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Abstract 

In this study, it is aimed to determine the appropriate reward function of the agent which trained to pass 100 obstacles/objects in 

Reinforcement Learning (RL) with Double Deep Q Network (DDQN) model. To train the agent, environment is split into sub problems. 

Several rules and different reward functions defined for the sub problems. A developed mini deep learning library which is called gNet 

is used for the training. 

Keywords: artificial intelligence, deep learning, DDQN, gNet, reward function, sensor based.   

Sensör Tabanlı DDQN Modeline Ödül Fonksiyonu Belirleme 

Öz 

Bu çalışmada DDQN Modeli ile Pekiştirmeli Öğrenme içerisinde 100 engeli/nesneyi geçmek üzere eğitilen ajanın uygun ödül 

fonksiyonunun belirlenmesi amaçlanmaktadır. Ajanı eğitmek için çevre alt problemlere bölümüştür. Alt problemler için çeşitli kurallar 

ve farklı ödül fonksiyonları tanımlanmıştır. Eğitim için gNet adında geliştirilmiş mini derin öğrenme kütüphanesi kullanılmıştır. 

 

Anahtar Kelimeler: yapay zeka, derin öğrenme, DDQN, gNet, ödül fonksiyonu, sensor tabanlı 
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1. Introduction 

Today, Artificial intelligence (AI) makes it possible for 

computer to learn from past experience, adjust to new inputs and 

perform several human-like tasks. The Reinforcement learning 

[1] is one of the most popular artificial intelligence research areas 

applied for this purpose. It aims to learn potential good policies 

for sequential agent behaviours by optimizing a cumulative future 

reward value.  

Setting the reward function effects what the agent will learn. 

Therefore, knowing of conditions of environment and 

determining the appropriate reward function have a serious 

impact on success.  

Ratner [2] shows how to set reward function in robot arm 

which has 7-DOF motion ability to have done required/intended 

motion and effects of set reward functions in their study. The most 

important result of Ratner's study is dividing the problem into sub-

problems with sub-reward functions. This sub-rewarding 

approach has contribution to the success of agent.  

Hu [3] show effects of arranging reward function. By 

increasing positive rewards (or only rewards) and decreasing 

negative rewards (or penalty) makes agent converge more 

quickly.  

In the study, the dividing approach proposed in [2] is used for 

the rules of the environment and different reward functions are set 

according to the approach proposed in  [3]. Thereby, it is 

examined how to determine the reward function which is an 

important factor for Reinforcement Learning.  

2. Environment 

The environment created in Python with pygame library from 

scratch. It is 2D game which main purpose is passing over 

obstacles/objects.  In our environment, the agent drives a car 

which has a constant speed in 5 different actions which are 

increasing speed, decreasing speed, move left, move right and do 

nothing.    

In Fig. 1, the screen of the game is shown. The mowing agent 

interacts with the environment as it is seen in the screen. The 

created objects have random sizes and locations in the screen. 

This randomness brings a stochastic property to the environment.  

There is no moving entity which has an ability to move.  

The explanations below the screen are as follows: 

 "Passed Object" represents the passed objects from 

beginning of the episode, 

 "Reward" represents the result of reward function at the 

moment, 

 "Epsilon" represents the willing of selecting random 

action of model, 

 "Score" represents the summation of rewards from 

beginning of the episode, 

 "Sensors" represents the instantaneous sensor values, 

 "Action" represents the selected action, 

 "Action Type" shows whether the selected action is 

random or prediction of the model. 

 An environment is created to implement RL problems with 

Double Deep Q Network (DDQN) to decide which action does 

the agent next. Aim of the study is setting the reward function that 

can pass over 100 objects with the applied DDQN model. To 

achieve this, agent should obey some rules. If the agent hit the 

border of the screen or an object, then agent get penalty and start 

next episode. If any of the sensors of the agent is turn into active, 

then agent get penalty depends on how many sensors are turned 

into active. Purpose of this rule are selecting the action which has 

minimum risk; because if there is an active sensor, it means that 

there is a probability of hitting and the agent get penalty. Agent 

gets reward when it stays alive. Agent gets reward when pass over 

an object. Yet, there is a constraint to accept passing over object. 

The constraint is that, object should be perceived by one of the 

sensors. If constraint has not occurred, then the agent gets 

meaningless reward. To handle this possibility, that constraint is 

considered. If agent pass over 100 objects, agent gets the big 

reward and start next episode. Agent should have minimum speed 

to move on.  

Because of the agent perceiving the environment by its 

sensors, the environment become partial observable.  Also, the 

actions of the agent are in discrete form.  

The agent moves in pixelwise motion thus it doesn't have a 

dynamic motion model in the environment. If the agent select to 

move left, instead of turning front of the car, car moves along x 

axis of screen in rigid form. This situation effects reward function 

and inputs of the environment. The inputs will be explained in 

next chapters. 

3. Methodology 

Main purpose of the RL is reaching maximum reward. To get 

maximum reward, agent should select appropriate actions and 

observes the action results.  

3.1. Reward Function  

Fig. 1 Screenshot of Environment. 
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Reward functions generally based on Markov Decision 

Process (MDP) rules. MDP, prosses around Markovian property. 

The meaning of Markovian property explained as 'next state is 

depends on current state, not the previous states' in verbally. In 

mathematical form of explanation shown as  P[𝑆𝑡+1|𝑆𝑡] =
P[𝑆𝑡+1|𝑆𝑡 , … , 𝑆1]. P is probability of changing of state in time t to 

time t+1. 

Founded reward function with this structure of the MDP, 

convert the P[𝑆𝑡+1|𝑆𝑡 , 𝑎𝑡] probability in form of 𝑅𝑡 =
E[𝑅𝑡+1|𝑆𝑡 , 𝑎𝑡] reward function. It means calculation of reward 

which is taken in next state depends on the current state and 

selected action.  

The main purpose is reaching maximum reward. Therefore, 

collection of reward in the future (𝐺𝑡) should be also in maximum. 

Total reward in the future can be calculated as 𝐺𝑡 = 𝑅𝑡+1 +
γ𝑅𝑡+2 +⋯ = ∑γ𝑡+𝑘+1

𝑘𝑅  where discount factor γ in(0 < γ < 1). 
The idea of the discount factor is there is no guarantee that next 

reward will be more important than the current one.  

Watkins [4] presents Q-Learning (QL) for appropriate action 

selection by agent. QL means 'Quality Learning'. Agent observe 

the state 𝑥𝑛 ∈ 𝑋 in its environment and select action 𝑎𝑛 ∈ 𝐴. After 

that, the agent get reward from the environment's reward function 

R(𝑥𝑛 , 𝑎𝑛). 

The environment state change possibility according to  

Prob[𝑦𝑛 = 𝑦|𝑥𝑛 , 𝑎𝑛] = 𝑃𝑥𝑛𝑦[𝑎𝑛] rule. Because of the change, 

agent need to determine optimal policy (π⋆) to take maximum 

reward. This policy where agent get rewards even reward 

discounted by γ factor in time to get maximum reward. 

Value of the state x in policy π is calculated by 𝑉π(𝑥) ≡

𝑅𝑥(π(𝑥)) + γ∑ 𝑃𝑥𝑦[π(𝑥)]𝑉
π(𝑦)𝑦  In Dynamic Programming 

(DP) [5] theory, optimal policy π⋆ should be found. With this 

policy, optimal value 𝑉⋆ ≡ 𝑉π⋆(𝑥) = ma𝑥𝑎{𝑅𝑥(𝑎) +

γ∑ 𝑃𝑥𝑦[𝑎]𝑉
π⋆(𝑦) 𝑦 } can be found. This equation called Belmann 

Equation. Yet, in the equation, assumed 𝑅𝑥 and 𝑃𝑥𝑦[𝑎] are known. 

The QL classified as an incremental DP problem; therefore, Q-

value or action-value become in the form of 𝑄π(𝑥, 𝑎) = R(𝑎) +
γ∑𝑃𝑥𝑦[𝑎]𝑉

π(𝑦). 

3.2. Deep Q Network 

Mnih [6] combine QL and Deep Learning (DL) approaches. 

Their study effects in the Deep Reinforcement Learning (DRL) 

which using RL with deep models and show its success. Network 

structure which they establish in study called Deep Q Network 

(DQN). 

To find optimal Q-value, Belmann Equation still used. There 

is an assumption for the Belmann Equation. If optimal value 

𝑄⋆(𝑠′, 𝑎′) known at next state(𝑠′), optimal action (𝑎′)should be 

selected. Therefore, expected value of r + γ𝑄⋆(𝑠′, 𝑎′) become 

maximum. This makes 𝑄⋆(𝑠, 𝑎) =

𝐸𝑠′∼ε[𝑟 + γma𝑥𝑎′𝑄
⋆(𝑠′, 𝑎′)|𝑠, 𝑎] equality. This equality is 

theoretically effective, but practically impractical because it can 

not to generalize. To calculate Q-value, DL model is used. In 

mathematical form Q(s, a; θ) ≈ Q⋆(s, a). After that, DL model 

become function approximator of Q value. 

θ is parameters of Q Network. To update these parameters, 

loss function is selected as 

𝐿𝑖(θ𝑖) = 𝐸𝑠,𝑎∼ρ(.) [(𝑦𝑖 − 𝑄(𝑠, 𝑎; θ𝑖))
2
] 

𝑦𝑖 = 𝐸𝑠′∼ε[𝑟 + γ𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′; θ𝑖−1)|𝑠, 𝑎] 

and tried minimize at every iteration. Ρ(𝑠, 𝑎) is a probability 

distribution over environment ε and depending variables of s and 

a. If DL model parameters updates at every iteration, model 

became QL which present by Watkins.  

Experience Replay Mechanism [7] is used for decrease 

correlation between states which train the model. By using 

Experience Replay Mechanism, DL model become general 

function approximator. Mechanism works as putting actions and 

states at the past into buffer memory which also called Replay 

Buffer, and take some random samples (or batches) from buffer 

during training.  

The most critical point in DQL algorithm is calculation of 

loss function 𝐿𝑖. 𝑦𝑖  is a label which also used in supervised 

learning. This label calculated by Q-value function. To calcualte 

Q-value function, reward is used. Therefore, appropriate reward 

function and appropriate DQN model is effects success of agent. 

3.3. Double Deep Q Network 

Van Hasselt [8] present a developed version of DQN. Instead 

of using one Q Network, Van Hasselt suggest two Q Networks. 

This approach called Double Deep Q Network (DDQN). In the 

structure of DDQN, there is twin Q Networks. Algorithm is very 

similar to DQN algorithm, and the difference are calculation of 𝑦𝑖  

and equalize parameters of twin networks at some points. 

𝑦𝑖  function for DDQN in form of  

𝑦𝑖 = 𝐸𝑠𝑖+1∼ε[𝑟𝑖+1 + γ𝑄𝑇(𝑠𝑖+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄
𝐸(𝑠𝑖+1, 𝑎

′))].  

𝑄𝐸  and 𝑄𝑇  represents evaluation network and target network 

respectively. Training is provided through the evaluation network. 

At some points, the evaluation network's parameters transferred 

to the target network. With this structure, state evaluated by the 

evaluation network and its value calculated by the target network. 

These twin networks makes more stabilized policy development. 

Therefore, DDQN selected in this study. 

In two Q Network structure, there is an ϵ − greedy. ϵ is an 

probability of exploration of agent. Generally, it starts with higher 

values such as 1, then decrease. This helps the agent explore the 

environment at the beginning of the training. By decreasing the ϵ 

during training, agent starts deciding action by using its policy. 

4. Experiments  

In the experiments, Python selected as programming 

language, NumPy used as a linear algebraic operation library and 
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the whole mathematical applications applied with gNet [9] which 

is a CPU based mini deep learning library developed by the 

author. 

The parameters selected during the application can be listed 

as follows. Mini batch size is 64, learning rate is 5e-6, initial ϵ is 

1, β is 0.996, ϵ𝑚𝑖𝑛 is 0.01, γ is 0.99, N is 1e6. DL model for 

DDQN structure as follow. 

Layer Neuron Number 

Flatten  

Dense: ReLU 256 

Dense: ReLU 256 

Dense: None 5 

Output layer has 5 neuron which is equal to number of 

possible actions. Accepted input by model is combination of 16 

sensor data and 1 normalized passed object number. This 

combination makes an input vector which has 17 elements in it. 

16 sensor data are generated when the agent detects the object or 

environment boundaries/border and generates values depending 

on the distance between [0,1]. To these data, 𝒩(0,1) noise which 

represents faulty measurement also added. Also, there is a 15% 

possibility of adding 𝒩(0.01,1) noise which represents 

malfunction of sensors. With these noises, possibility of faulty 

sensor measurement and mulfunctionality can modelled. 

For loss function in DDQN, "Mean Square Error (mse)" 

which built-in in gNet selected. Adam [10] selected as optimizer. 

4.1. Setting Reward Function 

 Reward function depends on the environment rules and they 

are divided into sub-problems. There are two reward functions. 

𝑅1 is standard reward function. The rewards and penalties are 

defined as: 

 If agent hit boundaries of the environment or objects, 

agent gets 1 penalty points and start next episode, 

 If agent's sensors are become active, agent gets 
0.1

#𝑎𝑐𝑡_𝑠𝑒𝑛
 

penalty points, 

 Agent gets 0.01 reward points for each moment of being 

alive, 

 Agent gets 1 reward points for passing an object, 

 If agent pass over 100 objects, gets 100 reward points 

and start next episode. 

𝑅2 reward function is application of Zijian et al. approach which 

increase rewards and decrease penalty. The rewards and penalties 

are defined as: 
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 If agent hit boundaries of the environment or objects, 

agent gets  (1 −
#𝑝𝑎𝑠𝑠𝑜𝑏𝑗

100
)  penalty points and start next 

episode, 

 If agent's sensors are become active, agent gets 
0.1

#𝑎𝑐𝑡𝑠𝑒𝑛
∗

√∑ 𝑠𝑒𝑛𝑣𝑎𝑙penalty points,  

 Agent gets 0.01 ∗
(100+#𝑝𝑎𝑠𝑠𝑜𝑏𝑗)

100
reward points for each 

moment of being alive, 

 Agent gets 
#𝑝𝑎𝑠𝑠𝑜𝑏𝑗

100
 reward points for passing an object,  

 If agent pass over 100 objects, gets 100 reward points 

and start next episode. 

#𝑎𝑐𝑡_𝑠𝑒𝑛, #𝑝𝑎𝑠𝑠𝑜𝑏𝑗 and 𝑠𝑒𝑛𝑣𝑎𝑙 represents active sensor number, 

passes object number and sensor values respectively. In this 

reward function, increasing rewards and decreasing penalty 

during time by using #𝑝𝑎𝑠𝑠𝑜𝑏𝑗 and makes them dynamic. 

5. Results and Discussion 

 In this study, the agent's environment is created from scratch 

and the agent is put into the environment to learn under 

required/intended conditions then understand how to set 

appropriate reward function. Also, understand the effects of 

reward function. Therefore, the effect of 𝑅1 and 𝑅2 reward 

functions on success are examined over 4 different variables. 

 

Fig. 2Average Passed Object. 

Fig. 2 shows average passed objects with respect to episodes. 

The orange curve represents 𝑅2 reward function, and it shows how 

effects increasing the rewards and decreasing the penalty for agent 

performance. General trend of two curves are increasing over 

episodes; yet, agent with 𝑅2 reward function has better 

performance. In the study, the training process has 350 episodes. 

If the episodes are increased, then there is a probability of having 

state-of-art performance. The state-of-art performance is defined 

as 99 average passed objects. Here, average means that the value 

calculated in the last 100 episodes. 

 

Fig. 3Average Score. 

Fig. 3 shows how the obtained scores change during the 

episodes. Here, the score defined the total reward of the desired 

episode. The orange curve represents the 𝑅2 reward function. 

General trend of two curves are increasing over episodes; yet, 

agent with 𝑅2 reward function has better performance. 

 

Fig. 4 Passed Object for Each Episode. 

Fig. 4 shows how many object the agent passed in each 

episode. The orange curve represents 𝑅2 reward function. At the 

initial episodes, it was observed that both 𝑅1 and 𝑅2 curves are 

overlapped and then diverged over time. Also, agent with 𝑅2 

reward function reach to big reward in most of the time.   

Fig. 5 shows the obtained scores for each episode. The orange 

curve represents 𝑅2 reward function. In the beginning, it was 

observed that both lines overlapped and diverged over time. Also, 

agent with 𝑅2 reward function has a lot score most of the times. 

6. Conclusion 

Consequently, it is detected that, differences in reward 

functions has serious impact on training. And also, setting 

appropriate reward function which is sensitive and challenging 

task is very important. In this study, it is concluded that dividing 

sub-problems and arrange reward function by increased reward 

and decreasing penalty is effective on the performance of agent. 

As a future work, we intend to train a vehicle which has RL model 

with dynamic motion model. In this way, we aim to get one step 

closer to the solution of real problems with the vehicle with 
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dynamic motion model. In addition, it is also aimed to find a 

general solution by making the environment more stochastic. 

 

Fig. 5 Scores for Each Episode. 
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