
Avrupa Bilim ve Teknoloji Dergisi

Özel Sayı 28, S. 539-544, Kasım 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

Special Issue 28, pp. 539-544, November 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 539

Setting Reward Function of Sensor Based DDQN Model

Mehmet Gökçay Kabataş 1*, Sevinç İlhan Omurca 2

1* Kocaeli University, Faculty of Engineering, Department of Computer Engineering, Kocaeli, Turkey, (ORCID: 0000-0002-9628-4890), gkcy.kbts@gmail.com
2 Kocaeli University, Faculty of Engineering, Department of Computer Engineering, Kocaeli, Turkey, (ORCID: 0000-0003-1214-9235), silhan@kocaeli.edu.tr

(1st International Conference on Applied Engineering and Natural Sciences ICAENS 2021, November 1-3, 2021)

(DOI: 10.31590/ejosat.1008702)

ATIF/REFERENCE: Kabataş, M. G., Omurca S. İ., (2021). Setting Reward Function of Sensor Based DDQN Model. European

Journal of Science and Technology, (28), 539-544.

Abstract

In this study, it is aimed to determine the appropriate reward function of the agent which trained to pass 100 obstacles/objects in

Reinforcement Learning (RL) with Double Deep Q Network (DDQN) model. To train the agent, environment is split into sub problems.

Several rules and different reward functions defined for the sub problems. A developed mini deep learning library which is called gNet

is used for the training.

Keywords: artificial intelligence, deep learning, DDQN, gNet, reward function, sensor based.

Sensör Tabanlı DDQN Modeline Ödül Fonksiyonu Belirleme

Öz

Bu çalışmada DDQN Modeli ile Pekiştirmeli Öğrenme içerisinde 100 engeli/nesneyi geçmek üzere eğitilen ajanın uygun ödül

fonksiyonunun belirlenmesi amaçlanmaktadır. Ajanı eğitmek için çevre alt problemlere bölümüştür. Alt problemler için çeşitli kurallar

ve farklı ödül fonksiyonları tanımlanmıştır. Eğitim için gNet adında geliştirilmiş mini derin öğrenme kütüphanesi kullanılmıştır.

Anahtar Kelimeler: yapay zeka, derin öğrenme, DDQN, gNet, ödül fonksiyonu, sensor tabanlı

* Corresponding Author: gkcy.kbts@gmail.com

http://dergipark.gov.tr/ejosat
mailto:gkcy.kbts@gmail.com
mailto:gkcy.kbts@gmail.com
mailto:gkcy.kbts@gmail.com
mailto:gkcy.kbts@gmail.com

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 540

1. Introduction

Today, Artificial intelligence (AI) makes it possible for

computer to learn from past experience, adjust to new inputs and

perform several human-like tasks. The Reinforcement learning

[1] is one of the most popular artificial intelligence research areas

applied for this purpose. It aims to learn potential good policies

for sequential agent behaviours by optimizing a cumulative future

reward value.

Setting the reward function effects what the agent will learn.

Therefore, knowing of conditions of environment and

determining the appropriate reward function have a serious

impact on success.

Ratner [2] shows how to set reward function in robot arm

which has 7-DOF motion ability to have done required/intended

motion and effects of set reward functions in their study. The most

important result of Ratner's study is dividing the problem into sub-

problems with sub-reward functions. This sub-rewarding

approach has contribution to the success of agent.

Hu [3] show effects of arranging reward function. By

increasing positive rewards (or only rewards) and decreasing

negative rewards (or penalty) makes agent converge more

quickly.

In the study, the dividing approach proposed in [2] is used for

the rules of the environment and different reward functions are set

according to the approach proposed in [3]. Thereby, it is

examined how to determine the reward function which is an

important factor for Reinforcement Learning.

2. Environment

The environment created in Python with pygame library from

scratch. It is 2D game which main purpose is passing over

obstacles/objects. In our environment, the agent drives a car

which has a constant speed in 5 different actions which are

increasing speed, decreasing speed, move left, move right and do

nothing.

In Fig. 1, the screen of the game is shown. The mowing agent

interacts with the environment as it is seen in the screen. The

created objects have random sizes and locations in the screen.

This randomness brings a stochastic property to the environment.

There is no moving entity which has an ability to move.

The explanations below the screen are as follows:

 "Passed Object" represents the passed objects from

beginning of the episode,

 "Reward" represents the result of reward function at the

moment,

 "Epsilon" represents the willing of selecting random

action of model,

 "Score" represents the summation of rewards from

beginning of the episode,

 "Sensors" represents the instantaneous sensor values,

 "Action" represents the selected action,

 "Action Type" shows whether the selected action is

random or prediction of the model.

 An environment is created to implement RL problems with

Double Deep Q Network (DDQN) to decide which action does

the agent next. Aim of the study is setting the reward function that

can pass over 100 objects with the applied DDQN model. To

achieve this, agent should obey some rules. If the agent hit the

border of the screen or an object, then agent get penalty and start

next episode. If any of the sensors of the agent is turn into active,

then agent get penalty depends on how many sensors are turned

into active. Purpose of this rule are selecting the action which has

minimum risk; because if there is an active sensor, it means that

there is a probability of hitting and the agent get penalty. Agent

gets reward when it stays alive. Agent gets reward when pass over

an object. Yet, there is a constraint to accept passing over object.

The constraint is that, object should be perceived by one of the

sensors. If constraint has not occurred, then the agent gets

meaningless reward. To handle this possibility, that constraint is

considered. If agent pass over 100 objects, agent gets the big

reward and start next episode. Agent should have minimum speed

to move on.

Because of the agent perceiving the environment by its

sensors, the environment become partial observable. Also, the

actions of the agent are in discrete form.

The agent moves in pixelwise motion thus it doesn't have a

dynamic motion model in the environment. If the agent select to

move left, instead of turning front of the car, car moves along x

axis of screen in rigid form. This situation effects reward function

and inputs of the environment. The inputs will be explained in

next chapters.

3. Methodology

Main purpose of the RL is reaching maximum reward. To get

maximum reward, agent should select appropriate actions and

observes the action results.

3.1. Reward Function

Fig. 1 Screenshot of Environment.

European Journal of Science and Technology

e-ISSN: 2148-2683 541

Reward functions generally based on Markov Decision

Process (MDP) rules. MDP, prosses around Markovian property.

The meaning of Markovian property explained as 'next state is

depends on current state, not the previous states' in verbally. In

mathematical form of explanation shown as P[𝑆𝑡+1|𝑆𝑡] =
P[𝑆𝑡+1|𝑆𝑡 , … , 𝑆1]. P is probability of changing of state in time t to

time t+1.

Founded reward function with this structure of the MDP,

convert the P[𝑆𝑡+1|𝑆𝑡 , 𝑎𝑡] probability in form of 𝑅𝑡 =
E[𝑅𝑡+1|𝑆𝑡 , 𝑎𝑡] reward function. It means calculation of reward

which is taken in next state depends on the current state and

selected action.

The main purpose is reaching maximum reward. Therefore,

collection of reward in the future (𝐺𝑡) should be also in maximum.

Total reward in the future can be calculated as 𝐺𝑡 = 𝑅𝑡+1 +
γ𝑅𝑡+2 +⋯ = ∑γ𝑡+𝑘+1

𝑘𝑅 where discount factor γ in(0 < γ < 1).
The idea of the discount factor is there is no guarantee that next

reward will be more important than the current one.

Watkins [4] presents Q-Learning (QL) for appropriate action

selection by agent. QL means 'Quality Learning'. Agent observe

the state 𝑥𝑛 ∈ 𝑋 in its environment and select action 𝑎𝑛 ∈ 𝐴. After

that, the agent get reward from the environment's reward function

R(𝑥𝑛 , 𝑎𝑛).

The environment state change possibility according to

Prob[𝑦𝑛 = 𝑦|𝑥𝑛 , 𝑎𝑛] = 𝑃𝑥𝑛𝑦[𝑎𝑛] rule. Because of the change,

agent need to determine optimal policy (π⋆) to take maximum

reward. This policy where agent get rewards even reward

discounted by γ factor in time to get maximum reward.

Value of the state x in policy π is calculated by 𝑉π(𝑥) ≡

𝑅𝑥(π(𝑥)) + γ∑ 𝑃𝑥𝑦[π(𝑥)]𝑉
π(𝑦)𝑦 In Dynamic Programming

(DP) [5] theory, optimal policy π⋆ should be found. With this

policy, optimal value 𝑉⋆ ≡ 𝑉π⋆(𝑥) = ma𝑥𝑎{𝑅𝑥(𝑎) +

γ∑ 𝑃𝑥𝑦[𝑎]𝑉
π⋆(𝑦) 𝑦 } can be found. This equation called Belmann

Equation. Yet, in the equation, assumed 𝑅𝑥 and 𝑃𝑥𝑦[𝑎] are known.

The QL classified as an incremental DP problem; therefore, Q-

value or action-value become in the form of 𝑄π(𝑥, 𝑎) = R(𝑎) +
γ∑𝑃𝑥𝑦[𝑎]𝑉

π(𝑦).

3.2. Deep Q Network

Mnih [6] combine QL and Deep Learning (DL) approaches.

Their study effects in the Deep Reinforcement Learning (DRL)

which using RL with deep models and show its success. Network

structure which they establish in study called Deep Q Network

(DQN).

To find optimal Q-value, Belmann Equation still used. There

is an assumption for the Belmann Equation. If optimal value

𝑄⋆(𝑠′, 𝑎′) known at next state(𝑠′), optimal action (𝑎′)should be

selected. Therefore, expected value of r + γ𝑄⋆(𝑠′, 𝑎′) become

maximum. This makes 𝑄⋆(𝑠, 𝑎) =

𝐸𝑠′∼ε[𝑟 + γma𝑥𝑎′𝑄
⋆(𝑠′, 𝑎′)|𝑠, 𝑎] equality. This equality is

theoretically effective, but practically impractical because it can

not to generalize. To calculate Q-value, DL model is used. In

mathematical form Q(s, a; θ) ≈ Q⋆(s, a). After that, DL model

become function approximator of Q value.

θ is parameters of Q Network. To update these parameters,

loss function is selected as

𝐿𝑖(θ𝑖) = 𝐸𝑠,𝑎∼ρ(.) [(𝑦𝑖 − 𝑄(𝑠, 𝑎; θ𝑖))
2
]

𝑦𝑖 = 𝐸𝑠′∼ε[𝑟 + γ𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′; θ𝑖−1)|𝑠, 𝑎]

and tried minimize at every iteration. Ρ(𝑠, 𝑎) is a probability

distribution over environment ε and depending variables of s and

a. If DL model parameters updates at every iteration, model

became QL which present by Watkins.

Experience Replay Mechanism [7] is used for decrease

correlation between states which train the model. By using

Experience Replay Mechanism, DL model become general

function approximator. Mechanism works as putting actions and

states at the past into buffer memory which also called Replay

Buffer, and take some random samples (or batches) from buffer

during training.

The most critical point in DQL algorithm is calculation of

loss function 𝐿𝑖. 𝑦𝑖 is a label which also used in supervised

learning. This label calculated by Q-value function. To calcualte

Q-value function, reward is used. Therefore, appropriate reward

function and appropriate DQN model is effects success of agent.

3.3. Double Deep Q Network

Van Hasselt [8] present a developed version of DQN. Instead

of using one Q Network, Van Hasselt suggest two Q Networks.

This approach called Double Deep Q Network (DDQN). In the

structure of DDQN, there is twin Q Networks. Algorithm is very

similar to DQN algorithm, and the difference are calculation of 𝑦𝑖

and equalize parameters of twin networks at some points.

𝑦𝑖 function for DDQN in form of

𝑦𝑖 = 𝐸𝑠𝑖+1∼ε[𝑟𝑖+1 + γ𝑄𝑇(𝑠𝑖+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄
𝐸(𝑠𝑖+1, 𝑎

′))].

𝑄𝐸 and 𝑄𝑇 represents evaluation network and target network

respectively. Training is provided through the evaluation network.

At some points, the evaluation network's parameters transferred

to the target network. With this structure, state evaluated by the

evaluation network and its value calculated by the target network.

These twin networks makes more stabilized policy development.

Therefore, DDQN selected in this study.

In two Q Network structure, there is an ϵ − greedy. ϵ is an

probability of exploration of agent. Generally, it starts with higher

values such as 1, then decrease. This helps the agent explore the

environment at the beginning of the training. By decreasing the ϵ

during training, agent starts deciding action by using its policy.

4. Experiments

In the experiments, Python selected as programming

language, NumPy used as a linear algebraic operation library and

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 542

the whole mathematical applications applied with gNet [9] which

is a CPU based mini deep learning library developed by the

author.

The parameters selected during the application can be listed

as follows. Mini batch size is 64, learning rate is 5e-6, initial ϵ is

1, β is 0.996, ϵ𝑚𝑖𝑛 is 0.01, γ is 0.99, N is 1e6. DL model for

DDQN structure as follow.

Layer Neuron Number

Flatten

Dense: ReLU 256

Dense: ReLU 256

Dense: None 5

Output layer has 5 neuron which is equal to number of

possible actions. Accepted input by model is combination of 16

sensor data and 1 normalized passed object number. This

combination makes an input vector which has 17 elements in it.

16 sensor data are generated when the agent detects the object or

environment boundaries/border and generates values depending

on the distance between [0,1]. To these data, 𝒩(0,1) noise which

represents faulty measurement also added. Also, there is a 15%

possibility of adding 𝒩(0.01,1) noise which represents

malfunction of sensors. With these noises, possibility of faulty

sensor measurement and mulfunctionality can modelled.

For loss function in DDQN, "Mean Square Error (mse)"

which built-in in gNet selected. Adam [10] selected as optimizer.

4.1. Setting Reward Function

 Reward function depends on the environment rules and they

are divided into sub-problems. There are two reward functions.

𝑅1 is standard reward function. The rewards and penalties are

defined as:

 If agent hit boundaries of the environment or objects,

agent gets 1 penalty points and start next episode,

 If agent's sensors are become active, agent gets
0.1

#𝑎𝑐𝑡_𝑠𝑒𝑛

penalty points,

 Agent gets 0.01 reward points for each moment of being

alive,

 Agent gets 1 reward points for passing an object,

 If agent pass over 100 objects, gets 100 reward points

and start next episode.

𝑅2 reward function is application of Zijian et al. approach which

increase rewards and decrease penalty. The rewards and penalties

are defined as:

European Journal of Science and Technology

e-ISSN: 2148-2683 543

 If agent hit boundaries of the environment or objects,

agent gets (1 −
#𝑝𝑎𝑠𝑠𝑜𝑏𝑗

100
) penalty points and start next

episode,

 If agent's sensors are become active, agent gets
0.1

#𝑎𝑐𝑡𝑠𝑒𝑛
∗

√∑ 𝑠𝑒𝑛𝑣𝑎𝑙penalty points,

 Agent gets 0.01 ∗
(100+#𝑝𝑎𝑠𝑠𝑜𝑏𝑗)

100
reward points for each

moment of being alive,

 Agent gets
#𝑝𝑎𝑠𝑠𝑜𝑏𝑗

100
 reward points for passing an object,

 If agent pass over 100 objects, gets 100 reward points

and start next episode.

#𝑎𝑐𝑡_𝑠𝑒𝑛, #𝑝𝑎𝑠𝑠𝑜𝑏𝑗 and 𝑠𝑒𝑛𝑣𝑎𝑙 represents active sensor number,

passes object number and sensor values respectively. In this

reward function, increasing rewards and decreasing penalty

during time by using #𝑝𝑎𝑠𝑠𝑜𝑏𝑗 and makes them dynamic.

5. Results and Discussion

 In this study, the agent's environment is created from scratch

and the agent is put into the environment to learn under

required/intended conditions then understand how to set

appropriate reward function. Also, understand the effects of

reward function. Therefore, the effect of 𝑅1 and 𝑅2 reward

functions on success are examined over 4 different variables.

Fig. 2Average Passed Object.

Fig. 2 shows average passed objects with respect to episodes.

The orange curve represents 𝑅2 reward function, and it shows how

effects increasing the rewards and decreasing the penalty for agent

performance. General trend of two curves are increasing over

episodes; yet, agent with 𝑅2 reward function has better

performance. In the study, the training process has 350 episodes.

If the episodes are increased, then there is a probability of having

state-of-art performance. The state-of-art performance is defined

as 99 average passed objects. Here, average means that the value

calculated in the last 100 episodes.

Fig. 3Average Score.

Fig. 3 shows how the obtained scores change during the

episodes. Here, the score defined the total reward of the desired

episode. The orange curve represents the 𝑅2 reward function.

General trend of two curves are increasing over episodes; yet,

agent with 𝑅2 reward function has better performance.

Fig. 4 Passed Object for Each Episode.

Fig. 4 shows how many object the agent passed in each

episode. The orange curve represents 𝑅2 reward function. At the

initial episodes, it was observed that both 𝑅1 and 𝑅2 curves are

overlapped and then diverged over time. Also, agent with 𝑅2

reward function reach to big reward in most of the time.

Fig. 5 shows the obtained scores for each episode. The orange

curve represents 𝑅2 reward function. In the beginning, it was

observed that both lines overlapped and diverged over time. Also,

agent with 𝑅2 reward function has a lot score most of the times.

6. Conclusion

Consequently, it is detected that, differences in reward

functions has serious impact on training. And also, setting

appropriate reward function which is sensitive and challenging

task is very important. In this study, it is concluded that dividing

sub-problems and arrange reward function by increased reward

and decreasing penalty is effective on the performance of agent.

As a future work, we intend to train a vehicle which has RL model

with dynamic motion model. In this way, we aim to get one step

closer to the solution of real problems with the vehicle with

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 544

dynamic motion model. In addition, it is also aimed to find a

general solution by making the environment more stochastic.

Fig. 5 Scores for Each Episode.

References

[1] R. S. Sutton and A. G. Barto, Introduction to Reinforcement

Learning, MIT Press, 1998.

[2] E. Ratner, D. Hadfield-Menell and A. D. Dragan,

“Simplifying Reward Design through Divide-and-Conquer,”

CoRR, vol. abs/1806.02501, 2018, [Online]

http://arxiv.org/abs/1806.02501.

[3] Z. Hu, K. Wan, X. Gao, and Y. Zhai, “A Dynamic Adjusting

Reward Function Method for Deep Reinforcement Learning

with Adjustable Parameters,” Mathematical Problems in

Engineering, vol. 2019, pp. 1-10, DOI:

10.1155/2019/7619483.

[4] C. J. C. H. Watkins and P. Dayan, “Q-Learning,” Machine

Learning, vol. 8, 1992, pp. 279-292.

[5] R. E. Bellmann and S. E. Dreyfus, Applied Dynamic

Programming, Princeton, NJ, USA: Princeton University

Press, 1962.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.

Antonoglou, D. Wierstra and M. Riedmiller, "Playing Atari

with Deep Reinforcement Learning," CoRR, vol.

abs/1312.5602, 2013, [Online]

https://arxiv.org/abs/1312.5602

[7] L. Lin, “Reinforcement Learning for Robots Using Neural

Networks,” Ph.D. dissertation, School of Computer Science,

Carnegie Mellon Univ., Pittsburgh, PA, USA, 1993.

[8] H. van Hasselt, A. Guez, D. Silver, "Deep Reinforcement

Learning with Double Q-Learning," in Proc. of the AAAI

Conference on Artificial Intelligence, vol. 30, No.1, 2016,

[Online] https://arxiv.org/abs/1509.06461

[9] gNet, Avalaible: https://github.com/MGokcayK/gNet.

[10] D. P. Kingma, J. Ba, (2014, 12), Adam: A Method for

Stochastic Optimization in International Conference on

Learning Representations, [Online]

https://arxiv.org/abs/1412.6980.

http://arxiv.org/abs/1806.02501
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1509.06461
https://github.com/MGokcayK/gNet
https://arxiv.org/abs/1412.6980

