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Abstract 

In the extracellular neural recordings, the spike waveforms formed by the neurons nearby the recording electrode must be sorted 

according to their morphology. This process is called as spike sorting and it is an important prerequisite in neural decoding algorithms. 

Low Q-factor wavelet transforms are frequently being used as feature extractors to detect the discriminative patterns between adjacent 

neurons’ activity. However, the wavelet coefficients are highly sensitive to noise that may occur due to the employed instrumentation 

system and the local field potentials defined as the total activity of nearby neurons. However, enhanced sparse representations of the 

spike wave forms, having reduced noise activity, can be attained by using the basis pursuit method that is applied to the tunable Q-

factor wavelet transform coefficients. In the tunable Q-factor wavelet transform, the Q-factor of the wavelet filters can be tuned 

according to the signal of interest with a controllable redundancy. In the proposed study, enhanced sparse representations of the spike 

waveforms were obtained by using the basis pursuit approach. Later, the energy values of the decomposed subbands were employed 

as features that can discriminate morphological differences in spike shapes. Finally, the obtained features were fed to k-nearest 

neighbors and decision trees learning models in an unbiased cross-validation scheme to objectively measure the effect of the enhanced 

sparsity decomposition. The qualitative and quantitative results show that the enhanced sparsity-based energy features are superior to 

the traditional low Q-factor based wavelet decomposition in terms of the accuracy metric. 

Keywords: Spike sorting, the tunable Q-factor wavelet transform, sparsity, classification.   

İğnecik Dalga Biçimlerinin İyileştirilmiş Seyrek Temsillerinin Temel 

Takip Yaklaşımı Kullanılarak Elde Edilmesi 

Özet 

Hücre dışı sinirsel kayıtlarda,  kullanılan elektrodun yakınındaki sinir hücrelerinin oluşturduğu iğnecik dalga biçimlerinin 

morfolojilerine göre sıralanması gerekmektedir. Bu işleme iğnecik sıralaması adı verilir ve sinirsel kod çözme algoritmalarında 

kullanılan önemli bir ön koşuldur. Düşük Q-faktörlü dalgacık dönüşümleri, birbirine yakın sinir hücrelerinin aktiviteleri arasındaki 

ayırt edici örüntüleri tespit etmek için öznitelik çıkarıcılar olarak sıklıkla kullanılmaktadır. Fakat, farklı alt bantlardaki dalgacık 

katsayıları, kullanılan enstrümantasyon sistemi nedeniyle oluşan gürültü bileşenlerine ve yakındaki sinir hücrelerinin toplam aktivitesi 

olarak tanımlanan yerel alan potansiyellerine oldukça duyarlıdır. Bununla birlikte, azaltılmış gürültü aktivitesine sahip ğnecik dalga 

biçimlerinin geliştirilmiş seyrek temsilleri, ayarlanabilir Q faktörü dalgacık dönüşümü tabanlı katsayılara uygulanan temel takip 

yöntemi kullanılarak elde edilebilir. Ayarlanabilir Q faktörü dalgacık dönüşümünde, dalgacık filtrelerinin Q faktörü, kontrol edilebilir 

bir fazlalık ile ilgili sinyale göre ayarlanabilir. Önerilen çalışmada, dalgacık katsayılarına uygulanan temel takip yaklaşımı 

kullanılarak iğneciklerin iyileştirilmiş bir seyrek gösterimi elde edilmiştir. Daha sonra, ayrışmış alt bantların enerji değerleri, iğnecik 

şekillerindeki morfolojik farklılıkları ayırt edebilen özellikler olarak kullanılmıştır. Son olarak, elde edilen öznitelikler, geliştirilmiş 

seyreklik ayrıştırmasının etkisini nesnel olarak ölçmek için tarafsız bir çapraz doğrulama şemasında k-en yakın komşular ve karar 

ağaçları öğrenme modellerine beslenmiştir. Niteliksel ve niceliksel sonuçlar, iyileştirilmiş seyreklik tabanlı enerji özelliklerinin, 

doğruluk metriği açısından geleneksel düşük Q faktörüne dayalı dalgacık ayrıştırmasından daha üstün olduğunu göstermektedir.  
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1. Introduction 

Extracellular neural activity recordings are frequently 

employed in clinical and scientific studies such as in decoding 

algorithms used for extracting information from the activity of 

neuronal populations. Mostly, these recordings are interpreted as 

point processes, and a spike detection algorithm is needed to 

predict the locations at which action potentials occurred. Spike 

detection is a very important prerequisite to be able to correctly 

analysis spike trains because the success of localizing the 

occurrence of individual spikes would critically affect the 

performance of all following analysis steps.  

In extracellular neural recordings, the obtained signals 

normally consist of spikes created from multiple adjacent 

neurons (from unknown number of neurons). To obtain the 

response of each neuron, the detected possible spike events must 

be sorted according to their time-behavior to assign each activity 

to a separate neuron. This operation is named as spike sorting 

and it is a gold standard in neuroscience. With the progresses in 

technology, the usage of multi-electrode arrays becomes more 

popular in neuroscience [1]. When the number of recording 

electrodes increases in a system, the need for an automatic 

sorting approach also raises as human controlled sorting 

becomes a hard and time-consuming task. The shapes of spikes 

may change due to various affects such as the morphology of its 

dendritic tree and the distance/orientation of related spike 

relative to the recording location [2]. The difficulty of spike 

sorting can be affected from multiple factors. It was shown that 

the time-amplitude behavior of spikes for a specific neuron can 

vary; for example, the amplitude of a spike waveform can 

decrease by up to 80% in the course of a complex spike burst 

[3]. The overlapping spikes phenomenon, which takes place 

when two or more nearby neurons fire action potentials 

simultaneously, creates another complication in spike sorting 

process. Moreover, the recording electrodes may move faintly in 

the brain tissue because of the external physical constraints 

during the recording and this may cause variations in the spike 

waveform [4]. 

In spike sorting the most important step is extracting 

features that have the capability of differentiate the spike 

waveforms produced by various neurons. Later these features are 

given to a clustering method to group the spikes having similar 

features. In literature various feature extracting and spike sorting 

methods were proposed. For instance, a spike sorting approach 

that uses the peak to peak amplitude and width of the spikes as 

features was proposed in [5].  The principal component analysis 

was used for feature extraction in [6]. A spike labelling approach 

that uses template matching was employed in [7]. The k-means 

clustering and wavelet transform (WT) methods were employed 

together in [8]. An approach using WT based features grouped 

by superparamagnetic clustering was used in [9]. The k-means 

clustering and independent component analysis (ICA) methods 

were utilized together in [10]. Additionally, in [11-12] discrete 

wavelet transform (DWT) coefficients were used as 

discriminative features in spike sorting algorithms, but the WTs 

employed in these manuscripts were using constant Q-factor 

filters. 

In literature, the DWT was frequently used as a robust 

feature extractor in spike sorting algorithms. By employing the 

time localization ability of wavelet-based features, small 

changes in the morphology of spikes that are very localized in 

time can be discerned. In addition, the time-amplitude behavior 

information of the spikes can be represented by using many 

wavelet coefficients in contrast to the principal component 

analysis (PCA), in which most amount of the details about the 

spike waveforms is preserved only by the first 3 principal 

components. The more homogeneous distribution of information 

obtained by WT provides a better representation for cluster 

identification. In line with these considerations, a superior 

performance of wavelet usage, in comparison with PCA, was 

given for several simulated spike trains constructed under 

various noise levels in [9]. However, in previous attempts, the 

used DWTs had a common property; they all used constant Q-

factor filters. In a WT, the Q-factor of wavelet indicates the time 

behavior of the mother wavelet. Morphologically spikes have 

transient characteristics and to obtain features with more 

discriminative power, they must be decomposed with a DWT 

which has the capability of changing its Q-factor continuously. 

By doing this, for analyzed spike, an optimum Q factor can be 

found which tunes the transient behavior of that spike best and a 

sparse representation of these spikes can be achieved. Later 

these sparse coefficients can be used in different clustering 

methods for evaluating their discriminative capability. 

Various WTs, having the ability to tune their employed 

wavelets, have been utilized in processing transient and 

oscillatory behavior biomedical signals. The tunable Q-factor 

wavelet transform (TQWT) [13] is a totally discrete WT for 

which the Q-factor of the underlying wavelet and the asymptotic 

redundancy (over-sampling rate) of the transform can be easily 

and independently specified. Therefore, by tuning the Q-factor, 

the oscillatory/transient behavior of the wavelets can be selected 

to match the oscillatory/transient behavior of the signal of 

interest, so as to magnify the sparsity of a sparse signal 

representation. The TQWT was successfully employed in 

resonance-based decomposition of lung sounds that aims to 

separate wheeze, crackle and vesicular sounds into three 

individual channels [14]. In [14], the Q-factor and over-sampling 

rate parameters of the TQWT were determined in a way that the 

wavelet filters match the morphology of the crackles and 

wheezes. After the determination of the optimal Q-factor (low 

Q-factor), the crackles, which have similar time-domain 

characteristics with spikes, were successfully separated from the 

wheezes and background noise. Additionally, the TQWT was 

employed to extract embolic signal information from 

background activity and artifacts [15]. In [15], the resonance-

based decomposition, in which the TQWT was employed to 

catch the morphology of signal interest, was applied to Doppler 

ultrasound signals and quasi-periodic embolic signals were 

obtained (decomposed into the high Q-factor channel). In the 

proposed study, we intend to employ TQWT as a feature 

extractor for spike sorting problem due to its tunable Q-factor 

property. The sparsity ability of the TQWT will be used to obtain 

the wavelet coefficients having high discriminative capability, 

especially in high noise environments. The following sections of 

the study are organized as follows; Section 2 gives information 

about materials and methods. Section 3 gives the experimental 

results and finally, Section 4 presents the conclusion and 

discussion. 
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2. Material and Method 

2.1. Dataset Information 

In spike detection and spike sorting studies, a critical issue 

is the existence of a dataset in which the exact locations of the 

spikes and the spike labels are defined. In [9], such a synthetic 

dataset that consists of simulated brain activity signals was 

proposed. In this dataset, the simulated brain signals were 

composed by employing a database that consists of 594 various 

spike waveforms derived from the recordings of neocortex and 

basal ganglia. To mimic brain activity in a realistic manner, a 

background noise was generated by randomly selecting spikes 

from 594 waveforms and the selected ones were superimposed at 

random amplitudes and times. In each recording three different 

spike waveforms, having a normalized peak amplitude, were 

placed into the background activity resulting in a spike train. The 

normalized peak amplitude of each spike was set to 1 and the 

background noise activity level was discovered from its standard 

deviation relative to the spike peaks. The employed noise 

standard deviation values were set as 0.05, 0.1, 0.15, and 0.2 for 

all the recordings. Additionally, more noise levels set to 0.25, 

0.30, 0.35, and 0.4 were defined for just one case in which 

relatively easy to differentiate spike waveforms were employed. 

In our proposed approach, this recording having 8 noise levels 

was chosen as the ground truth dataset to be able to measure the 

performance of TQWT based sparse representations of spikes. 

The sampling rate of the recording is 24 kHz and the three 

distinct spike waveforms were located by using a Poisson 

distribution of interspike intervals having a mean firing rate of 

20 Hz. The refractory period between the spike shapes belonging 

to the same class was chosen as 2mS. 

2.2. The Usage of Tunable Q-factor Wavelet 

Transform in Feature Extraction 

2.2.1. The Tunable Q-factor Wavelet Transform 

The constant-Q synthesis and analysis, in which a group of 

band-pass filters having same Q-factors are employed, has been 

successfully used in the analysis of non-stationary biomedical 

signals [16-18]. For a band-pass filter, the ratio of that filter’s 

center frequency to its bandwidth is referred as its Q-factor. 

When the temporal response of constant-Q filters is investigated, 

it is seen that a more sustained oscillatory behavior exists when 

high Q-factor filters are used. In contrast, a more transient time 

behavior is seen in the temporal response of low Q-factor filters. 

Classical dyadic DWT is a constant Q-factor transform having 

low Q-factor characteristics and it provides an efficient 

representation of piecewise smooth signals such as the spikes 

[9]. However, the energy distribution between the scales is 

highly sensitive to the amount of noise that is superimposed onto 

the signal of interest. Therefore, transforms that can be 

employed to obtain the sparse representations of the biomedical 

patterns, in which the noise effects are minimized, are highly 

needed. In the extracellular neural recordings, the spike 

waveform morphology is corrupted by the instrumental noise 

and the local field potentials (the total activity of nearby 

neurons). Hence, in the proposed study we have intended to use 

WTs that can enhance the sparsity of spike representations to be 

able to extract the differentiation in the spike shapes created by 

different neurons more efficiently and to be able to reduce the 

disruptive effect of noise.  

The TQWT is an overcomplete wavelet transform, in which 

the Q-factor of the analysis/synthesis filters can be easily and 

continuously adjustable. By adjusting the Q-factor of employed 

filters, the time-domain behavior of the signal of interest can be 

represented more efficiently and sparse spike representations can 

be obtained. It is expected that the enhanced sparsity should in 

turn improve the performance of sparsity-based feature 

extraction for spike sorting in the extracellular neural recordings 

under high noise. In the TQWT, mainly two parameters are used 

to control transform properties: i) the Q-factor (Q) that controls 

the oscillatory behavior of the time-domain response of wavelet 

filters, and ii) the over-sampling rate (r) that controls the 

redundancy level of applied transform. The r value is measuring 

the overlap ratio between the consequent band-pass filters’ 

content in the frequency axis. When the Q value is kept constant 

and the r value is increased, the overlapping parts of the band-

pass filter frequency responses, having same Q-factors, will 

increase too. More details about the theoretical explanation 

about the TQWT can be found in [13]. 

2.2.2. Proposed Tunable Q-factor Wavelet Transform 

based Sparse Representations of Spikes 

The TQWT is an over-complete transform therefore, its 

time-scale representation is not unique - other sets of wavelet 

coefficients (different decompositions), having perfect 

reconstruction property, can be acquired that also represent a 

given signal exactly. An enhanced sparsity in the sparse 

representations of signal of interests can be achieved by using 

the basis pursuit (BP) method. BP is a principle for decomposing 

a signal into an “optimal” superposition of dictionary elements, 

where optimal refers to having the smallest ℓ1 norm of 

coefficients among all such decompositions [19]. In our 

proposed approach, we have applied the BP method to obtain the 

enhanced sparse representations of TQWT coefficients that were 

extracted from spike waveforms. Due to the piecewise smooth 

time-domain and band-limited frequency-domain characteristics 

of spike signals, the Q-factor and redundancy parameters were 

set to 1 and 3 respectively. After 5 level decomposition, energy 

values of each 5 detail and the last approximation subbands were 

calculated as features resulting in a 6-element row vector. After 

obtaining the feature vectors, even the spike sorting is a 

clustering problem due to its nature, a three-class discrimination 

problem was carried-out by using k-nearest neighbors (k-NN) 

and decision tree (DT) learning models. The reason behind 

handling the spike sorting as a classification problem is to be 

able to objectively assess the degree of contribution obtained 

when the enhanced sparse representations of spike coefficients 

were employed.  

Before feeding the spike waveforms into feature extraction 

and classification modules, each spike shape was extracted from 

the long recording signal at the first place. Later, 64 time-points 

segments samples were created in which the maximums of each 

spike were aligned to the same time instant as advertised in [9]. 

Only the non-overlapping spikes were utilized in the analysis for 

an objective comparison of feature extraction methods. The 

created dataset, in which each sample consists of one spike 

waveform having 64 time-points long, was partitioned into two 

sub-sets, named as train and test sets, for a fair validation of 

performance comparison. The samples in the train and test sets 

were randomly selected by following the holdout approach 

resulting in 80% and 20% sample distributions respectively. To 

avoid from the possible overfitting situation in learned models, 



European Journal of Science and Technology 

 

e-ISSN: 2148-2683  49 

the 80% train data was reorganized by using K-Fold cross 

validation with 𝐾 = 5. The flow-chart of the proposed approach 

was given in Figure 1 for further understanding.  

 

Figure 1. The flowchart of the proposed approach. 

3. Results and Discussion  

3.1. Qualitative Results 

The main contribution of our study is using wavelet filters 

that have tunable time and frequency domain characteristics in 

accordance with the spike waveform morphology. To do so, 

proper Q and r parameters were chosen as 1 and 3 respectively. 

Additionally, the BP algorithm was employed to obtain an 

enhanced sparse representation of spike waveforms in the 

wavelet coefficient domain. It is seen that the spike information 

that was attained in the wavelet coefficients can be represented 

in a very sparse way in decomposed subbands. As it is shown in 

the right-side of Figure 2, most of the noise components were 

minimized while the components belong to spike activity are 

preserved in subbands 2, 3 and 4. This sample was taken from 

the extracellular recording whose noise level is 0.1.  The energy 

percentages of each subband with respect to total signal energy 

are given in the right side of each subplot. When the left-side 

plot is investigated, it is seen that the energy of spike waveform 

can not be localized, and a homogenous energy distribution is 

seen over all subbands. Whereas most of the spike energy can be 

successfully localized in the second band as it is shown in the 

right-side plot. This sparse representation ability of the TQWT 

over spike waveforms has directed us to use energy values 

obtained from the decomposed subbands as features in spike 

shape discrimination problem. 

3.1. Quantitative Results 

The mean and standard-deviation of accuracy values 

obtained by using 5-fold outputs are given in Tables 1 and 2 

under the “Validation Set” section for the cases in which the 

enhanced sparsity is not-used and used respectively. For the 

realistic noise levels higher than 0.10, the accuracy values 

obtained by using enhanced sparsity were always higher than the 

non-sparsity used cases for both k-NN and DT. Additionally, the 

standard-deviation values obtained with the enhanced sparsity 

are relatively lower than the non-sparsity case for both 

classifiers. This shows us that the features obtained by using the 

enhanced sparsity are more robust compared with the features 

extracted from non-sparsity decomposition. In the test set 

results, it is seen that accuracy values up to 98% were obtained 

by using the enhanced sparsity-based features even for very high 

noise values for both k-NN and DT classifiers. For the highest 

two noise levels (0.35 and 0.40), the accuracy increments 

obtained by using enhanced sparsity were approximately 25% 

and 10% when the k-NN and DT classifiers were employed 

respectively. The detailed representation of obtained accuracy 

values for both the validation and test sets by using k-NN and 

DT classifiers are listed in Tables 1 and 2. 

4. Conclusions and Discussion 

In the proposed study the TQWT was used as a feature 

extractor for the extracellular spike recordings. Traditionally, 

low Q-factor DWTs are employed for extracting discriminative 

information between various neuron activity in the spike sorting 

problem. However, the pursued discriminative information was 

mostly lost when high noise components have been 

superimposed on spike activity. An enhanced sparsity property 

can be reached by using the BP approach that is applied on 

TQWT based time-scale coefficients and the amplitude of the 

noise components can be minimized. In our proposed study, a 

data-set consists of various spike shapes under different noise 

levels was processed in a scenario that the enhanced sparsity was 

obtained and not-obtained by using the BP approach. The 

extracted sparse features were fed to k-NN and DT classifiers to 

be able to measure the performance of enhanced sparsity in 

spike morphology analysis. The qualitative and quantitative 

results show that a significant improvement in spike shape 

identification was achieved when the wavelet energy features 

obtained by enhanced sparse representations were employed. 

During the analysis, only non-overlapping spikes were utilized 

for an objective comparison, however, we are planning to apply 

same enhanced sparsity-based feature extraction approach to 

overlapping spikes in a future study. 
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Figure 2. Representation of a spike signal in time-scale domain when the BP approach is applied (right-side) not applied (left-side). 

Table 1. The accuracy values obtained when the enhanced sparsity is not used. “Average” and “std”stands for the mean and 

standard-deviation accuracy values of all folds that are used in 5-fold cross-validation strategy. 

Without Sparsity 

  Validation Set Test Set 

  k-NN DT k-NN DT 

Noise Level average std average std 
  

0.05 100.00 0.00 100.00 0.00 100.00 100.00 

0.10 99.73 0.25 100.00 0.00 99.82 100.00 

0.15 98.42 0.86 99.77 0.23 98.51 100.00 

0.20 95.29 1.01 99.07 0.68 94.95 97.76 

0.25 88.40 1.92 96.33 1.04 89.17 97.10 

0.30 81.99 2.16 94.63 1.00 84.95 94.10 

0.35 76.41 2.00 90.66 2.51 72.41 89.07 

0.40 70.93 2.32 86.58 0.74 70.51 88.09 

Table 2. The accuracy values obtained when the enhanced sparsity is used. “Average” and “std”stands for the mean and 

standard-deviation accuracy values of all folds that are used in 5-fold cross-validation strategy. 

With Sparsity 

  Validation Set Test Set 

  k-NN DT k-NN DT 

Noise Level average std average std 

  0.05 100.00 0.00 100.00 0.00 100.00 100.00 

0.10 100.00 0.00 100.00 0.00 100.00 100.00 

0.15 100.00 0.00 100.00 0.00 100.00 100.00 

0.20 99.81 0.10 99.95 0.10 100.00 99.63 

0.25 99.42 0.56 99.52 0.38 98.84 99.61 

0.30 98.38 0.80 98.91 0.55 99.24 99.24 

0.35 97.09 0.35 99.03 0.38 97.96 99.44 

0.40 95.32 0.95 97.50 0.68 96.03 98.49 
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