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Abstract

This paper is motivated to define the space AS(W)Z;_‘Z{(R) using the wavelet transform, and is also motivated to consider the
inclusion and compact embedding theorems in this space.
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Dalgacik Doniisiimleri Amalgam Uzaylarinda Olan Fonksiyon
Uzaylari icin Kompakt Gomiilme Teoremleri

Oz
Bu calisma dalgacik doniigiimii kullanarak AS(W)Z'EJ(R) uzaymi tammlamak ve ayrica bu uzayda kapsama, kompakt gomiilme
teoremlerini incelemek i¢in motive edilmistir.
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1. Introduction

In this paper, the space C°(R) denotes the space of
infinitely differentiable complex-valued functions with compact
supported on R (Gasquet & Witomski, 1999). The parameters in
wavelet theory are “time” x and “scale” s. The translation
operator T, is defined by

T f(8) = f(t—x)

forall x,t € R. The dilation operator D, is given by

D,f @) = Is 7 (%)

for all t € R, 0 # s € R. The dilation operator preserves the
shape of signals and also changes the scale. This operator acts as
a microscope. The continuous wavelet transform of a function f
with respect to wavelet g is defined by forx e Rand 0 #s € R

Wf Ges) = IsI2 fy f0) g () ae

=f*Dsg"(x),

where g*(t) = g(—t) (Grochenig, 2001). This transform gives
local information of signals of any size and any time. The
continuous wavelet transform of the translation of a signal is

VK;(YEf) ==7kzo)VK§f
forany z € R (Kulak & Giirkanli, 2011).
Let g4, 9> € L>(R). Then the conditions

fooo Igl(sw)gz(sw)lds <
S

and

foo 917574))5927571)) d

0 s = K (independent of w)

is said the wavelet admissibility condition (Daubechies, 1992;
Grodchenig, 2001; Mallat, 1998). Assume that g;, g, € L*(R)
satisfy the admissibility condition. Then we have

Iy J WafrGe )Wy, fo(x, ) 557 = K{fi, f2)

for all fi,f, € L*(R) (Daubechies, 1992; Grdchenig, 2001;
Mallat, 1998). Also the function f € L2(R) is reconstructed
from it’s the wavelet transform by

dxds

1 dxd
f=xlp Iy Wouf (6. 9)TDs 925,

where g,,g, € L?(R) satisfy the admissibility condition

(Daubechies, 1992; Grochenig, 2001; Mallat, 1998). If the

function ® is positive real valued, measurable and locally
bounded on R and satisfies the following inequalities

wx)Z21Lwk+y) <w®wly)

for all x,y € R (Reiter, 1968), then the function w is called
weight function. Also the weight function

w) =1+ [xD*

e-ISSN: 2148-2683

is called weight of polynomial type such that x € R and a > 0.
If the weight functions w; and w, satisfy the condition w; (x) <
Cw,(x), (C > 0) for all x € R, then this condition is denoted by
the symbol w; < w,. Moreover if the weight functions w, and
w, are equivalent, we write that w; = w, if and only if w; <
w, and w, < w;. The space LP(R), (1< p < o) denotes the
usual Lebesgue space (Reiter, 1968). For 1<p < oo, the
weighted Lebesgue space is defined by P (R) = {f:fw €
LP(R)} (Reiter, 1968). The space (LP(R)), . consists of classes
of measurable functions f on R such that fy, € L?(R) for any
compact subset K < R. Fix a compact Qc R and Q° # 0.
Assume that 9 is weight function. The weighted weighted
amalgam space W (L9, L%) is space of all f € (Lq(JR)) e !
where F(z) = ||sz+Q||q is in L (R). The norm of this space
is given by

1wy = 1l o = 1 2esel, ||

forall f € W(L9,L}y) (Heil, 2003).

2. On The Space A;(W)"" qr(]R%)

Let 1 <p,q,r <o and w,9 be weight functions on R.
Suppose that 0 = g € S(R) and s € R*. We set

AWV (R) = {f € L, (R): W, f € W(L9, L)}

and equip this vector space with the following norm

“f“As(W)E)%T = ”f”p,w + ”Vl(gf”W(Lq,LQ)

The space A;(W)%%"(R) is normed Banach space with this
norm.
Theorem 2.1

Let w,9 be weight functions of polynomial type. The space
CZ(R) is dense in A, (W) %" (R).

Proof. Take any h € CZ(R). Then we have h € L? (R). On the
other hand by (Feichtinger, 1980), we get

”Wyh”W(L'I,LE) = llh* Dsg"llw(ra,n)
< Irllw(sa,pIDsg" s < o0
for some C > 0. So we write W, f € W(L9,Ly).  Then we find
he A,(W)P%" (R) and
C2(R) c A,(W)0% (R).
Assume that he A,(W)PE'(R). That means he

LP (R) and Wyh € W(L, Ly). It is known that C°(R) is dense

in the spaces L” (R) and W(L4,L%) (Kulak & Giirkanl, 2013;
Kulak & Giirkanli, 2014). Then there exist (h,)nens (f)nen €
CZ(R) such that

”hn - h”p,(u - 0! ”fn

From the subsequence property, we achieve a subsequence
(fnk)nkeN c € (R) such that f,,, = W,h,, and

Wyh|| - 0.

w(L9,Ly)
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||fnk - M/gh”W(L‘?,LQ) -0,

where (hnk)nkel\l c (hy)nen- Hence we get
”hnk - f” AS(W)Z;%'T -0
and (hnk)

2R = A,WMEY (R).

M= C(R). Finally we obtain

Theorem 2.2
A;(W)HP%"(R) is Banach function space.

Proof. Take any f € A;(W)5%"(R). Then there exists € > 0
such that

[ 1rtar < Clfil, < {1flan + 1, 0,0}
= C”f”A (W)p'q'r

On the other hand since  A;(W)%%" (R) is Banach space and by
the above inequality, we obtain that the space A (W)” "(R) is
Banach function space.

Theorem 2.3

The space A;(W)P%"(R) is invariant under translations.
Moreover For every 0 # f € A,(W),%"(R) and s € R,, there
exists C(f) > 0 such that

CHOE TN 4y uypar

< (w(2) +9(z, S))IlfllAs(W)v'q'T-

Proof. Let fe A;(W)P% (R) be given. Then we have

f €L, (R) and W, f € W(L9,L). It is known that
T, fllp0 < @@Ifllpe0

and T,f € L (R) for all z€ R% (Fischer, Giirkanli & Liu,
1996). From the equality W, (T, f) = T, W, f, we achieve

(2.1)

”VI{G(TZf)Hw(Lq’Lg) = ﬁ(Z)H%fllw(LQ_L:;) (22)
for all z € R (Heil, 2003). So by (2.1) and (2.2), we get

N f gy = WTef lpo + I Tef Il )

< 0@Ifllpw + 9@ | Wyf]| (23)

w(L9,Ly)’
Hence we find T,f € A,(W)L%" (R).

Now we take 0% f€ A,(W)r% (R). We know by

(Fischer, Giirkanli & Liu, 1996) that there exists C(f) > 0 such
that

CHw@) ST, fllpw < 0@ llpw-
Using by the inequalities (2.3) and (2.4), we have

C(Nw1(2) < 0@Dfllpw + 9@ Wef ||

= w(z)||f|| AS(W)Z)'%T + 19(Z)||f|| AS(W)Z’,Z?J

(2.4)

w(L9,Ly)
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:((1)(2) + 19(Z))”f” AS(W)Z;Zér'

3. Compact Embedding and Inclusion
Theorems

Lemma 3.1

Assume that (f,,)ney is a sequence in A;(W)P %" (R). If (f)nen
converges to zero in A;(W)%%" (R), then

| megdx -0
R

forn - co and for all g € C.(R).

Proof. Letg € C.(R) and % +§ = 1. Then we write

iy f@g@ax| < glsfull,

< Ngllslfull gy (31)

Since (fo)new is @ sequence in A,(W)?%"(R) and by (3.1), we
obtain
Jo 2 g(x)dx -0
forn - co and for all g € C.(R).
Theorem 3.2 If w, < w; and 9, < Y, then
AW (R) € A(W)HpTy (R)

w2,9;
holds.

Proof. Since w, < w; and 9, < Y, there exist C;,C, > 0 such
that

w,(x) < Crw;(x)
and
Y, (x) < G0, (x)
forall x € R. Takeany f € A (W)”‘” (R). Then we have

f €15, (R) and W,f € W(L9, Ly, ).

Thus we get
I lpw, < Cillfllpw,
and
”Vl/gfnw(LQ_LT CZHWf” LqLT ) '

Sowe find f € A,(W)P?¢ (R). Hence we achieve

w1,91

A,(W Mg (R) € A, (W)P%% (R).

w2,92

The compact embedding theorems have been studied in a
number of papers (Giirkanh, 2008; Kulak & Giirkanli, 2011;
Unal & Aydin, 2019). Now let's give theorems that show in
which cases compact embedding will not occur.

Theorem 3.3

Let w,9 be weight functions of polynomial type and let ¢ be

. . @ (x)
weight function on R. If ¢ < w and Py
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then the embedding of the space A (W)p
never compact.

"(R) into LY, (R) is

Proof. If we use the assumption < w , we say that there exists
C:>0 such that ¢ (x) < C;w(x) for all x € R. So we have

A, W)U (R) c LY, (R).

Let (u,)nen be a sequence with u,, —» o0 as n — oo in R. From

the assumption — 29 __ 4oes not tend to zero as x — oo, there
w(x)+9(x,s)

exists § > 0 such that%_ 5 > 0 for x - oo, Fixed f €

A;(W)HPST(R) and u, € R,.. Now we take a sequence (fy)nen
such that

= () + 9y u)) Ty, f-
By Theorem 2.3, we achieve

”fn” As(W)Z,'Zg'r

= || (@) + 9Cun 1)) To f

| Asw)g %
-1
= ((D(un) + 19(”11, uo)) ”Tunf”As(W)z,%r

< (0 (up) + 9t 1))~ (@(utn) +

+ (9t u)IF Il g, 23
= I AP

So we find that this sequence is bounded in A,(W)L %" (R).
Now we will show that there wouldn't exist norm convergence
subsequence of (f;)pey IN LZ, (R). Therefore we find

|fip fu(0)gGdx]
1 f]R |

~ wup)+9(unio)

T f (0|19 () |dx
gl |l unf”

— w(up )+19(u o)

gl || 1l (32)

a)(un)+19(unu )
where i + % =1 for all g € C.(R). So by inequality (3.2) tends
zero for n — oo, then we obtain

Jo fn@)g(x)dx - 0.

From Lemma 3.1, the only possible limit of (f,,),ey IN LZ,(]R) is
zero. Since the following equivalence

”Tunf”p ~ (p(u):
there exist C;, C, > 0 such that

o) < T fl,, 3)

< Cz‘P(un)-

If we use the inequality (3.3) and Lemma 3.1, then we achieve

f]
b.¢

1fallpp = || (@) + 9 1)) T,
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= (@) + 9t u) T f,,

> € () (0(atn) + 9t 1))

On the other hand since the following inequality

(3.4)

¢(x)
w(x)+9(x,s) 26>0

for all u,,, and by the inequality (3.4), we find

fallp.o

That means there would not be possible to find norm
convergent subsequence of (f,)nen IN Lfa(]R{).

> € () (@) + 0y 1)) > 8C; > 0.

Theorem 3.4

Suppose that w,,9; are weight functions of polynomial type and
w,, 9, are any weight functions. If w, < w;, 9, < Y; and

w(x)
w1 (x)+91(x,)
for x — oo, then the embedding of the space AS(W)’:;f_'gl (R)
into A (W)Z"q19 (R) is never compact.

Proof. Using by assumptions w, < w; and 9, <9; and by
Theorem 3.2, we write A4 (W)”qg (R)c A (W)Z,g‘gz(]R{)
The unit map is a continuous from Ag(W)" p‘” v, (R) into
A (W)p‘” (R). Assume that the unit map is compact Let
(f)ney in A (W)p‘” (R) be arbitrary bounded sequence. If
there  exists convergent subsequence  of  (fi)nen in
A (W)Z”"19 (R), this sequence also converges in LY, (R). But
this is not possible by Theorem 3.3. This completes the proof..

5. Conclusion

In this paper, we assume that the scale s of the wavelet
transform which is important tool for signal analysis and time-
frequency analysis is fixed. Then we considered the space of
functions £ € L, (R) such that their wavelet transforms W, f in
W(L4,L). Also we denoted this space with the symbol
A (W)” "(R). Finally, we proved the inclusion and compact
embeddlng theorems.
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