \sum_{i \in \sigma} a_i \psi_i.
$$

By an argument similar to Theorem 6.1 of [\[11\]](#page-14-4) we see that $||T^{\sigma}_{\Phi}|| \le ||T_{\Phi}||$ and $||T^{\sigma}_{\Psi}|| \le ||T_{\Psi}||$. Moreover by (3.[1\)](#page-3-0) we observe that $||T^{\sigma}_{\Phi} - T^{\sigma}_{\Psi}|| \le ||T_{\Phi} - T_{\Psi}|| < \lambda$. Hence, for every $f \in \mathcal{H}$ we have

$$
\begin{array}{rcl} \|T^{\sigma}_{\Phi}(T^{\sigma}_{\Phi})^{*}f-T^{\sigma}_{\Psi}(T^{\sigma}_{\Psi})^{*}f\| & \leq & \|T^{\sigma}_{\Phi}(T^{\sigma}_{\Phi})^{*}f-T^{\sigma}_{\Phi}(T^{\sigma}_{\Psi})^{*}f\| + \|T^{\sigma}_{\Phi}(T^{\sigma}_{\Psi})^{*}f-T^{\sigma}_{\Psi}(T^{\sigma}_{\Psi})^{*}f\| \\ & \leq & \|T^{\sigma}_{\Phi}\| \, \|(T^{\sigma}_{\Phi})^{*}- (T^{\sigma}_{\Psi})^{*}\| \, \|f\| + \|T^{\sigma}_{\Phi}-T^{\sigma}_{\Psi}\| \, \|(T^{\sigma}_{\Psi})^{*}\| \|f\| \\ & \leq & \|T_{\Phi}\| \, \|T_{\Phi}-T_{\Psi}\| \, \|f\| + \|T_{\Phi}-T_{\Psi}\| \, \|T_{\Psi}\| \|f\| \\ & \leq & \lambda \left(\|T_{\Phi}\| + \|T_{\Psi}\| \right) \|f\| \leq \frac{A_{\Phi}}{2} \|K^{\dagger}\|^{-2} .\end{array}
$$

For each $f \in \mathcal{H}$ by the last inequality we have

$$
\left\| \sum_{i \in \sigma} |\langle f, \psi_i \rangle|^2 + \sum_{i \in \sigma^c} |\langle f, \varphi_i \rangle|^2 \right\|
$$
\n
$$
= \left\| \sum_{i \in I} ||\langle f, \varphi_i \rangle|^2 + \left(\sum_{i \in \sigma} |\langle f, \psi_i \rangle|^2 - \sum_{i \in \sigma} |\langle f, \varphi_i \rangle|^2 \right) \right\|
$$
\n
$$
\geq \left\| \sum_{i \in I} |\langle f, \varphi_i \rangle|^2 \right\| - \left\| \sum_{i \in \sigma} |\langle f, \psi_i \rangle|^2 - \sum_{i \in \sigma} |\langle f, \varphi_i \rangle|^2 \right\|
$$
\n
$$
\geq A_{\Phi} \| K^* f \|^2 - \left\langle (T^{\sigma}_{\Psi}(T^{\sigma}_{\Psi})^* - T^{\sigma}_{\Phi}(T^{\sigma}_{\Phi})^*) f, f \right\rangle
$$
\n
$$
\geq A_{\Phi} \| K^* f \|^2 - \frac{A_{\Phi}}{2} \| K^{\dagger} \|^{-2} \| f \|^2
$$
\n
$$
\geq A_{\Phi} \| K^* f \|^2 - \frac{A_{\Phi}}{2} \| K^{\dagger} \|^{-2} \| K^* f \|^2 \| K^{\dagger} \|^2
$$
\n
$$
= \frac{A_{\Phi}}{2} \| K^* f \|^2.
$$

So, the lower frame bound is $\frac{A_{\Phi}}{2}$.

Let $\mathcal{H} = \mathbb{R}^3$ and $\{e_i\}_{i=1}^3$ be an orthonormal basis of \mathcal{H} . Also, let $Ke_1 = e_1 + e_2, Ke_2 =$ $e_2, Ke_3 = 0$. Then $K^*e_1 = e_1, K^*e_2 = e_1 + e_2, K^*e_3 = 0$. So, for $\Phi = \{e_1, e_2, e_3\}$ and $\Psi = \{e_1, e_2, \frac{109}{108}e_3\}$ we have

$$
||K^*f||^2 = ||K^* \sum c_i e_i||^2 = ||c_1 e_1 + c_2(e_1 + e_2)||^2
$$

=
$$
|c_1 + c_2|^2 + |c_2|^2 \le 2|c_1|^2 + 3|c_2|^2 \le 3 \sum_{i=1}^3 |c_i|^2.
$$

Therefore,

$$
\frac{1}{3}||K^*f||^2 \le \sum_{i=1}^3 |\langle f, \varphi_i \rangle|^2 = \sum_{i=1}^3 |c_i|^2 = ||f||^2.
$$

Hence, Φ and Ψ are two K-frames with frame bounds $A_{\Phi} = A_{\Psi} = \frac{1}{3}$ $\frac{1}{3}$, $B_{\Phi} = B_{\Psi} = 1$. Also, $||T_{\Phi}|| = ||T_{\Psi}|| = 1$. So if $\lambda \leq \frac{1}{108}$, we have

$$
\lambda \left(\|T_{\Phi}\| + \|T_{\Psi}\| \right) < \frac{A_{\Phi}}{2} \|K^{\dagger}\|^{-1} = \frac{1}{54}.
$$

Also,

$$
\|\sum_{i=1}^3 a_i (\varphi_i - \psi_i)\| = \frac{1}{108} |a_3| \le \lambda \|\{a_i\}\|,
$$

which satisfies to the condition of Propositions 3.3.

The following lemma is a generalization of Theorem 3.5 of [\[24\]](#page-14-16).

Lemma 3.4. *Let* Φ *and* Ψ *be woven K-frames for Hilbert space* \mathcal{H} *and* $U \in B(\mathcal{H})$ *a with closed range such that UK* = *KU. Then*

- (1) $U\Phi$ *and* $U\Psi$ *are woven* UK *-frames for* H *.*
- $P(E)$ *If* $R(K^*) \subseteq R(U)$ (for example *U is onto), then* $U\Phi$ *and* $U\Psi$ *are woven K*-frames *for* H*.*

Proof. Let Φ and Ψ be woven K-frames for \mathcal{H} with a lower frame bound A. So for every $\sigma \subset I$ we have

$$
\sum_{i \in \sigma} |\langle f, U\varphi_i \rangle|^2 + \sum_{i \in \sigma^c} |\langle f, U\psi_i \rangle|^2 = \sum_{i \in \sigma} |\langle U^* f, \varphi_i \rangle|^2 + \sum_{i \in \sigma^c} |\langle U^* f, \psi_i \rangle|^2
$$

$$
\geq A \| K^* U^* f \|^2 \geq A \| (U K)^* f \|^2,
$$

and this proves (1). Since $U \in B(\mathcal{H})$ is closed range, so U^* is bounded below on $R(U)$ and by the assumption we have

$$
\sum_{i \in \sigma} |\langle f, U\varphi_i \rangle|^2 + \sum_{i \in \sigma^c} |\langle f, U\psi_i \rangle|^2 = \sum_{i \in \sigma} |\langle U^* f, \varphi_i \rangle|^2 + \sum_{i \in \sigma^c} |\langle U^* f, \psi_i \rangle|^2
$$

\n
$$
\geq A \| K^* U^* f \| ^2 \geq A \| U^* K^* f \| ^2
$$

\n
$$
\geq A \| (U^*)^{-1} \|^{-2} \| K^* f \| ^2.
$$

This proves (2) .

Proposition 3.5. *Let* $\Phi = {\varphi_i}_{i=1}^{\infty}$ *be a K-frame for* \mathcal{H} *and* $U \in B(\mathcal{H})$ *an onto operator such that* $UK = KU$ *and*

$$
\| (I_{\mathcal{H}} - U^*) f \| < \alpha \| K^* f \|, \qquad (f \in \mathcal{H})
$$

where $\alpha < \sqrt{\frac{A_{\Phi}}{B_{\Phi}}}$. Then $U\Phi$ *is a K-frame woven by* Φ *with the universal lower bound* $(\sqrt{A_{\Phi}} - \alpha)$ √ $\overline{B_{\Phi}})^2$.

Proof. By the above lemma we can conclude that the condition $UK = KU$ implies that $U\Phi = \{U\varphi_i\}_{i=1}^{\infty}$ is also a K-frame. Since $\Phi = \{\varphi_i\}_{i=1}^{\infty}$ is a K-frame, so for every $f \in \mathcal{H}$ and $\sigma \subset I$, a non trivial subset of I, we have

$$
\left(\sum_{i\in\sigma} |\langle f, \varphi_i \rangle|^2 + \sum_{i\in\sigma^c} |\langle f, U\varphi_i \rangle|^2\right)^{\frac{1}{2}}
$$
\n
$$
= \left(\sum_{i\in\sigma} |\langle f, \varphi_i \rangle|^2 + \sum_{i\in\sigma^c} |\langle f, \varphi_i \rangle - \langle (I - U^*) f, \varphi_i \rangle|^2\right)^{\frac{1}{2}}
$$
\n
$$
\geq \left(\sum_{i\in I} |\langle f, \varphi_i \rangle|^2\right)^{\frac{1}{2}} - \left(\sum_{i\in\sigma^c} |\langle (I - U^*) f, \varphi_i \rangle|^2\right)^{\frac{1}{2}}
$$
\n
$$
\geq \sqrt{A_{\Phi}} \|K^* f\| - \sqrt{B_{\Phi}} \|(I - U^*) f\|
$$
\n
$$
\geq \sqrt{A_{\Phi}} \|K^* f\| - \sqrt{B_{\Phi}} \alpha \|K^* f\|
$$
\n
$$
\geq \left(\sqrt{A_{\Phi}} - \alpha \sqrt{B_{\Phi}}\right) \|K^* f\|.
$$

 \Box

Now we introduce an example that satisfies in condition of Proposition 3.5. Let Ke_1 $e_2, Ke_2 = e_1, Ke_3 = 0.$ Then, $K^*e_1 = e_2, K^*e_2 = e_1, K^*e_3 = 0.$ Also, let $U \in B(H)$ as $Ue_1 = U^*e_1 = 1 + \frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}e_1, Ue_2 = U^*e_2 = 1 + \frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}e_2, Ue_3 = U^*e_3 = e_3.$ Then $\Phi = \{2e_1, e_2, e_3\}$ is a *K*-frame with bounds $A_{\Phi} = 1, B_{\Phi} = 4$. Also, for every $f \in \mathcal{H}$ we have $UKf = KUf$, and

$$
||K^*f||^2 = ||c_1e_2 + c_2e_1||^2 = |c_1|^2 + |c_2|^2,
$$

and

$$
\|(I - U^*)f\|^2 = \frac{1}{2} (|c_1|^2 + |c_2|^2) < \alpha \|K^* f\| = \alpha \left(|c_1|^2 + |c_2|^2 + |c_3|^2\right),
$$

which $\alpha < \sqrt{\frac{A_{\Phi}}{B_{\Phi}}} = \frac{1}{2}$ $\frac{1}{2}$. This gives the condition of the last proposition.

We end this section by discussing an example which shows that the woven property for K-frames is not transitive, in general.

Example 3.6. Let $\mathcal{H} = \ell^2(\mathbb{N})$ and *K* be the orthogonal projection of \mathcal{H} onto $\{e_i\}_{i=2}^{\infty}$. Consider K-frames $\Phi = \{e_1, e_2, 0, e_3, e_4, \ldots\}, \Psi = \{0, e_1, e_2, e_3, e_4, \ldots\}$ and $\eta = \{e_1, 0, e_2, e_3, e_4, \ldots\}$ on H where $\{e_1, e_2, \ldots\}$ is the standard orthonormal basis of H. Then Φ is woven with Ψ and Ψ is woven with η by the universal bounds $A_1 = A_2 = 1$ and $B_1 = B_2 = 2$. However, K-frames Φ and η are not woven. Indeed choose $\sigma = \mathbb{N}\setminus\{2\}$, then $\{\varphi_i\}_{i\in\sigma} \cup \{\eta_i\}_{i\in\sigma^c} =$ ${e_1, 0, 0, e_3, e_4, \ldots}$ which is not a K-frame.

In order to solve the above problem, we consider a condition on bounds. More precisely, suppose that $\{\varphi_i\}_{i\in I}$ and $\{\psi_i\}_{i\in I}$ are woven K-frames by a universal lower bound A_1 , and $\{\psi_i\}_{i\in I}$ is woven with a K-frame $\{\eta_i\}_{i\in I}$ by a universal lower bound A_2 such that $A_1 + A_2 - B_\Psi > 0$. Then for each $\sigma \subset I$ and $f \in \mathcal{H}$ we obtain

$$
(A_1 + A_2 - B_{\Psi}) \parallel K^* f \parallel^2 \leq \sum_{i \in \sigma} |\langle f, \varphi_i \rangle|^2 + \sum_{i \in \sigma^c} |\langle f, \psi_i \rangle|^2 + \sum_{i \in \sigma} |\langle f, \psi_i \rangle|^2
$$

+
$$
\sum_{i \in \sigma^c} |\langle f, \eta_i \rangle|^2 - \sum_{i \in I} |\langle f, \psi_i \rangle|^2
$$

=
$$
\sum_{i \in \sigma} |\langle f, \varphi_i \rangle|^2 + \sum_{i \in \sigma^c} |\langle f, \eta_i \rangle|^2
$$

$$
\leq (B_{\Phi} + B_{\eta}) \parallel f \parallel^2.
$$

Hence, $\{\varphi_i\}_{i\in I}$ is woven with $\{\eta_i\}_{i\in I}$.

4. Stability of dual Woven K-frames

In this section, we state some stability results for woven K-frames. Given two woven K-frames. The following questions naturally arise: how can we construct more woven K-frames and does the duality preserve the wovenness? The next proposition shows that under some condition, there are infinitely many K-dual of one of them which they are woven with the image of another one under a bounded operator.

Proposition 4.1. *Let* K be a self-adjoint operator, also let $\Phi = {\varphi_i}_{i \in I}$ and $\Psi = {\psi_i}_{i \in I}$ *be woven K-frames for* H *such that* $S_{\Phi}(R(K)) \subseteq R(K)$ *. Then there are infinitely many K*-dual frames of Φ *which are woven with* $K^* S_{\Phi}^{-1} \pi_{S_{\Phi}(R(K))} \Psi$.

Proof. By the assumption $R(K)$ is invariant under S_{Φ} , hence

$$
R((S_{\Phi}^{-1})^*) \subseteq S_{\Phi}(R(K)) \subseteq R(K).
$$

Using the fact that K^* is bounded below on $R(K)$ (see [\(2.1\)](#page-2-2)), we obtain

$$
||K^{\dagger}||^{-1}||S_{\Phi}||^{-1}||g|| \le ||K^*(S_{\Phi}^{-1})^*g||, \quad (g \in R(K)). \tag{4.1}
$$

Assume that $U = \{u_i\}_{i \in I}$ is a Bessel sequence satisfying in [\(2](#page-2-3).4). Then

$$
\sum_{i \in I} \langle f, \varphi_i \rangle \pi_{R(K)} K K^{\dagger} \pi_{R(K)} u_i = K K^{\dagger} \sum_{i \in I} \langle f, \varphi_i \rangle \pi_{R(K)} u_i = 0, \qquad (f \in \mathcal{H}).
$$

So, $\Phi_{\epsilon}^{d} = {\{\widetilde{\varphi_{i}} + \epsilon K K^{\dagger} \pi_{R(K)} u_{i}\}_{i \in I}}$ is also a K-dual frame of Φ by Theorem [2.1.](#page-2-4) Let $\epsilon > 0$ be small enough such that

$$
A||K^{\dagger}||^{-1}||S_{\Phi}||^{-1} - \epsilon B_U||K^{\dagger}||^2 - 2\epsilon \sqrt{B_U B_{\Phi}||S_{\Phi}^{-1}||||K^{\dagger}||} > 0,
$$
\n(4.2)

where A is a universal lower bound of weaving Φ and Ψ . To see $K^*S_{\Phi}^{-1}\pi_{S_{\Phi}(R(K))}\Psi$ and Φ_{ϵ}^{d} are woven, we only need to prove the existence of a universal lower bound. Suppose $\sigma \subset I$, applying [\(2.2\)](#page-2-0) and [\(4.1\)](#page-6-0) we have

$$
\sum_{i\in\sigma} |\langle f, K^* S_{\Phi}^{-1} \pi_{S_{\Phi}(R(K))} \Psi \rangle|^2 + \sum_{i\in\sigma^c} |\langle f, \Phi_{\epsilon}^d \rangle|^2
$$
\n
$$
= \sum_{i\in\sigma} |\langle (S_{\Phi}^{-1})^* K f, \psi_i \rangle|^2 + \sum_{i\in\sigma^c} \left| \langle (S_{\Phi}^{-1})^* K f, \varphi_i \rangle + \langle K f, \epsilon K^{\dagger} \pi_{R(K)} u_i \rangle \right|^2
$$
\n
$$
\geq \sum_{i\in\sigma} |\langle (S_{\Phi}^{-1})^* K f, \psi_i \rangle|^2 + \sum_{i\in\sigma^c} \left| \langle (S_{\Phi}^{-1})^* K f, \varphi_i \rangle \right| - \left| \langle K f, \epsilon K^{\dagger} \pi_{R(K)} u_i \rangle \right| \right|^2
$$
\n
$$
\geq \sum_{i\in\sigma} |\langle (S_{\Phi}^{-1})^* K f, \psi_i \rangle|^2 + \sum_{i\in\sigma^c} \left| \langle (S_{\Phi}^{-1})^* K f, \varphi_i \rangle \right|^2 - \sum_{i\in\sigma^c} \left| \langle K f, \epsilon K^{\dagger} \pi_{R(K)} u_i \rangle \right|^2
$$
\n
$$
- 2 \sum_{i\in\sigma^c} \left| \langle (S_{\Phi}^{-1})^* K f, \varphi_i \rangle \right| \left| \langle K f, \epsilon K^{\dagger} \pi_{R(K)} u_i \rangle \right|
$$
\n
$$
\geq A \left\| K^* (S_{\Phi}^{-1})^* K f \right\|^2 - \epsilon B_U \|K^{\dagger}\|^2 \|K f\|^2 - 2\epsilon \sqrt{B_U B_{\Phi} \|S_{\Phi}^{-1}\| \|K^{\dagger}\|} \|K f\|^2
$$
\n
$$
\geq (A \|K^{\dagger}\|^{-1} \|S_{\Phi}\|^{-1} - \epsilon B_U \|K^{\dagger}\|^2 - 2\epsilon \sqrt{B_U B_{\Phi} \|S_{\Phi}^{-1}\| \|K^{\dagger}\|} \right) \|K f\|^2,
$$

So, by (4.2) (4.2) , we obtain infinitely many K-dual frames of Φ which satisfies the desired condition. This completes the proof. \Box

Now, we construct a family of woven *K*-duals from a pair of woven *K*-frames.

Theorem 4.2. Let K be a self-adjoint operator, $\Phi = {\varphi_i}_{i \in I}$ and $\Psi = {\psi_i}_{i \in I}$ be woven *K*-frames with a universal lower bound A such that $S_{\Phi}(R(K)) \subseteq R(K)$ and

$$
\left\| \sum_{i \in I} c_i (\varphi_i - \psi_i) \right\| < \frac{\sqrt{A} \| K^{\dagger} \|^{-1} \| S_{\Phi} \|^{-1}}{\sqrt{B_{\Psi}} \| S_{\Phi}^{-1} \| \| S_{\Psi}^{-1} \| \left(\sqrt{B_{\Psi}} + \sqrt{B_{\Phi}} \right)} \sum_{i \in I} |c_i|^2,\tag{4.3}
$$

for every sequence $\{c_i\}_{i\in I} \in \ell^2$. Then there are infinitely many K-dual frames Φ^d of Φ *and* Ψ^d *of* Ψ *which are woven* K^* -frame.

Proof. By the assumption $S_{\Phi}: R(K) \to S_{\Phi}(R(K)) \subseteq R(K)$ is invertible and [\(4.1\)](#page-6-0) holds. Choose arbitrary K-dual frames $\Phi^d = {\{\widetilde{\varphi}_i + u_i\}}_{i \in I}$ and $\Psi^d = {\{\widetilde{\psi}_i + v_i\}}_{i \in I}$ of Φ and Ψ , respectively such that $U = {u_i\}}_{i \in I}$ and $V = {v_i\}}_{i \in I}$ are Bessel sequences satisfy (2.[4\)](#page-2-3). By using (4.3) we have

$$
\begin{array}{rcl} \|S_{\Phi}^{-1} - S_{\Psi}^{-1}\| & = & \|S_{\Psi}^{-1} \left(S_{\Phi} - S_{\Psi} \right) S_{\Phi}^{-1}\| \\ & \leq & \|S_{\Psi}^{-1}\| \|S_{\Phi}^{-1}\| \|S_{\Phi} - S_{\Psi}\| \\ & \leq & \|S_{\Psi}^{-1}\| \|S_{\Phi}^{-1}\| \|T_{\Phi} T_{\Phi}^* - T_{\Phi} T_{\Psi}^* + T_{\Phi} T_{\Psi}^* - T_{\Psi} T_{\Psi}^*\| \\ & \leq & \|S_{\Psi}^{-1}\| \|S_{\Phi}^{-1}\| \|T_{\Phi} - T_{\Psi}\| \left(\|T_{\Phi}\| + \|T_{\Psi}\| \right) \\ & < & \|K^{\dagger}\|^{-1} \|S_{\Phi}\|^{-1} \sqrt{\frac{A}{B_{\Psi}}} .\end{array}
$$

Choose $0 < \alpha < 1$ such that

$$
||S_{\Phi}^{-1} - S_{\Psi}^{-1}|| + \alpha ||K^{\dagger}|| \left(\frac{\sqrt{B_{U}} + \sqrt{B_{V}}}{\sqrt{B_{\Psi}}} \right) < ||K^{\dagger}||^{-1} ||S_{\Phi}||^{-1} \sqrt{\frac{A}{B_{\Psi}}}.
$$
 (4.4)

So, $\Phi_{\alpha}^{d} = {\{\widetilde{\varphi}_{i} + \alpha K K^{\dagger} \pi_{R(K)} u_{i}\}_{i \in I}}$ and $\Psi_{\alpha}^{d} = {\{\widetilde{\psi}_{i} + \alpha K K^{\dagger} \pi_{R(K)} v_{i}\}_{i \in I}}$ are also K-dual frames of Φ and Ψ . Hence, by using [\(4.1\)](#page-6-0) for every $\sigma \subset I$ we have

$$
\sum_{\sigma} |\langle f, \Phi_{\alpha}^{d} \rangle|^{2} + \sum_{\sigma^{c}} |\langle f, \Psi_{\alpha}^{d} \rangle|^{2}
$$
\n
$$
= \sum_{\sigma} |\langle f, \widetilde{\varphi_{i}} + \alpha K K^{\dagger} \pi_{R(K)} u_{i} \rangle|^{2} + \sum_{\sigma^{c}} |\langle f, \widetilde{\psi_{i}} + \alpha K K^{\dagger} \pi_{R(K)} v_{i} \rangle|^{2}
$$
\n
$$
= \sum_{\sigma} |\langle (S_{\Phi}^{-1})^{*} K f, \varphi_{i} \rangle + \langle \alpha (K^{\dagger})^{*} K^{*} f, u_{i} \rangle|^{2}
$$
\n
$$
+ \sum_{\sigma^{c}} |\langle (S_{\Phi}^{-1})^{*} K f, \psi_{i} \rangle + \langle \alpha (K^{\dagger})^{*} K^{*} f, v_{i} \rangle|^{2}
$$
\n
$$
= \sum_{\sigma} |\langle (S_{\Phi}^{-1})^{*} K f, \varphi_{i} \rangle + \langle \alpha (K^{\dagger})^{*} K^{*} f, u_{i} \rangle|^{2}
$$
\n
$$
+ \sum_{\sigma^{c}} |\langle (S_{\Phi}^{-1})^{*} K f, \psi_{i} \rangle + \langle ((S_{\Psi}^{-1})^{*} - (S_{\Phi}^{-1})^{*}) K f, \psi_{i} \rangle + \langle \alpha (K^{\dagger})^{*} K^{*} f, v_{i} \rangle|^{2}.
$$

Thus, using [\(2.1\)](#page-2-2) follows that

$$
\begin{split}\n&\left(\sum_{\sigma} |\langle f, \Phi_{\alpha}^{d} \rangle|^{2} + \sum_{\sigma^{c}} |\langle f, \Psi_{\alpha}^{d} \rangle|^{2}\right)^{\frac{1}{2}} \\
&\geq \left(\sum_{\sigma} \left| \langle (S_{\Phi}^{-1})^{*} K f, \varphi_{i} \rangle \right|^{2} + \sum_{\sigma^{c}} \left| \langle (S_{\Phi}^{-1})^{*} K f, \psi_{i} \rangle \right|^{2}\right)^{\frac{1}{2}} \\
&- \left(\sum_{\sigma} \left| \langle \alpha(K^{\dagger})^{*} K^{*} f, u_{i} \rangle \right|^{2}\right)^{\frac{1}{2}} - \left(\sum_{\sigma^{c}} \left| \langle \alpha(K^{\dagger})^{*} K^{*} f, v_{i} \rangle \right|^{2}\right)^{\frac{1}{2}} \\
&- \left(\sum_{\sigma^{c}} \left| \langle \left((S_{\Psi}^{-1})^{*} - (S_{\Phi}^{-1})^{*} \right) K f, \psi_{i} \rangle \right|^{2}\right)^{\frac{1}{2}} \\
&\geq \sqrt{A} \| K^{*} (S_{\Phi}^{-1})^{*} K f \| - \left(\sqrt{B_{U}} + \sqrt{B_{V}} \right) \alpha \| K^{\dagger} \| \| K^{*} f \| - \sqrt{B_{\Psi}} \| S_{\Psi}^{-1} - S_{\Phi}^{-1} \| \| K f \| \\
&\geq \left(\sqrt{A} \| K^{\dagger} \|^{-1} \| S_{\Phi} \|^{-1} - \alpha \| K^{\dagger} \| \left(\sqrt{B_{U}} + \sqrt{B_{V}} \right) - \sqrt{B_{\Psi}} \| S_{\Psi}^{-1} - S_{\Phi}^{-1} \| \right) \| K f \| \\
&= \sqrt{B_{\Psi}} \left(\| K^{\dagger} \|^{-1} \| S_{\Phi} \|^{-1} \sqrt{\frac{A}{B_{\Psi}}} - \alpha \| K^{\dagger} \| \left(\frac{\sqrt{B_{U}} + \sqrt{B_{V}}}{\sqrt{B_{\Psi}}} \right) - \| S_{\Psi}^{-1} - S_{\Phi}^{-1} \| \right) \| K f \|, \n\end{split}
$$

where in last inequality we have used the fact that K is self-adjoint. By attention to (4.4) , K^* -frames Φ^d and Ψ^d are woven.

We introduce an example that satisfies to the condition of the last theorem. Let

$$
\varphi_i = \begin{cases} e_i & i = 2k \\ \frac{e_i}{i} & i = 2k+1 \end{cases}, \qquad \psi_i = \begin{cases} \varphi_i & i = 2k \\ 0 & i = 2k+1 \end{cases},
$$

and $K = \pi_{span\{e_{2k}:k\in\mathbb{N}\}}$. Then $\Phi = {\varphi_i\}_{i\in I}$ and $\Psi = {\psi_i\}_{i\in I}$ are two K-frames with frame bounds $A_{\Phi} = B_{\Phi} = A_{\Psi} = B_{\Psi} = 1$. Then $R(K) = span\{e_{2k} : k \in \mathbb{N}\}\$ and $S_{\Phi}|_{R(K)}$ with $S_{\Phi}f = \sum_{i=1}^{\infty} \langle f, e_{2k} \rangle e_{2k}$ is the identity operator. Also,

$$
\begin{array}{rcl} \|\sum_{i\in I} c_i(\varphi_i - \psi_i)\| & = & \|\sum_{i\in I} c_{2k+1} \frac{e_{2k+1}}{2k+1}\| = \sum_{i\in I} \frac{|c_{2k+1}|^2}{|2k+1|^2} < \frac{1}{2} \sum_{i\in I} |c_i|^2\\ & = & \frac{\sqrt{A} \|K^\dagger\|^{-1} \|S_\Phi\|^{-1}}{\sqrt{B_\Psi} \|S_\Phi^{-1}\| \|S_\Psi^{-1}\| \left(\sqrt{B_\Psi} + \sqrt{B_\Phi}\right)} \sum_{i\in I} |c_i|^2, \end{array}
$$

which is satisfied in the condition of Theorem 4.2.

Corollary 4.3. *Let K be a self-adjoint operator and* Φ*,* Ψ *be woven K-frames with a universal lower bound A such that* $S_{\Phi}(R(K)) \subseteq R(K)$ *and*

$$
\|S_\Phi^{-1}-S_\Psi^{-1}\|<\|K^\dag\|^{-1}\|S_\Phi\|^{-1}\sqrt{\frac{A}{B_\Psi}}.
$$

Then $\widetilde{\Phi}$ *and* $\widetilde{\Psi}$ *are woven K*^{*}-frames.

In next theorem we check out under some condition the converse of the previous result holds.

Theorem 4.4. Let K be a self-adjoint operator and $\Phi = {\varphi_i}_{i \in I}$ and $\Psi = {\psi_i}_{i \in I}$ be *K-frames. If* Φ˜ *and* Ψ˜ *are woven K*[∗] *-frames with a universal lower bound A such that* $S_{\Phi}(R(K)) \subseteq R(K)$ *and*

$$
||S_{\Phi}^{-1} - S_{\Psi}^{-1}|| \le \frac{\sqrt{A}}{\sqrt{B_{\Psi}} ||K^{\dagger}|| ||K|| ||S_{\Phi}^{-1}|| ||S_{\Phi}||}.
$$
\n(4.5)

Then Φ *and* Ψ *are woven K*-frames on *R*(*K*).

Proof. Applying (2.1) easily shows that

$$
\frac{\|K^*f\|}{\|S_{\Phi}^{-1}\| \|K\|} \le \frac{\|f\|}{\|S_{\Phi}^{-1}\|} \le \|S_{\Phi}^*f\| \le \|S_{\Phi}\| \|K^{\dagger}\| \|K^*f\|,\tag{4.6}
$$

for all $f \in R(K)$. Now for every $\sigma \subset I$ we have

$$
\sum_{\sigma} |\langle f, \varphi_i \rangle|^2 + \sum_{\sigma^c} |\langle f, \psi_i \rangle|^2
$$
\n
$$
= \sum_{\sigma} |\langle (S_{\Phi}^{-1})^* K K^{\dagger} S_{\Phi}^* f, \varphi_i \rangle|^2 + \sum_{\sigma^c} |\langle (S_{\Phi}^{-1})^* K K^{\dagger} S_{\Phi}^* f, \psi_i \rangle|^2
$$
\n
$$
= \sum_{\sigma} |\langle K^{\dagger} S_{\Phi}^* f, \tilde{\varphi}_i \rangle|^2 + \sum_{\sigma^c} |\langle K^{\dagger} S_{\Phi}^* f, K^* S_{\Phi}^{-1} \pi_{R(K)} \psi_i \rangle|^2
$$
\n
$$
= \sum_{\sigma} |\langle K^{\dagger} S_{\Phi}^* f, \tilde{\varphi}_i \rangle \rangle|^2
$$
\n
$$
+ \sum_{\sigma^c} |\langle (S_{\Psi}^{-1})^* K K^{\dagger} S_{\Phi}^* f + \left((S_{\Phi}^{-1})^* - (S_{\Psi}^{-1})^* \right) K K^{\dagger} S_{\Phi}^* f, \psi_i \rangle|^2.
$$

By using [\(4.6\)](#page-9-0) we obtain

$$
\sum_{\sigma} |\langle f, \varphi_i \rangle|^2 + \sum_{\sigma^c} |\langle f, \psi_i \rangle|^2
$$
\n
$$
= \sum_{\sigma} |\langle K^{\dagger} S_{\Phi}^* f, \tilde{\varphi}_i \rangle|^2 + \sum_{\sigma^c} |\langle K^{\dagger} S_{\Phi}^* f, \tilde{\psi}_i \rangle + \langle ((S_{\Phi}^{-1})^* - (S_{\Psi}^{-1})^*) K K^{\dagger} S_{\Phi}^* f, \psi_i \rangle|^2
$$
\n
$$
\geq \left[\left(\sum_{\sigma} |\langle K^{\dagger} S_{\Phi}^* f, \tilde{\varphi}_i \rangle|^2 + \sum_{\sigma^c} |\langle K^{\dagger} S_{\Phi}^* f, \tilde{\psi}_i \rangle|^2 \right)^{\frac{1}{2}} \right]^2
$$
\n
$$
- \left(\sum_{\sigma^c} |\langle ((S_{\Phi}^{-1})^* - (S_{\Psi}^{-1})^*) S_{\Phi}^* f, \psi_i \rangle|^2 \right)^{\frac{1}{2}} \right]^2
$$
\n
$$
\geq \left(\sqrt{A} \| K K^{\dagger} S_{\Phi}^* f \| - \sqrt{B_{\Psi}} \| S_{\Phi}^{-1} - S_{\Psi}^{-1} \| \| S_{\Phi}^* f \| \right)^2
$$
\n
$$
\geq \left(\sqrt{A} \| S_{\Phi}^* f \| - \sqrt{B_{\Psi}} \| S_{\Phi}^{-1} - S_{\Psi}^{-1} \| \| K^{\dagger} \| \| S_{\Phi} \| \| K^* f \| \right)^2
$$
\n
$$
\geq \left(\sqrt{A} \| S_{\Phi}^{-1} \| - \| K \|^{-1} - \sqrt{B_{\Psi}} \| K^{\dagger} \| \| S_{\Phi} \| \| S_{\Phi}^{-1} - S_{\Psi}^{-1} \| \right)^2 \| K^* f \|^2.
$$

This completes the proof by using (4.5) (4.5) .

Notice that the condition $S_{\Phi}(R(K)) \subseteq R(K)$ in the above results can be reduced to the condition K^* is bounded below on $S_{\Phi}(R(K))$.

5. Weaving and excess

In this section we are focused on discussing the relation between weaving and the excess of K-frames. The following proposition plays a key role in this respect. First, we recall the definition of K-Riesz bases.

Definition 5.1. A family $\Phi = {\varphi_i}_{i \in I}$ is called a *K-Riesz sequence* for $\mathcal H$ if there exists an injective bounded operator $U : \mathcal{H} \to \mathcal{H}$ such that ${\{\pi_{R(K)}\varphi_i\}_{i\in I}} = {\{Ue_i\}_{i\in I}}$, where ${e_i}_{i\in I}$ is an orthonormal basis for \mathcal{H} [\[26\]](#page-14-17). In addition, if Φ is a K-frame, then Φ is called a *K-Riesz basis*. A family $\Phi = {\varphi_i}_{i \in I}$ is called *near K-Riesz basis* for H if there exists a finite set σ for which $\{\varphi_i\}_{i \notin \sigma}$ is a K-Riesz basis for \mathcal{H} .

Proposition 5.2 ([\[26\]](#page-14-17)). Let $\{\varphi_i\}_{i \in I}$ be a Bessel sequence in \mathcal{H} . The following are equiv*alent:*

- (1) $\{\varphi_i\}_{i \in I}$ *is K-Riesz sequence for* \mathfrak{H} *.*
- (2) ${\pi_{R(K)}\varphi_i}_{i \in I}$ *is a Riesz sequence.*
- (3) ${\pi_{R(K)}\varphi_i}_{i\in I}$ *is* ω *-independent.*

Moreover, let $\{\varphi_i\}_{i\in I}$ *be a K-frame. Then* $\{\varphi_i\}_{i\in I}$ *is K-Riesz basis if and only if* $\{\pi_{R(K)}\varphi_i\}_{i\in I}$ *is ω-independent.*

The following proposition shows that associated to each K-frame there exists an ordinary frame sequence. Applying this fact we obtain a pair of woven frames from woven K-frames.

Proposition 5.3. Let $\Phi = {\varphi_i}_{i \in I}$ and $\Psi = {\psi_i}_{i \in I}$ be woven K-frames such that $span{\varphi_i\}_{i\in I} = span{\psi_i\}_{i\in I}$. Then ${\lbrace \pi_{R(K)}\varphi_i \rbrace_{i\in I}}$ and ${\lbrace \pi_{R(K)}\psi_i \rbrace_{i\in I}}$ are woven frames on $\pi_{R(K)}$ *span* ${\varphi_i}_{i \in I}$.

Proof. Applying [\(2.1\)](#page-2-2), for every $f \in R(K)$ we have

$$
A_{\Phi}||K^{\dagger}||^{-1}||f||^2 \leq A_{\Phi}||K^*f||^2
$$

\n
$$
\leq \sum_{i\in I} |\langle f, \varphi_i \rangle|^2
$$

\n
$$
= \sum_{i\in I} |\langle \pi_{R(K)}f, \varphi_i \rangle|^2 = \sum_{i\in I} |\langle f, \pi_{R(K)}\varphi_i \rangle|^2.
$$

Hence, ${\{\pi_{R(K)}\varphi_i\}_{i\in I}}$ and ${\{\pi_{R(K)}\psi_i\}_{i\in I}}$ are frames on the Hilbert space

$$
M := \pi_{R(K)} \overline{span} \{ \varphi_i \}_{i \in I} \subset R(K).
$$

Moreover, for every $\sigma \subset I$ and $f \in M$ we have

$$
A||K^{\dagger}||^{-1}||f||^2 \le A||K^*f||^2 \le \sum_{i \in \sigma} |\langle f, \varphi_i \rangle|^2 + \sum_{i \in \sigma^c} |\langle f, \psi_i \rangle|^2
$$

=
$$
\sum_{i \in \sigma} |\langle \pi_{R(K)}f, \varphi_i \rangle|^2 + \sum_{i \in \sigma^c} |\langle \pi_{R(K)}f, \psi_i \rangle|^2
$$

=
$$
\sum_{i \in \sigma} |\langle f, \pi_{R(K)}\varphi_i \rangle|^2 + \sum_{i \in \sigma^c} |\langle f, \pi_{R(K)}\psi_i \rangle|^2
$$

where A is a universal lower bound for weaving Φ and Ψ . This completes the proof. \Box

It is well known that a Riesz basis has a unique biorthogonal sequence, see [\[15\]](#page-14-10). In the following we prove this fact for K-Riesz bases.

Theorem 5.4. *Let* $\Phi = {\varphi_i}_{i \in I}$ *be a K-Riesz basis. Then* ${K^{\dagger}} \pi_{R(K)} \varphi_i \}_{i \in I}$ *is the unique biorthogonal sequence of* $\{\widetilde{\varphi_i}\}_{i \in I}$ *in* $R(K^{\dagger})$ *.*

Proof. By using [\(2.3\)](#page-2-1) for $f = K^{\dagger} \pi_{R(K)} \varphi_j$ we obtain

$$
\pi_{R(K)}\varphi_j = KK^{\dagger} \pi_{R(K)}\varphi_j = \sum_{i \in I} \langle K^{\dagger} \pi_{R(K)}\varphi_j, \widetilde{\varphi_i} \rangle \pi_{R(K)}\varphi_i.
$$

Applying Proposition [5.2](#page-10-0) follows that ${\{\pi_{R(K)}\varphi_i\}_{i\in I}}$ is ω -independent. Hence,

$$
\langle K^{\dagger} \pi_{R(K)} \varphi_j, \widetilde{\varphi_i} \rangle = \delta_{i,j} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}
$$

Now, suppose that $\Psi = {\psi_i}_{i \in I} \subseteq R(K^{\dagger})$ is another biorthogonal sequence, then for every $f \in \mathcal{H}$ we have

$$
\langle f, \pi_{R(K)}\varphi_j \rangle = \langle f, KK^{\dagger} \pi_{R(K)}\varphi_j \rangle
$$

\n
$$
= \langle K^* f, K^{\dagger} \pi_{R(K)}\varphi_j \rangle
$$

\n
$$
= \langle \sum_{i \in I} \langle f, \pi_{R(K)}\varphi_i \rangle \widetilde{\varphi_i}, K^{\dagger} \pi_{R(K)}\varphi_j \rangle
$$

\n
$$
= \sum_{i \in I} \langle f, \pi_{R(K)}\varphi_i \rangle \langle \widetilde{\varphi_i}, K^{\dagger} \pi_{R(K)}\varphi_j \rangle
$$

\n
$$
= \sum_{i \in I} \langle f, \pi_{R(K)}\varphi_i \rangle \langle \psi_i, K^{\dagger} \pi_{R(K)}\varphi_j \rangle.
$$

Thus, by [\(2.3\)](#page-2-1) we obtain

$$
K^* f = \sum_{j \in I} \left\langle f, \pi_{R(K)} \varphi_j \right\rangle \widetilde{\varphi_j}
$$

=
$$
\sum_{j \in I} \sum_{i \in I} \left\langle f, \pi_{R(K)} \varphi_i \right\rangle \left\langle \psi_i, K^{\dagger} \pi_{R(K)} \varphi_j \right\rangle \widetilde{\varphi_j}
$$

=
$$
\sum_{i \in I} \left\langle f, \pi_{R(K)} \varphi_i \right\rangle \sum_{j \in I} \left\langle (K^{\dagger})^* \psi_i, \pi_{R(K)} \varphi_j \right\rangle \widetilde{\varphi_j}
$$

=
$$
\sum_{i \in I} \left\langle f, \pi_{R(K)} \varphi_i \right\rangle K^*(K^{\dagger})^* \psi_i = \sum_{i \in I} \left\langle f, \pi_{R(K)} \varphi_i \right\rangle \psi_i.
$$

Therefore, Ψ is also a K-dual of Φ. On the other hand, every K-Riesz basis has a unique K-dual, see Proposition 2.5 of [\[26\]](#page-14-17). Hence, $\psi_i = K^{\dagger} \pi_{R(K)} \varphi_i$, for all $i \in I$.

,

As a consequence, by attention to Theorem 3.5 of [\[3\]](#page-13-6), we obtain the following result.

Corollary 5.5. *Let* $\Phi = {\varphi_i}_{i \in I}$ *be a K-Riesz basis for* H *. Then*

- (1) $\{\pi_{R(K)}\varphi_i\}_{i\in I}$ and $\{S_{\Phi}^{-1}\pi_{S_{\Phi}(R(K))}\varphi_i\}_{i\in I}$ are woven frame on $\pi_{R(K)}\overline{span}\{\varphi_i\}_{i\in I}$.
- (2) $\{\varphi_i\}_{i\in I}$ and $\{S_{\Phi}^{-1}\pi_{S_{\Phi}(R(K))}\varphi_i\}_{i\in I}$ are woven frames on $R(K)$.
- (3) $\{K^{\dagger} \pi_{R(K)} \varphi_i\}_{i \in I}$ *and* $\{\widetilde{\varphi_i}\}_{i \in I}$ *are woven* K^* -frames.

The *excess* of a K-frame Φ , denoted by $E_K(\Phi)$, is the greatest integer *n* so that *n* elements can be deleted from the K-frame and still leave a K-frame, or $+\infty$ if there is no upper bound to the number of elements that can be removed. Every K-frame $\Phi = {\varphi_i}_{i \in I}$ with $E_K(\Phi) = n$ can be written as $\Phi = {\varphi_i}_{i \in I \setminus \{i_1,...i_n\}} \cup {\varphi_{i_1}, \dots \varphi_{i_n}}$, where $\{\varphi_i\}_{i\in I\setminus\{i_1,\dots i_n\}}$ is a K-Riesz basis for $\mathcal H$ and $\{\varphi_{i_1},\dots \varphi_{i_n}\}\$ are redundant elements of Φ . If $K = I_{\mathcal{H}}$, then Φ is a frame and $E_K(\Phi)$, denoted by $E(\Phi)$, coincides with the usual definition of excess of frames [\[8\]](#page-13-7). Dual frames and woven frames have the same excess $[1, 8]$ $[1, 8]$ $[1, 8]$.

The next lemma follows immediately from Theorem 5.4 of [\[11\]](#page-14-4).

Lemma 5.6. *Let* $\Phi = {\varphi_i}_{i \in I}$ *be a Riesz sequence and* $\Psi = {\psi_i}_{i \in I}$ *be a frame sequence such that* $span{\varphi_i}_{i \in I} = span{\psi_i}_{i \in I}$. If Φ *and* Ψ *are woven frames, then* Ψ *is also a Riesz sequence.*

Proposition 5.7. *Let K be a closed range operator on a Hilbert space* $\mathcal{H}, \Phi = {\varphi_i}_{i \in I}$ *be a K*-Riesz sequence and $\Psi = {\psi_i}_{i \in I}$ be a *K*-frame for H . If Φ and Ψ are woven *K*-frames *such that span* $\{\varphi_i\}_{i \in I} = span{\psi_i\}_{i \in I}$, then Ψ *must actually be a K-Riesz sequence.*

Proof. Using Proposition [5.3](#page-10-1) follows that ${\pi_{R(K)}\varphi_i}_{i\in I}$ and ${\pi_{R(K)}\psi_i}_{i\in I}$ are woven frames on $\pi_{R(K)}$ *span* $\{\varphi_i\}_{i\in I}$. On the other hand, $\{\pi_{R(K)}\varphi_i\}_{i\in I}$ is a Riesz-sequence by Proposition [5.2.](#page-10-0) Applying Lemma [5.6](#page-12-0) gives that ${\lbrace \pi_{R(K)} \psi_i \rbrace_{i \in I}}$ is a Riesz sequence. Using again Proposition [5.2,](#page-10-0) follows that $\{\psi_i\}_{i \in I}$ is also a K-Riesz sequence.

We are now ready to discuss the excess of K-frames.

Theorem 5.8. Let $\Phi = {\varphi_i}_{i \in I}$ be a K-Riesz basis. Then $dim \left(ker(\pi_{R(K)}T_{\Phi}) \right) < \infty$. In $fact, ker\left(\pi_{R(K)}T_{\Phi}\right)$ is finite dimensional if and only if $\{\varphi_i\}_{i\in I}$ is near K-Riesz sequence.

Proof. Assume that $\{\varphi_i\}_{i\in I}$ is a K-Riesz basis, then $\{\pi_{R(K)}\varphi_i\}_{i\in I}$ is a Riesz sequence by Proposition [5.2.](#page-10-0) In [\[15\]](#page-14-10), it is introduced that if $\{\varphi_i\}_{i\in I}$ is a Riesz sequence such that $\sum_{i=1}^{\infty} a_i \varphi_i$ is convergent then $\{a_i\}_{i=1}^{\infty} \in \ell^2(\mathbb{N})$. So, if $\sum_{i=1}^{\infty} a_i \pi_{R(K)} \varphi_i$ is convergent then ${a_i}_{i=1}^{\infty} \in \ell^2(\mathbb{N})$. Hence, by Theorem 2.3 of [\[22\]](#page-14-18), it follows that $ker(\pi_{R(K)}T_{\Phi})$ = $\ker\left(T_{\pi_{R(K)}\Phi}\right)$ must be finite dimensional. For the second part, let $\ker\left(T_{\pi_{R(K)}\Phi}\right)$ be finite dimensional. Then $\{\pi_{R(K)}\varphi_i\}_{i\in I}$ is near Riesz basis by Theorem 2.4 of [\[22\]](#page-14-18) and so $\{\varphi_i\}_{i\in I}$ is near K-Riesz sequence by Proposition [5.2.](#page-10-0) Conversely, suppose that $\{\varphi_i\}_{i\in I}$ is near K-Riesz sequence for H . So there is a finite set σ for which $\{\varphi_i\}_{i \notin \sigma}$ is a K-Riesz sequence for \mathcal{H} . Hence, by Proposition [5.2,](#page-10-0) $\{\pi_{R(K)}\varphi_i\}_{i \notin \sigma}$ is a Riesz sequence and so $dim \left(ker(\pi_{R(K)}T_{\Phi}) \right) < \infty$ by Theorem 2.4 of [\[22\]](#page-14-18).

As a consequence, we obtain the following result.

Theorem 5.9. Let $\Phi = {\varphi_i}_{i \in I}$ be a near K-Riesz basis. The following are equivalent:

- (1) $\ker(\pi_{R(K)}T_{\Phi})$ *is finite dimensional.*
- (2) $E(\pi_{R(K)}\Phi) < \infty$.
- $(E_K(\Phi) < \infty$.

Moreover, for a K-frame Φ *we have*

$$
E_K(\Phi) = \dim \left(\ker \left(\pi_{R(K)} T_{\Phi}\right)\right) = E(\pi_{R(K)} \Phi). \tag{5.1}
$$

Proof. (1) and (2) are equivalent by Theorem [5.8](#page-12-1) and Proposition [5.2.](#page-10-0) Now suppose that $E_K(\Phi) < \infty$. Similar the given argument in Theorem [5.8](#page-12-1) we obtain $E_K(\Phi) = E(\pi_{R(K)}\Phi)$. Now applying Theorem 3.1 of [\[22\]](#page-14-18) follows that

$$
E_K(\Phi) = E(\pi_{R(K)}\Phi) = dim(ker(T_{\pi_{R(K)}\Phi})) = dim(ker(\pi_{R(K)}T_{\Phi}))
$$

Moreover, if $E_K(\Phi) = \infty$ and $E(\pi_{R(K)}\Phi) < \infty$, then there exists a finite set $\sigma \subset I$ such that ${\{\pi_{R(K)}\varphi_i\}}_{i \notin \sigma}$ is a Riesz sequence. Using Proposition [5.2](#page-10-0) follows that ${\{\varphi_i\}}_{i \notin \sigma}$ is a K-Riesz sequence. In particular, $E_K(\Phi) \leq card \sigma < \infty$ which is contradiction. So, $E(\pi_{R(K)}\Phi) = \infty$. In addition, by Lemma 4.1 of [\[8\]](#page-13-7), we have

$$
dim\left(ker\left(\pi_{R(K)}T_{\Phi}\right)\right)=dim\left(kerT_{\pi_{R(K)}\Phi}\right)\geq E\left(\pi_{R(K)}\Phi\right)=\infty.
$$

The proof of other parts are similar.

Corollary 5.10. Let $\Phi = {\varphi_i}_{i \in I}$ and $\Psi = {\psi_i}_{i \in I}$ be woven K-frames such that $span{\varphi_i}_{i \in I}$ $span{\psi_i}_{i \in I}$ *. Then* $E_K(\Phi) = E_K(\Psi)$ *.*

Proof. Since Φ and Ψ are woven K-frames and $span{\varphi_i}_{i \in I} = span{\psi_i}_{i \in I}$ then ${\lbrace \pi_{R(k)} \varphi_i \rbrace}_{i \in I}$ and ${\pi_{R(k)}\psi_i}_{i\in I}$ are wove frames on ${\pi_{R(k)}}\overline{span} {\{\varphi_i\}_{i\in I}}$ by Corollary [5.3.](#page-10-1) So, by using Theorem 3.1 of [\[1\]](#page-13-8) and equation [\(5](#page-12-2)*.*1) we obtain

$$
E_K(\Phi) = E\left(\pi_{R(K)}\Phi\right) = E\left(\pi_{R(K)}\Psi\right) = E_K(\Psi). \tag{5.2}
$$

Let Φ be a frame on $\mathcal H$ and $U \in B(\mathcal H)$ be an onto operator. Then $U\Phi$ is also a frame on H. It is easy to see that $E(\Phi) = E(U\Phi)$ if and only if U is also injective. Combining our results with the fact that $U\pi_{R(K)} = \pi_{R(K)}U$ if and only if $R(K)$ and $(R(K))^{\perp}$ are invariant under U. We state this result for K-frames as following:

Corollary 5.11. Let Φ be a K-frame and $U \in B(H)$ be an onto operator such that $UK = KU$. Then $U\Phi$ *is also a K-frame. Moreover assume that* $(R(K))^{\perp}$ *is invariant under U. Then* $E_K(\Phi) = E(U \pi_{R(K)} \Phi) = E_K(U \Phi)$ *if and only if U is also an injective operator.*

References

- [1] E. Agheshteh Moghadam and A. Arefijamaal, *On Excesses and Duality in Woven Frames*, Bull. Malays. Math. Sci. Soc. **44** (5), 3361–3375, 2021.
- [2] A. Aldroubi, *Portraits of Frames*, Proc. Amer. Math. Soc. **123** (1), 1661–1668, 1995.
- [3] F. Arabyani Neyshaburi and A. Arefijamaal, *Manufactoring Pairs of Woven Frames Applying Duality Principle on Hilbert Spaces*, Bull. Malays. Math. Sci. Soc. **44** (1), 147–161, 2020.
- [4] F. Arabyani Neyshaburi and A. Arefijamaal, *Some construction of K-frames and their duals*, Rocky Mt. J. Math. **47** (6), 1749–1764, 2017.
- [5] A. Arefijamaal and E. Zekaee, *Image Processing by Alternate Dual Gabor Frames*, Bull. Iranian Math. Soc. **42** (6), 1305–1314, 2016.
- [6] A. Arefijamaal and E. Zekaee, *Signal Processing by Alternate Dual Gabor Frames*, Appl. Comput. Harmon. Anal. **35**, 535–540, 2013.
- [7] A. Bhandari, D. Borah and S. Mukherjee, *Characterizations of Weaving K-frames*, Proc. Japan Acad. Ser. A Math. Sci. **96** (5), 39–43, 2020.
- [8] D. Bakić, T. Berić, *On excesses of frames*, Glas. Mat. Ser. III **50** (2), 415–427, 2015.
- [9] P. Balazs and K. Gröchenig. *A guide to localized frames and applications to galerkinlike representations of operators*. In I. Pesenson, H. Mhaskar, A. Mayeli, Q. T. L. Gia, and D.-X. Zhou, editors, *Novel methods in harmonic analysis with applications*

to numerical analysis and data processing, Applied and Numerical Harmonic Analysis series (ANHA). Birkhauser/Springer, 2017.

- [10] P. Balazs, M. Shamsabadi, A. Arefijamaal, and A. Rahimi, *U-cross Gram matrices and their invertibility*, J. Math. Anal. Appl. **476** (2), 367–390, 2019.
- [11] T. Bemrose, P. G. Casazza, K. Grochenig,M. C. Lammers and R. G Lynch, *Weaving frames*, Oper. Matrices **10** (4), 1093–1116, 2016.
- [12] H. Boleskel,F. Hlawatsch and H. G. Feichtinger , *Frame Theoretic Analysis of Oversampled Filter Banks*, IEEE Trans. Signal Process **46**, 3256–3268, 1998.
- [13] P. G. Casazza and G. Kutyniok, *Frames of Subspaces*, Contempt. Math. **345**, 87–113, 2004.
- [14] P. G. Casazza, *The art of Frame Theory*, Taiwanese J. Math. **4** (2), 129–202, 2000.
- [15] O. Christensen, *Frames and Bases: An Introductory Course*, *Birkhäuser, Boston*, 2008.
- [16] N. Cotfas and J. P. Gazeau. *Finite tight frames and some applications*, J. Phys. A: Math. Theor. **43** (19), 193001, 2010.
- [17] Deepshikha and Lalit K. Vashisht, *Weaving K-Frames in Hilbert spaces*, Results Math. **27**, 73–81, 2018 .
- [18] R. Duffin and A. Schaeffer, *A Class of Nonharmonic Fourier Series*, Trans. Amer. Math. Soc. **72**, 341–366, 1952.
- [19] Y.C. Eldar, O. Christensen, *A characterization of oblique dual frame Pairs*, EURASIP J. Adv. Sig. Proc. 1–11, 2006.
- [20] S. Garg and L.K. Vashisht, *Weaving K-Fusion Frames in Hilbert Spaces*, Ganita **67** (1), 41–52, 2017.
- [21] L. Gǎvruta, *Frames for Operators*, Appl. Comp. Harmon. Anal. Appl. **32**, 139–144, 2012.
- [22] J.R. Holub, *Pre-Frames Operators, Besselian Frames and near-Riesz Bases in Hilbert Spaces*, Amer. Math. Soc. **122**, 779–785, 1994.
- [23] Gh. Rahimlou, *Weaving continuous K-frames in Hilbert spaces*, Probl. Anal. Issues Anal. **11**(29), 91-105, 2022.
- [24] G. Ramu and P. Sam Johnson, *Frame Operator of K-frames*, SeMA. J. **37** (2), 171-181, 2016.
- [25] M. Shamsabadi and A. Arefijamaal, *Some results of K-Frames and their multipliers*, Turk. J. Math. **44**, 538–552, 2020.
- [26] M. Shamsabadi and A. A. Arefijamaal. *Some results on U-cross Gram matrices by using K-frames*, Afrika Matematika **31**, 1349–1358, 2020.
- [27] Zhong-Qi Xiang, *Some New Results of Weaving K-Frames in Hilbert Spaces*, Numer. Funct. Anal. Optim. **42** (4), 1-23, 2021.
- [28] X. Xiao, Y. Zhu and L. Gǎvruţa, *Some Properties of K-Frames in Hilbert spaces*, Results. Math. **63**, 1243–1255, 2013.
- [29] X. Xiao, K. Yan, G. Zhao, et al. *Tight K-frames and weaving of K-frames*, J. Pseudo-Differ. Oper. Appl. **12**, 1–14, 2021.