

Theory of Generalized Compactness in Generalized Topological Spaces: Part I. Basic Properties

Mohammad Irshad Khodabocus ^{1,2}, Noor-Ul-Hacq Sookia ²

 ¹ Université des Mascareignes, Faculty of Sustainable Development and Engineering Department of Emerging Technologies, Rose Hill Campus, Mauritius
 ² University of Mauritius, Faculty of Science, Department of Mathematics Réduit, Mauritius, sookian@uom.ac.mu

Received: 14 October 2021	Accepted: 21 December 2021
1000011001 11 0000001 2021	neceptedi 21 December 2021

Abstract: In this paper, a novel class of generalized compact sets (briefly, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compact sets) in generalized topological spaces (briefly, $\mathscr{T}_{\mathfrak{g}}$ -spaces) is studied. The study reveals that \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness implies ordinary compactness (briefly, $\mathfrak{T}_{\mathfrak{g}}$ -compactness) in $\mathscr{T}_{\mathfrak{g}}$ -spaces, and such statement implies its analogue in ordinary topological spaces (briefly, \mathscr{T} -spaces). Diagrams establish the various relationships amongst these types of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness presented here and in relation to other types of \mathfrak{g} - \mathfrak{T} -compactness in \mathscr{T} -spaces presented in the literature of $\mathscr{T}_{\mathfrak{g}}$ -spaces, and a nice application supports the overall theory.

Keywords: Generalized topology $(\mathscr{T}_{\mathfrak{g}})$, generalized topological space $(\mathscr{T}_{\mathfrak{g}}$ -space), generalized sets $(\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}-sets)$, generalized compactness $(\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}-compactness)$.

1. Introduction

The concepts of \mathfrak{T} -compactness and \mathfrak{g} - \mathfrak{T} -compactness in \mathscr{T} -spaces (ordinary and generalized compactness in ordinary topological spaces) and the concepts of $\mathfrak{T}_{\mathfrak{g}}$ -compactness and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness in $\mathscr{T}_{\mathfrak{g}}$ -spaces (ordinary and generalized compactness in generalized topological spaces) are verily the most important topological invariants [3–5, 7, 15–17, 20, 21, 24, 25, 27, 30–38]. For, \mathfrak{T} , \mathfrak{g} - \mathfrak{T} , $\mathfrak{T}_{\mathfrak{g}}$, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness, respectively, are absolute properties of \mathfrak{T} , \mathfrak{g} - \mathfrak{T} , $\mathfrak{T}_{\mathfrak{g}}$, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness in $\mathscr{T}_{\mathfrak{g}}$ -spaces are α , β , γ -compactness [10, 19, 28]; examples of $\mathfrak{T}_{\mathfrak{g}}$ -compactness in $\mathscr{T}_{\mathfrak{g}}$ -spaces are semi-* α , s, gb-compactness [7, 14, 31], whereas examples of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness in $\mathscr{T}_{\mathfrak{g}}$ -spaces are bT^{μ}, μ -rgb, π -compactness [5, 24, 40], among others.

In the literature of $\mathscr{T}_{\mathfrak{g}}$ -spaces, several new classes of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness in $\mathscr{T}_{\mathfrak{g}}$ -spaces, similar in descriptions to \mathfrak{g} - \mathfrak{T} -compactness in \mathscr{T} -spaces, have been studied [20, 21, 24, 27, 30, 32, 36–38].

This article is licensed under a Creative Commons Attribution 4.0 International License.

^{*}Correspondence: ikhodabocus@udm.ac.mu

²⁰²⁰ AMS Mathematics Subject Classification: 54A05, 54D30, 54D45

Also, it has been published considering the Research and Publication Ethics.

In this paper, a novel class of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compact sets in $\mathscr{T}_{\mathfrak{g}}$ -spaces is studied.

The paper is organized as follows: In Section 2, preliminary notions are described in Subsection 2.1 and the main results of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness in a $\mathscr{T}_{\mathfrak{g}}$ -space are reported in Section 3. In Section 4, the establishment of the relationships among various types of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness are discussed in Subsection 4.1. To support the work, a nice application of the concept of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness in a $\mathscr{T}_{\mathfrak{g}}$ -space is presented in Subsection 4.2. Finally, Subsection 4.3 provides concluding remarks and future directions of the notion of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness in a $\mathscr{T}_{\mathfrak{g}}$ -space.

2. Theory

2.1. Preliminaries

Notations and definitions not presented here are presented in [22, 23].

The set \mathfrak{U} denotes the universe of discourse, fixed within the framework of the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness and containing as elements all sets (Λ -sets: $\Lambda \in \{\Omega, \Sigma\}$; \mathscr{T}_{Λ} , \mathfrak{g} - \mathscr{T}_{Λ} , \mathfrak{T}_{Λ} , \mathfrak{g} - \mathfrak{T}_{Λ} -sets; $\mathscr{T}_{\mathfrak{g},\Lambda}$, \mathfrak{g} - $\mathscr{T}_{\mathfrak{g},\Lambda}$, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -sets, to name a few) considered in this theory, and $I_n^0 \stackrel{\text{def}}{=} \{\nu \in \mathbb{N}^0 : \nu \leq n\}$; index sets I_{∞}^0 , I_n^* , I_{∞}^* are defined similarly [22, 23]. Every one-valued map of the type $\mathscr{T}_{\mathfrak{g},\Lambda} : \mathscr{P}(\Lambda) \stackrel{\text{def}}{=} \{\mathscr{O}_{\mathfrak{g},\nu} : \mathscr{O}_{\mathfrak{g},\nu} \subseteq \Lambda\} \longrightarrow \mathscr{P}(\Lambda)$, satisfying $\mathscr{T}_{\mathfrak{g},\Lambda}(\emptyset) = \emptyset$, $\mathscr{T}_{\mathfrak{g},\Lambda}(\mathscr{O}_{\mathfrak{g}}) \subseteq \mathscr{O}_{\mathfrak{g}}$ and $\mathscr{T}_{\mathfrak{g},\Lambda}(\bigcup_{\nu \in I_{\infty}^*} \mathscr{O}_{\mathfrak{g},\nu}) = \bigcup_{\nu \in I_{\infty}^*} \mathscr{T}_{\mathfrak{g},\Lambda}(\mathscr{O}_{\mathfrak{g},\nu})$ is called an absolute \mathfrak{g} -topology on Λ while $\mathscr{T}_{\mathfrak{g},\Gamma} : \mathscr{P}(\Gamma) \stackrel{\text{def}}{=} \{\mathscr{O}_{\mathfrak{g},\nu} : \mathscr{O}_{\mathfrak{g},\nu} \subset \Gamma \subseteq \Lambda\} \longmapsto \mathscr{T}_{\mathfrak{g},\Gamma} \stackrel{\text{def}}{=} \{\mathscr{O}_{\mathfrak{g}} \cap \Gamma : \mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g},\Lambda}\}$ defines a relative \mathfrak{g} -topology on Γ , and the structures $\mathfrak{T}_{\mathfrak{g},\Lambda} \stackrel{\text{def}}{=} (\Lambda, \mathscr{T}_{\mathfrak{g},\Lambda})$ and $\mathfrak{T}_{\mathfrak{g},\Gamma} \stackrel{\text{def}}{=} (\Gamma, \mathscr{T}_{\mathfrak{g},\Gamma})$, respectively, are called a $\mathscr{T}_{\mathfrak{g},\Lambda}$ -space and a $\mathscr{T}_{\mathfrak{g},\Gamma}$ -subspace [22, 23], on which no separation axioms are assumed unless otherwise mentioned [11, 12, 29].

The classes of $\mathscr{T}_{\mathfrak{g},\Lambda}$ -open and $\mathscr{T}_{\mathfrak{g},\Lambda}$ -closed sets are $\mathscr{T}_{\mathfrak{g},\Lambda} \stackrel{\text{def}}{=} \{ \mathscr{O}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda} : \mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g},\Lambda} \}$ and $\neg \mathscr{T}_{\mathfrak{g},\Lambda} \stackrel{\text{def}}{=} \{ \mathscr{K}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda} : \ \mathfrak{C}_{\Lambda}(\mathscr{K}_{\mathfrak{g}}) \in \mathscr{T}_{\mathfrak{g},\Lambda} \}$, respectively; $C^{\text{sub}}_{\mathscr{T}_{\mathfrak{g},\Lambda}}[\mathscr{S}_{\mathfrak{g}}] \stackrel{\text{def}}{=} \{ \mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g},\Lambda} : \mathscr{O}_{\mathfrak{g}} \subseteq \mathscr{S}_{\mathfrak{g}} \}$ and $C^{\text{sup}}_{\neg \mathscr{T}_{\mathfrak{g},\Lambda}}[\mathscr{S}_{\mathfrak{g}}] \stackrel{\text{def}}{=} \{ \mathscr{K}_{\mathfrak{g}} \in \neg \mathscr{T}_{\mathfrak{g},\Lambda} : \mathscr{K}_{\mathfrak{g}} \supseteq \mathscr{S}_{\mathfrak{g}} \}$, respectively, are the classes of $\mathscr{T}_{\mathfrak{g},\Lambda}$ -open subsets and $\mathscr{T}_{\mathfrak{g},\Lambda}$ -closed supersets (complements of the $\mathscr{T}_{\mathfrak{g},\Lambda}$ -open subsets) of the $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda}$ [22, 23].

The operator $\operatorname{cl}_{\mathfrak{g},\Lambda} : \mathscr{P}(\Lambda) \longrightarrow \mathscr{P}(\Lambda)$ carrying $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda}$ into its closure $\operatorname{cl}_{\mathfrak{g},\Lambda}(\mathscr{S}_{\mathfrak{g}})$ is called a \mathfrak{g} -closure operator and the operator $\operatorname{int}_{\mathfrak{g},\Lambda} : \mathscr{P}(\Lambda) \longrightarrow \mathscr{P}(\Lambda)$ carrying it into its interior $\operatorname{int}_{\mathfrak{g},\Lambda}(\mathscr{S}_{\mathfrak{g}})$ is called a \mathfrak{g} -interior operator [6, 22, 23], where:

$$\operatorname{int}_{\mathfrak{g},\Lambda}(\mathscr{S}_{\mathfrak{g}}) \stackrel{\text{def}}{=} \bigcup_{\mathscr{O}_{\mathfrak{g}} \in \operatorname{C}^{\operatorname{sub}}_{\mathscr{T}_{\mathfrak{g},\Lambda}}[\mathscr{S}_{\mathfrak{g}}]} \mathscr{O}_{\mathfrak{g}}, \quad \operatorname{cl}_{\mathfrak{g},\Lambda}(\mathscr{S}_{\mathfrak{g}}) \stackrel{\text{def}}{=} \bigcap_{\mathscr{K}_{\mathfrak{g}} \in \operatorname{C}^{\operatorname{sup}}_{\neg \mathscr{T}_{\mathfrak{g},\Lambda}}[\mathscr{S}_{\mathfrak{g}}]} \mathscr{K}_{\mathfrak{g}}.$$
(1)

27

For convenience of notation, let $\mathscr{P}^*(\Omega) = \mathscr{P}(\Omega) \setminus \{\emptyset\}, \ \mathscr{T}^*_{\mathfrak{g}} = \mathscr{T}_{\mathfrak{g}} \setminus \{\emptyset\}, \text{ and } \neg \mathscr{T}^*_{\mathfrak{g}} = \neg \mathscr{T}_{\mathfrak{g}} \setminus \{\emptyset\}.$ The mapping $\operatorname{op}_{\mathfrak{g}} : \mathscr{P}(\Lambda) \longrightarrow \mathscr{P}(\Lambda)$ is called a \mathfrak{g} -operation on $\mathscr{P}(\Lambda)$ if it holds that:

$$\left(\forall \mathscr{S}_{\mathfrak{g}} \in \mathscr{P}^{*} \left(\Lambda \right) \right) \left(\exists \left(\mathscr{O}_{\mathfrak{g}}, \mathscr{K}_{\mathfrak{g}} \right) \in \mathscr{T}_{\mathfrak{g}, \Lambda}^{*} \times \neg \mathscr{T}_{\mathfrak{g}, \Lambda}^{*} \right) \left[\left(\operatorname{op}_{\mathfrak{g}} \left(\emptyset \right) = \emptyset \right) \lor \left(\neg \operatorname{op}_{\mathfrak{g}} \left(\emptyset \right) = \emptyset \right) \\ \lor \left(\mathscr{S}_{\mathfrak{g}} \subseteq \operatorname{op}_{\mathfrak{g}} \left(\mathscr{O}_{\mathfrak{g}} \right) \right) \lor \left(\mathscr{S}_{\mathfrak{g}} \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathscr{K}_{\mathfrak{g}} \right) \right) \right], (2)$$

where $\neg \operatorname{op}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is called the "complementary \mathfrak{g} -operation" on $\mathscr{P}(\Omega)$ ranging in $\mathscr{P}(\Omega)$ and, for all $(\mathscr{S}_{\mathfrak{g}}, \mathscr{U}_{\mathfrak{g},\mu}, \mathscr{V}_{\mathfrak{g},\nu}) \in_{\alpha \in I_{3^*}} \mathscr{P}^*(\Omega)$ such that $\mathscr{W}_{\mathfrak{g}} = \mathscr{U}_{\mathfrak{g},\mu} \cup \mathscr{V}_{\mathfrak{g},\nu}$ and $(\widehat{\mathscr{W}}_{\mathfrak{g}}, \neg \widehat{\mathscr{W}}_{\mathfrak{g}}) = (\operatorname{op}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}}), \neg \operatorname{op}_{\mathfrak{g}}(\mathscr{W}_{\mathfrak{g}}))$, the following axioms are satisfied:

- AX. I. $\left(\mathscr{S}_{\mathfrak{g}} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g}})\right) \vee \left(\mathscr{S}_{\mathfrak{g}} \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}})\right),$
- AX. II. $\left(\operatorname{op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \subseteq \operatorname{op}_{\mathfrak{g}} \circ \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g}})\right) \vee \left(\neg \operatorname{op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \circ \neg \operatorname{op}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}})\right),$
- AX. III. $\left(\hat{\mathscr{W}}_{\mathfrak{g}} \subseteq \bigcup_{\sigma = \mu, \nu} \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g}, \sigma})\right) \bigvee \left(\neg \hat{\mathscr{W}}_{\mathfrak{g}} \supseteq \bigcup_{\sigma = \mu, \nu} \neg \operatorname{op}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g}, \sigma})\right),$
- Ax. IV. $(\mathscr{U}_{\mathfrak{g},\mu} \subseteq \mathscr{V}_{\mathfrak{g},\nu} \longrightarrow \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\mu}) \subseteq \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\nu})) \vee (\mathscr{U}_{\mathfrak{g},\mu} \supseteq \mathscr{V}_{\mathfrak{g},\nu} \longleftarrow \neg \operatorname{op}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g},\mu})$ $\supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathscr{K}_{\mathfrak{g},\nu}))$

for some $(\mathcal{O}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g},\mu}, \mathcal{O}_{\mathfrak{g},\nu}) \in_{\alpha \in I_{3^*}} \mathcal{T}_{\mathfrak{g},\Lambda}^*$ and $(\mathcal{K}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g},\mu}, \mathcal{K}_{\mathfrak{g},\nu}) \in_{\alpha \in I_{3^*}} \neg \mathcal{T}_{\mathfrak{g},\Lambda}^*$ [8, 26]. The class of all possible \mathfrak{g} -operators and their complementary \mathfrak{g} -operators in the $\mathcal{T}_{\mathfrak{g},\Lambda}$ -space $\mathfrak{T}_{\mathfrak{g},\Lambda}$ are $\mathscr{L}_{\mathfrak{g}}[\Lambda] \stackrel{\text{def}}{=} \{ \mathbf{op}_{\mathfrak{g},\nu\mu}(\cdot) = (\mathrm{op}_{\mathfrak{g},\nu}(\cdot), \neg \mathrm{op}_{\mathfrak{g},\mu}(\cdot)) : (\nu,\mu) \in I_3^0 \times I_3^0 \} = \mathscr{L}_{\mathfrak{g}}^{\omega}[\Lambda] \times \mathscr{L}_{\mathfrak{g}}^{\kappa}[\Lambda], \text{ where:}$ $\mathrm{op}_{\mathfrak{g}}(\cdot) \in \mathscr{L}_{\mathfrak{g}}^{\omega}[\Lambda] \stackrel{\text{def}}{=} \{ \mathrm{op}_{\mathfrak{g},0}(\cdot), \mathrm{op}_{\mathfrak{g},1}(\cdot), \mathrm{op}_{\mathfrak{g},2}(\cdot), \mathrm{op}_{\mathfrak{g},3}(\cdot) \}$ $= \{ \mathrm{int}_{\mathfrak{g}}(\cdot), \mathrm{cl}_{\mathfrak{g}} \circ \mathrm{int}_{\mathfrak{g}}(\cdot), \mathrm{int}_{\mathfrak{g}} \circ \mathrm{cl}_{\mathfrak{g}}(\cdot), \mathrm{cl}_{\mathfrak{g}} \circ \mathrm{int}_{\mathfrak{g}} \circ \mathrm{cl}_{\mathfrak{g}}(\cdot) \};$ $\neg \mathrm{op}_{\mathfrak{g}}(\cdot) \in \mathscr{L}_{\mathfrak{g}}^{\kappa}[\Lambda] \stackrel{\text{def}}{=} \{ \neg \mathrm{op}_{\mathfrak{g},0}(\cdot), \neg \mathrm{op}_{\mathfrak{g},1}(\cdot), \neg \mathrm{op}_{\mathfrak{g},2}(\cdot), \neg \mathrm{op}_{\mathfrak{g},3}(\cdot) \}$

A $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -set $\mathscr{S}_{\mathfrak{g},\Lambda} \subset \mathfrak{T}_{\mathfrak{g}}$ in a $\mathscr{T}_{\mathfrak{g},\Lambda}$ -space is called a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -set if and only if $(\mathscr{O}_{\mathfrak{g}},\mathscr{K}_{\mathfrak{g}}) \in \mathscr{T}_{\mathfrak{g},\Lambda} \times \neg \mathscr{T}_{\mathfrak{g},\Lambda}$ and $\mathbf{op}_{\mathfrak{g}}(\cdot) \in \mathscr{L}_{\mathfrak{g}}[\Lambda]$ exist such that the following statement holds:

 $= \{ cl_{\mathfrak{a}}(\cdot), int_{\mathfrak{a}} \circ cl_{\mathfrak{a}}(\cdot), cl_{\mathfrak{a}} \circ int_{\mathfrak{a}}(\cdot), int_{\mathfrak{a}} \circ cl_{\mathfrak{a}} \circ int_{\mathfrak{a}}(\cdot) \}.$

$$(\exists \xi) \left[(\xi \in \mathscr{S}_{\mathfrak{g}}) \land \left(\left(\mathscr{S}_{\mathfrak{g}} \subseteq \operatorname{op}_{\mathfrak{g}} \left(\mathscr{O}_{\mathfrak{g}} \right) \right) \lor \left(\mathscr{S}_{\mathfrak{g}} \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathscr{K}_{\mathfrak{g}} \right) \right) \right) \right].$$

$$(4)$$

(3)

The \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda}$ is of category ν if and only if is in the class of \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -sets:

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big] \stackrel{\mathrm{def}}{=} \big\{\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda} : \left(\exists \mathscr{O}_{\mathfrak{g}}, \mathscr{K}_{\mathfrak{g}}, \mathbf{op}_{\mathfrak{g},\nu}\left(\cdot\right)\right) \\ \big[\big(\mathscr{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g},\nu}\left(\mathscr{O}_{\mathfrak{g}}\right)\big) \lor \big(\mathscr{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g},\nu}\left(\mathscr{K}_{\mathfrak{g}}\right)\big)\big]\big\}.$$
(5)

28

The classes of $\mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{g},\Lambda}$ -open and $\mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{g},\Lambda}$ -closed sets, respectively, are defined by

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g},\Lambda}] \stackrel{\text{def}}{=} \{\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda} : (\exists \mathscr{O}_{\mathfrak{g}}, \mathbf{op}_{\mathfrak{g},\nu}(\cdot)) [\mathscr{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g},\nu}(\mathscr{O}_{\mathfrak{g}})] \}, \\ \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g},\Lambda}] \stackrel{\text{def}}{=} \{\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda} : (\exists \mathscr{K}_{\mathfrak{g}}, \mathbf{op}_{\mathfrak{g},\nu}(\cdot)) [\mathscr{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g},\nu}(\mathscr{K}_{\mathfrak{g}})] \}$$
(6)

and \mathfrak{g} -S[$\mathfrak{T}_{\mathfrak{g},\Lambda}$] = $\bigcup_{\nu \in I_3^0} \mathfrak{g}$ - ν -S[$\mathfrak{T}_{\mathfrak{g},\Lambda}$] = $\bigcup_{(\nu, \mathrm{E}) \in I_3^0 \times \{\mathrm{O},\mathrm{K}\}} \mathfrak{g}$ - ν -E[$\mathfrak{T}_{\mathfrak{g}}$] = $\bigcup_{\mathrm{E} \in \{\mathrm{O},\mathrm{K}\}} \mathfrak{g}$ -E[$\mathfrak{T}_{\mathfrak{g}}$] [22, 23].

By adding a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -separation axiom of type H, called \mathfrak{g} - $\mathbf{T}_{\mathfrak{g},\mathrm{H}}$ -axiom, to the axioms for a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ to obtain a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})} \stackrel{\text{def}}{=} (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})})$ is meant that, for every disjoint pair $(\xi, \zeta) \in \mathfrak{T}_{\mathfrak{g}} \times \mathfrak{T}_{\mathfrak{g}}$ of points in $\mathfrak{T}_{\mathfrak{g}}$, there exists a disjoint pair $(\mathscr{O}_{\mathfrak{g},\xi}, \mathscr{O}_{\mathfrak{g},\zeta}) \in \mathscr{T}_{\mathfrak{g}} \times \mathscr{T}_{\mathfrak{g}}$ of $\mathscr{T}_{\mathfrak{g}}$ -open sets such that $(\xi, \zeta) \in (\mathrm{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\xi}), \mathrm{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\zeta}))$ [23]. The definition follows:

Definition 2.1 [23]/ $[\mathfrak{g}-\mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})}-Space]$ A $\mathscr{T}_{\mathfrak{g}}-space$ $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ endowed with a $\mathfrak{g}-\mathrm{T}_{\mathfrak{g},\mathrm{H}}$ -axiom is called a $\mathfrak{g}-\mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})}-space$ $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})} \stackrel{\mathrm{def}}{=} (\Omega, \mathfrak{g}-\mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})})$.

By omitting the subscript \mathfrak{g} in almost all symbols of the above definitions, we obtain very similar definitions but in a \mathscr{T} -space; see [22, 23].

Definition 2.2 [23]/ \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -Sets Sequence] Let \mathfrak{g} - ν -S $[\mathfrak{T}_{\mathfrak{g}}] \subseteq \mathfrak{T}_{\mathfrak{g}}$ be the class of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets of category ν in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. The symbol $\langle \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ - ν -S $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^*}$ denotes a sequence of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets of category ν in $\mathfrak{T}_{\mathfrak{g}}$ that has been indexed by $I_{\sigma}^* \subseteq I_{\infty}^*$, inheriting its order from I_{σ}^* , and the corresponding index mapping $\phi : \alpha \mapsto \mathscr{S}_{\mathfrak{g},\alpha}$ denotes the α^{th} term of the sequence.

Throughout, the relation $\langle \mathscr{R}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I^*_{\infty}} \prec \langle \mathscr{S}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I^*_{\infty}}$ means that the one preceding " \prec " is a subsequence of the other following " \prec ". Suppose a $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathscr{R}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ is related to a sequence $\langle \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{S}\,[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I^*_{\sigma}}$ by the relation $\mathscr{R}_{\mathfrak{g}} \subseteq \bigcup_{\alpha \in I^*_{\sigma}} \mathscr{S}_{\mathfrak{g},\alpha}$, then $\mathscr{R}_{\mathfrak{g}}$ is said to be *covered* by a sequence $\langle \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{S}\,[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I^*_{\sigma}}$ whose *cardinality is at most* $\sigma \in I^*_{\infty}$. The definition follows:

Definition 2.3 [23][\mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -Covering] Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$. Then, for every $\nu \in I_3^0$:

- I. S_g is said to be "covered" by a sequence ⟨U_{g,α} ∈ g-ν-O [T_g]⟩_{α∈I_σ} of g-ν-T_g-open sets whose cardinality is at most σ ∈ I_∞^{*} if and only if S_g ⊆ ⋃_{α∈I_σ} U_{g,α}.
- II. S_g is said to be "covered" by a sequence ⟨V_{g,α} ∈ g-ν-K [ℑ_g]⟩_{α∈I^{*}_σ} of g-ν-ℑ_g-closed sets whose cardinality is at most σ ∈ I^{*}_∞ if and only if S_g ⊆ ⋃_{α∈I^{*}_σ} V_{g,α}.

Accordingly, $\langle \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^*}$, $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^*}$, and $\langle \mathscr{V}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^*}$, respectively, are simply said to be a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}covering$, a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}open$ covering and a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}closed$ covering of $\mathscr{S}_{\mathfrak{g}}$ whose cardinality is at most $\sigma \in I_{\infty}^*$.

Definition 2.4 [23]/ \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -Subcovering] Let $\langle \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -S $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^*}$ be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -covering of a $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$ and let $\vartheta : I_{\sigma}^* \longrightarrow I_{\vartheta(\sigma)}^* \subseteq I_{\sigma}^*$ be an index mapping. Then the map

$$\vartheta: \left\langle \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right] \right\rangle_{\alpha \in I_{\sigma}^{*}} \longrightarrow \left\langle \mathscr{S}_{\mathfrak{g},\vartheta(\alpha)} \in \mathfrak{g}\text{-}\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right] \right\rangle_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*} \times I_{\vartheta(\sigma)}^{*}} \tag{7}$$

is said to realise a " \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -subcovering" $\langle \mathscr{S}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*}$ of $\mathscr{S}_{\mathfrak{g}}$ from the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -covering $\langle \mathscr{S}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^*}$ if and only if $\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*} \mathscr{S}_{\mathfrak{g},\vartheta(\alpha)}$.

Thus, $\langle \mathscr{S}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*} \prec \langle \mathscr{S}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^*}$ is equivalent to this definition, meaning that, for every $\vartheta(\alpha) \in I_{\vartheta(\sigma)}^* \subseteq I_{\sigma}^*$, there exists $\alpha \in I_{\sigma}^* \subseteq I_{\infty}^*$ such that $\mathscr{S}_{\mathfrak{g},\vartheta(\alpha)} = \mathscr{S}_{\mathfrak{g},\alpha}$. It is plain that, for every $\sigma \in I_{\infty}^*$, $\vartheta(\sigma) = \operatorname{card}(I_{\vartheta(\sigma)}^*) \leq \operatorname{card}(I_{\sigma}^*) = \sigma$.

Definition 2.5 [23][\mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -Compact Set] A $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$ is said to be \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -compact if and only if, for every \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -open covering $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ - ν -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\mathfrak{g}}^{*}}$,

$$\exists \langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I^*_{\sigma} \times I^*_{\vartheta(\sigma)}} : \quad \mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\alpha,\vartheta(\alpha)) \in I^*_{\sigma} \times I^*_{\vartheta(\sigma)}} \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)}, \tag{8}$$

where $\vartheta(\sigma) = \operatorname{card}(I^*_{\vartheta(\sigma)}) \leq \operatorname{card}(I^*_{\sigma}) = \sigma$. The class of all \mathfrak{g} - $\mathfrak{I}_{\mathfrak{g}}$ -compact sets of category $\nu \in I^0_3$ is:

$$\mathfrak{g}\text{-}\nu\text{-}\mathbf{A}\left[\mathfrak{T}_{\mathfrak{g}}\right] \stackrel{\text{def}}{=} \left\{\mathscr{S}_{\mathfrak{g}}: \left[\forall \left\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\nu\text{-}\mathbf{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right\rangle_{\alpha \in I_{\sigma}^{*}}\right] \left[\exists \left\langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)}\right\rangle_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}}\right] \\ \left(\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)}\right)\right\}.$$
(9)

Thus, by a \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -compact set is meant a type of set $\mathfrak{T}_{\mathfrak{g}}$ -set every \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of which has a finite \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering [27, 36, 37]. Further, it is clear from the context that, \mathfrak{g} -A $[\mathfrak{T}_{\mathfrak{g}}] = \bigcup_{\nu \in I_3^0} \mathfrak{g}$ - ν -A $[\mathfrak{T}_{\mathfrak{g}}]$; its elements, then, are simply called \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compact sets. Stated differently, the above definition says that, given any sequence $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\mathfrak{F}}^*}$ of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open sets of $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ such that every point $\xi \in \mathscr{S}_{\mathfrak{g}}$ belongs to at least one $\mathscr{U}_{\mathfrak{g},\alpha}$, $\alpha \in I_{\mathfrak{F}}^*$, it is possible to select from $\langle \mathscr{U}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\mathfrak{F}}^*}$ a finite number of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open sets $\mathscr{U}_{\mathfrak{g},\vartheta(1)}$, $\mathscr{U}_{\mathfrak{g},\vartheta(2)}$, ..., $\mathscr{U}_{\mathfrak{g},\vartheta(\sigma)}$ whose union covers all of $\mathscr{S}_{\mathfrak{g}}$. **Remark 2.6** Since $\langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*} \prec \langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^*}$, $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-compactness of a}$ $\mathfrak{T}_{\mathfrak{g}}\text{-set is defined in terms of relatively } \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-open sets.}$

Definition 2.7 [23]/ \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -Refinement] $A \mathfrak{g}$ - $\mathfrak{T}_{\mathfrak{g}}$ -covering $\langle \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ - $\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ of a $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is a " \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -refinement" of another \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -covering $\langle \mathscr{R}_{\mathfrak{g},\beta} \in \mathfrak{g}$ - \mathfrak{g} - $\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\beta \in I_{\sigma}^{*}}$ of the same $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathscr{S}_{\mathfrak{g}}$ if and only if:

$$\left(\forall \alpha \in I_{\sigma}^{*}\right) \left(\exists \beta \in I_{\mu}^{*}\right) \left[\mathscr{S}_{\mathfrak{g},\alpha} \subseteq \mathscr{R}_{\mathfrak{g},\beta}\right].$$

$$(10)$$

In the event that $\mathscr{S}_{\mathfrak{g}} = \Omega$, $\langle \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\nu\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ is a $\mathfrak{g}\text{-}\nu\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{covering}$ of $\mathfrak{T}_{\mathfrak{g}}$ if $\Omega = \bigcup_{\alpha \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g},\alpha}$. Accordingly, $\langle \mathscr{S}_{\mathfrak{g},\vartheta(\alpha)} \in \mathfrak{g}\text{-}\nu\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}}$ is a $\mathfrak{g}\text{-}\nu\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{subcovering}$ of $\mathfrak{T}_{\mathfrak{g}}$ if the relation $\Omega = \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \mathscr{S}_{\mathfrak{g},\vartheta(\alpha)}$ holds, where $\vartheta(\sigma) = \mathrm{card}(I_{\vartheta(\sigma)}^{*}) < \mathrm{card}(I_{\sigma}^{*}) < \infty$. The definition follows.

Definition 2.8 [23][\mathfrak{g} - ν - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -Space] A $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is called a \mathfrak{g} - ν - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space denoted \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}^{[A]} \stackrel{\text{def}}{=} (\Omega, \mathfrak{g}$ - ν - $\mathscr{T}_{\mathfrak{g}}^{[A]})$ if and only if each \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -open covering $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ - ν - $O[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ of $\mathfrak{T}_{\mathfrak{g}}$ has a finite \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering.

In the sequel, by a \mathfrak{g} - ν - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = \left(\Omega, \mathfrak{g}$ - $\mathscr{T}_{\mathfrak{g}}^{[A]}\right)$ is meant \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = \bigvee_{\nu \in I_3^0} \mathfrak{g}$ - ν - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = \left(\Omega, \bigvee_{\nu \in I_3^0} \mathfrak{g}$ - ν - $\mathscr{T}_{\mathfrak{g}}^{[A]}\right) = \left(\Omega, \mathfrak{g}$ - $\mathscr{T}_{\mathfrak{g}}^{[A]}\right).$

3. Main Results

The main results of the theory of $\mathfrak{g}\text{-}\mathfrak{T}_\mathfrak{g}\text{-}\mathrm{compactness}$ are presented in this section.

Theorem 3.1 A \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})} = (\Omega, \mathfrak{g}$ - $\mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})})$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[\mathrm{A}]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[\mathrm{A}]} = (\Omega, \mathfrak{g}$ - $\mathscr{T}_{\mathfrak{g}}^{[\mathrm{A}]})$ if and only if every sequence $\langle \mathscr{V}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^*}$ of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets which has the finite intersection property has a non-empty intersection.

Proof Necessity. Let the \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})})$ be a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[\mathrm{A}]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[\mathrm{A}]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[\mathrm{A}]})$, and let $\langle \mathscr{V}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ be a sequence of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})}$ such that $\bigcup_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha} = \emptyset$. For every $\alpha \in I_{\sigma}^{*}$, set $\mathscr{U}_{\mathfrak{g},\alpha} = \mathfrak{C}(\mathscr{V}_{\mathfrak{g},\alpha})$ and consider the sequence $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open sets. Since $\bigcup_{\alpha \in I_{\sigma}^{*}} \mathscr{U}_{\mathfrak{g},\alpha} = \bigcup_{\alpha \in I_{\sigma}^{*}} \mathfrak{C}(\mathscr{V}_{\mathfrak{g},\alpha}) = \mathfrak{C}(\bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha}) = \Omega$, it follows that $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})}$. But \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})}$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[\mathrm{A}]}$ -space

 $\mathfrak{g}\text{-}\mathfrak{T}^{[\mathrm{A}]}_{\mathfrak{g}} = \left(\Omega, \mathfrak{g}\text{-}\mathscr{T}^{[\mathrm{A}]}_{\mathfrak{g}}\right) \text{ and, thus, there exists a } \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\text{open subcovering } \left\langle \mathscr{U}_{\mathfrak{g},\beta(\alpha)} \right\rangle_{(\alpha,\beta(\alpha))\in I_{\sigma}^{*}\times I_{n}^{*}} \prec \left\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \right\rangle_{\alpha\in I_{\sigma}^{*}} \text{ such that }$

$$\Omega = \bigcup_{(\alpha,\beta(\alpha))\in I_{\sigma}^{*}\times I_{n}^{*}} \mathscr{U}_{\mathfrak{g},\beta(\alpha)} = \bigcup_{(\alpha,\beta(\alpha))\in I_{\sigma}^{*}\times I_{n}^{*}} \mathbb{C}\left(\mathscr{V}_{\mathfrak{g},\beta(\alpha)}\right) = \mathbb{C}\left(\bigcap_{(\alpha,\beta(\alpha))\in I_{\sigma}^{*}\times I_{n}^{*}} \mathscr{V}_{\mathfrak{g},\beta(\alpha)}\right).$$

This implies that $\bigcap_{(\alpha,\beta(\alpha))\in I_{\sigma}^{*}\times I_{n}^{*}}\mathscr{V}_{\mathfrak{g},\beta(\alpha)}=\emptyset$. Hence, if a sequence $\langle \mathscr{V}_{\mathfrak{g},\alpha}\in\mathfrak{g}\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}]\rangle_{\alpha\in I_{\sigma}^{*}}$ of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})}$ has the finite intersection property, then $\bigcap_{(\alpha,\beta(\alpha))\in I_{\sigma}^{*}\times I_{n}^{*}}\mathscr{V}_{\mathfrak{g},\beta(\alpha)}\neq\emptyset$.

Sufficiency. Conversely, suppose that $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})} = (\Omega, \mathfrak{g} \cdot \mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})})$ is a $\mathfrak{g} \cdot \mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})}$ -space in which every sequence $\langle \mathscr{V}_{\mathfrak{g},\alpha} \in \mathfrak{g} \cdot \mathrm{K} [\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ of $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{g}}$ -closed sets which has the finite intersection property has a non-empty intersection. Then, for every subsequence $\langle \mathscr{V}_{\mathfrak{g},\beta(\alpha)} \rangle_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \prec \langle \mathscr{V}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^{*}}$ of $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{g}}$ -closed sets, the relation $\bigcap_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \mathscr{V}_{\mathfrak{g},\beta(\alpha)} \neq \emptyset$ holds. Consequently, $\bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha} \neq \emptyset$. In other words, $\bigcap_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \mathscr{V}_{\mathfrak{g},\beta(\alpha)} \neq \emptyset$ for every $I_{n}^{*} \subseteq I_{\sigma}^{*}$ implies $\bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha} \neq \emptyset$. But this is the contrapositive statement of $\bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha} = \emptyset$ implies that there exists $I_{n}^{*} \subseteq I_{\sigma}^{*}$ such that $\bigcap_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \mathscr{V}_{\mathfrak{g},\alpha} = \emptyset$. It results that, every sequence $\langle \mathscr{V}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ of $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{g}}$ of $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{g}}$ of $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{g}}$ contains a finite subsequence $\langle \mathscr{V}_{\mathfrak{g},\beta(\alpha)} \rangle_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}}$ of $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{g}}$ -closed sets with $\bigcap_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \mathscr{V}_{\mathfrak{g},\beta(\alpha)} = \emptyset$. Hence, $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})}$ is a $\mathfrak{g} \cdot \mathscr{T}_{\mathfrak{g}}^{(\mathrm{A})}$ -space $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{g}}^{(\mathrm{A})} = (\Omega, \mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{g}}^{(\mathrm{A})})$.

An interesting remark may well be given at this stage.

Remark 3.2 In particular, if the \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})})$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[\mathrm{A}]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[\mathrm{A}]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[\mathrm{A}]})$ and the elements of $\langle \mathscr{V}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ forms a descending sequence $\mathscr{V}_{\mathfrak{g},1} \supset \mathscr{V}_{\mathfrak{g},2} \supset \cdots \supset \mathscr{V}_{\mathfrak{g},\alpha} \supset \cdots$ of non-empty \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets, then $\bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha} \neq \emptyset$. Such property in its own right is weaker than \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness. In fact, it indicates the sense in which \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness asserts that the \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{(\mathrm{H})}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{(\mathrm{H})}$ has enough points, namely, at least enough points to yield one point in each such intersection of a descending sequence $\mathscr{V}_{\mathfrak{g},1} \supset \mathscr{V}_{\mathfrak{g},2} \supset \cdots \supset \mathscr{V}_{\mathfrak{g},\alpha} \supset \cdots$ of non-empty \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets.

Theorem 3.3 (g-T_g-Refinement) In a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, any \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -subcovering of the type $\langle \mathscr{S}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*}$ derived from a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -covering $\langle \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ - $\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^*}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -refinement.

 $\mathbf{Proof} \quad \text{Let } \left< \mathscr{S}_{\mathfrak{g},\vartheta(\alpha)} \right>_{(\alpha,\vartheta(\alpha)) \in I^*_{\sigma} \times I^*_{\vartheta(\sigma)}} \text{ be any } \mathfrak{g-T}_{\mathfrak{g}} \text{-subcovering derived from a } \mathfrak{g-T}_{\mathfrak{g}} \text{-covering derived from a } \mathfrak{g-T}_{\mathfrak{g}} \text{-$

 $\left\langle \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right] \right\rangle_{\alpha \in I_{\sigma}^{*}}$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, it results, consequently, that the relation $\left\langle \mathscr{S}_{\mathfrak{g},\vartheta(\alpha)} \right\rangle_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*} \times I_{\vartheta(\sigma)}^{*}} \prec \left\langle \mathscr{S}_{\mathfrak{g},\alpha} \right\rangle_{\alpha \in I_{\sigma}^{*}}$ holds true. Thus,

$$\left(\forall \vartheta \left(\alpha \right) \in I^*_{\vartheta \left(\sigma \right)} \right) \big(\exists \alpha \in I^*_{\sigma} \big) \big[\mathscr{S}_{\mathfrak{g}, \vartheta \left(\alpha \right)} \subseteq \mathscr{S}_{\mathfrak{g}, \alpha} \big].$$

Therefore, the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -subcovering $\langle \mathscr{S}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*}$ derived from the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -covering $\langle \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ - \mathfrak{g} - $\mathfrak{S}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^*}$ is therefore a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -refinement. This completes the proof of the theorem. \Box

Theorem 3.4 Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$ if and only if, for each \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ of $\mathscr{S}_{\mathfrak{g}}$, there is a finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*} \times I_{\vartheta(\sigma)}^{*}}$ of $\mathscr{S}_{\mathfrak{g}}$:

$$\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}A\left[\mathfrak{T}_{\mathfrak{g}}\right] \Leftrightarrow \left(\forall \left\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}O\left[\mathfrak{T}_{\mathfrak{g}}\right]\right\rangle_{\alpha \in I_{\sigma}^{*}}\right) \left(\exists \left\langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)}\right\rangle_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \prec \left\langle \mathscr{U}_{\mathfrak{g},\alpha}\right\rangle_{\alpha \in I_{\sigma}^{*}}\right) \\ \left[\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)}\right]. \tag{11}$$

Proof Necessity. Let $\mathscr{G}_{\mathfrak{g}} \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$ in $\mathfrak{T}_{\mathfrak{g}}$, and let $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of $\mathscr{G}_{\mathfrak{g}}$. Then, $\mathscr{G}_{\mathfrak{g}} \subseteq \bigcup_{\alpha \in I_{\sigma}^{*}} \mathscr{U}_{\mathfrak{g},\alpha}$ and, consequently, $\mathscr{G}_{\mathfrak{g}} = \bigcup_{\alpha \in I_{\sigma}^{*}} (\mathscr{U}_{\mathfrak{g},\alpha} \cap \mathscr{G}_{\mathfrak{g}})$. Therefore, $\langle \mathscr{U}_{\mathfrak{g},\alpha} \cap \mathscr{G}_{\mathfrak{g}} \rangle_{\alpha \in I_{\sigma}^{*}}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of $\mathscr{G}_{\mathfrak{g}}$ by relatively \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open sets $\mathscr{U}_{\mathfrak{g},1} \cap \mathscr{G}_{\mathfrak{g}}$, $\mathscr{U}_{\mathfrak{g},2} \cap \mathscr{G}_{\mathfrak{g}}$, ..., $\mathscr{U}_{\mathfrak{g},\sigma} \cap \mathscr{G}_{\mathfrak{g}} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$. Since $\mathscr{G}_{\mathfrak{g}} \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$, there is a finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)}\rangle_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}}$ of $\mathscr{G}_{\mathfrak{g}}$ such that $\mathscr{G}_{\mathfrak{g}} = \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} (\mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \cap \mathscr{G}_{\mathfrak{g}})$. Thus, it follows that $\mathscr{G}_{\mathfrak{g}} \subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \cap \mathscr{G}_{\mathfrak{g}}$.

Sufficiency. Conversely, suppose that, for every $\mathfrak{g} - \mathfrak{T}_{\mathfrak{g}}$ -open covering $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^*}$ of $\mathscr{S}_{\mathfrak{g}}, \langle \mathscr{U}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^*}$ has a finite $\mathfrak{g} - \mathfrak{T}_{\mathfrak{g}}$ -open subcovering of the type $\langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*}$ of $\mathscr{S}_{\mathfrak{g}}$. It must be shown that, given a $\mathfrak{g} - \mathfrak{T}_{\mathfrak{g}}$ -open covering $\langle \mathscr{U}_{\mathfrak{g},\beta} \rangle_{\beta \in I_{\mu}^*}$ of $\mathscr{S}_{\mathfrak{g}}$ by relatively $\mathfrak{g} - \mathfrak{T}_{\mathfrak{g}}$ -open sets $\mathscr{U}_{\mathfrak{g},1}, \mathscr{U}_{\mathfrak{g},2}, \ldots, \mathscr{U}_{\mathfrak{g},\mu} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$, there is a finite $\mathfrak{g} - \mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{U}_{\mathfrak{g},\vartheta(\beta)} \rangle_{(\beta,\vartheta(\beta)) \in I_{\mu}^* \times I_{\vartheta(\mu)}^*}$ of $\mathscr{S}_{\mathfrak{g}}$ such that $\mathscr{S}_{\mathfrak{g}} = \bigcup_{(\beta,\vartheta(\beta)) \in I_{\mu}^* \times I_{\vartheta(\mu)}^*} \mathscr{U}_{\mathfrak{g},\vartheta(\beta)}$. For every $\beta \in I_{\mu}^*$, since $\mathscr{U}_{\mathfrak{g},\beta} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$ is a relatively \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open set in $\mathscr{S}_{\mathfrak{g}}$, there exists a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open set $\mathscr{U}_{\mathfrak{g},\beta} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$ such that $\mathscr{U}_{\mathfrak{g},\beta} = \mathscr{U}_{\mathfrak{g},\beta} \cap \mathscr{S}_{\mathfrak{g}}$. But $\mathscr{S}_{\mathfrak{g}} = \bigcup_{\beta \in I_{\mu}^*} \mathscr{U}_{\mathfrak{g},\beta} = \bigcup_{\beta \in I_{\mu}^*} (\mathscr{U}_{\mathfrak{g},\beta} \cap \mathscr{S}_{\mathfrak{g}}) \subseteq \bigcup_{\beta \in I_{\mu}^*} \mathscr{U}_{\mathfrak{g},\beta}$ and, consequently, $\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{\beta \in I_{\mu}^*} \mathscr{U}_{\mathfrak{g},\beta}$, implying that $\langle \mathscr{U}_{\mathfrak{g},\beta} \rangle_{\beta \in I_{\mu}^*}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of $\mathscr{S}_{\mathfrak{g}}$ by \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open sets $\mathscr{U}_{\mathfrak{g},1}, \mathscr{U}_{\mathfrak{g},2}, \ldots, \mathscr{U}_{\mathfrak{g},\mu} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$. By hypothesis, there exists a finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\left\langle \mathscr{U}_{\mathfrak{g},\vartheta(\beta)} \right\rangle_{(\beta,\vartheta(\beta))\in I^*_{\mu}\times I^*_{\vartheta(\mu)}} \text{ of } \mathscr{S}_{\mathfrak{g}} \text{ such that } \mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\beta,\vartheta(\beta))\in I^*_{\mu}\times I^*_{\vartheta(\mu)}} \mathscr{U}_{\mathfrak{g},\vartheta(\beta)}. \text{ Thus,}$

$$\begin{split} \mathscr{S}_{\mathfrak{g}} = \left(\bigcup_{(\beta,\vartheta(\beta))\in I_{\mu}^{*}\times I_{\vartheta(\mu)}^{*}}\mathscr{U}_{\mathfrak{g},\vartheta(\beta)}\right)\cap\mathscr{S}_{\mathfrak{g}} &= \bigcup_{(\beta,\vartheta(\beta))\in I_{\mu}^{*}\times I_{\vartheta(\mu)}^{*}}\left(\mathscr{U}_{\mathfrak{g},\vartheta(\beta)}\cap\mathscr{S}_{\mathfrak{g}}\right) \\ &= \bigcup_{(\beta,\vartheta(\beta))\in I_{\mu}^{*}\times I_{\vartheta(\mu)}^{*}}\widehat{\mathscr{U}}_{\mathfrak{g},\vartheta(\beta)}. \end{split}$$

Hence, it results that the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering $\langle \hat{\mathscr{U}}_{\mathfrak{g},\beta} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\beta \in I^*_{\mu}}$ of $\mathscr{S}_{\mathfrak{g}}$ by relatively \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open sets $\hat{\mathscr{U}}_{\mathfrak{g},1}, \hat{\mathscr{U}}_{\mathfrak{g},2}, \ldots, \hat{\mathscr{U}}_{\mathfrak{g},\sigma} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$ has a finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \hat{\mathscr{U}}_{\mathfrak{g},\vartheta(\beta)} \rangle_{(\beta,\vartheta(\beta)) \in I^*_{\mu} \times I^*_{\vartheta(\mu)}}$ of $\mathscr{S}_{\mathfrak{g}}$.

Theorem 3.5 If $\mathscr{S}_{\mathfrak{g},1}$, $\mathscr{S}_{\mathfrak{g},2}$, ..., $\mathscr{S}_{\mathfrak{g},\mu} \in \mathfrak{g}\text{-}A[\mathfrak{T}_{\mathfrak{g}}]$ be $\mu \geq 1$ $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}compact sets in a <math>\mathscr{T}_{\mathfrak{g}}\text{-}space$ $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}}), \text{ then } \bigcup_{\alpha \in I_{\mathfrak{g}}^*} \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}A[\mathfrak{T}_{\mathfrak{g}}] \text{ in } \mathfrak{T}_{\mathfrak{g}}:$

$$\bigwedge_{\alpha \in I^*_{\mu}} \left(\mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathcal{A}[\mathfrak{T}_{\mathfrak{g}}] \right) \; \Rightarrow \; \bigcup_{\alpha \in I^*_{\mu}} \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathcal{A}[\mathfrak{T}_{\mathfrak{g}}].$$
(12)

Proof Let $\mathscr{I}_{\mathfrak{g},1}, \mathscr{I}_{\mathfrak{g},2}, \ldots, \mathscr{I}_{\mathfrak{g},\mu} \in \mathfrak{g}\text{-}A[\mathfrak{T}_{\mathfrak{g}}]$ be $\mu \geq 1$ $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-compact sets in }\mathfrak{T}_{\mathfrak{g}}$. Then, for every $\alpha \in I^*_{\mu}$, there exists $\langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha,\beta)} \rangle_{(\vartheta(\alpha),\vartheta(\alpha,\beta)) \in I^*_{\sigma} \times I^*_{\beta(\sigma)}} \prec \langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \in \mathfrak{g}\text{-}O[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\vartheta(\alpha) \in I^*_{\sigma}}$, where $I^*_{\beta(\sigma)} \subseteq I^*_{\sigma}$, such that $\mathscr{I}_{\mathfrak{g},\alpha} \subseteq \bigcup_{(\vartheta(\alpha),\vartheta(\alpha,\beta)) \in I^*_{\sigma} \times I^*_{\beta(\sigma)}} \mathscr{U}_{\mathfrak{g},\vartheta(\alpha,\beta)}$ holds. Consequently,

$$\bigcup_{\alpha \in I_{\mu}^{*}} \mathscr{S}_{\mathfrak{g}, \alpha} \subseteq \bigcup_{\alpha \in I_{\mu}^{*}} \left(\bigcup_{(\vartheta(\alpha), \vartheta(\alpha, \beta)) \in I_{\sigma}^{*} \times I_{\beta(\sigma)}^{*}} \mathscr{U}_{\mathfrak{g}, \vartheta(\alpha, \beta)} \right) \subseteq \bigcup_{(\alpha, \vartheta(\alpha), \vartheta(\alpha, \beta)) \in I_{\mu}^{*} \times I_{\sigma}^{*} \times I_{\beta(\sigma)}^{*}} \mathscr{U}_{\mathfrak{g}, \vartheta(\alpha, \beta)}.$$

Hence, it follows that, $\bigcup_{\alpha \in I^*_{\mu}} \mathscr{S}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -A[$\mathfrak{T}_{\mathfrak{g}}$] in $\mathfrak{T}_{\mathfrak{g}}$. The proof of the theorem is complete. \Box

Theorem 3.6 If $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be any finite $\mathfrak{T}_{\mathfrak{g}}$ -set of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$:

$$\left(\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}\right) \land \left(\operatorname{card}\left(\mathscr{S}_{\mathfrak{g}}\right) < \infty\right) \; \Rightarrow \; \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{A}\left[\mathfrak{T}_{\mathfrak{g}}\right].$$
(13)

Proof Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be any finite $\mathfrak{T}_{\mathfrak{g}}$ -set of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, there exist $\langle \mathscr{O}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I^*_{\sigma} \times I^*_{\vartheta(\sigma)}} \prec \langle \mathscr{O}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I^*_{\sigma}}$ such that $\bigcup_{\xi \in \mathscr{S}_{\mathfrak{g}}} \{\xi\} \subseteq \bigcup_{(\alpha,\vartheta(\alpha)) \in I^*_{\sigma} \times I^*_{\vartheta(\sigma)}} \mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}$ holds. Since $\mathscr{O}_{\mathfrak{g},\alpha} \subseteq \mathrm{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\alpha})$ for every $\alpha \in I^*_{\sigma}$ and $\bigcup_{\xi \in \mathscr{S}_{\mathfrak{g}}} \{\xi\} = \mathscr{S}_{\mathfrak{g}}$, it results that,

$$\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \mathscr{O}_{\mathfrak{g},\vartheta(\alpha)} \subseteq \operatorname{op}_{\mathfrak{g}}\left(\bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}\right)$$
$$\subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \operatorname{op}_{\mathfrak{g}}\left(\mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}\right) \subseteq \bigcup_{\alpha\in I_{\sigma}^{*}} \operatorname{op}_{\mathfrak{g}}\left(\mathscr{O}_{\mathfrak{g},\alpha}\right).$$

34

Therefore, $\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\vartheta(\alpha)})$. But, for every pair $(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}$, $\operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}) \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$. Consequently, for every $(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}$, there exists $\mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$ such that $\mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} = \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\vartheta(\alpha)})$. Thus, $\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)}$ and hence, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$. This completes the proof of the theorem. \Box

Corollary 3.7 Let $\mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set of a discrete $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$ if and only if it is a finite $\mathfrak{T}_{\mathfrak{g}}$ -set.

Proposition 3.8 If $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is a finite strong $\mathscr{T}_{\mathfrak{g}}$ -space, then it is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[A]})$:

$$\left(\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})\right) \land \left(\operatorname{card}\left(\Omega\right) < \infty\right) \; \Rightarrow \; \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}^{[A]} = \left(\Omega, \mathfrak{g}\text{-}\mathscr{T}_{\mathfrak{g}}^{[A]}\right). \tag{14}$$

Proof Let $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ be a finite strong $\mathscr{T}_{\mathfrak{g}}$ -space with $\Omega = \{\xi_{\alpha} : \alpha \in I_{\mu}^{*}\}$ and $\mu < \infty$. Since $\mathfrak{T}_{\mathfrak{g}}$ is a finite strong $\mathscr{T}_{\mathfrak{g}}$ -space, if $\langle \mathscr{O}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^{*}}$ is a $\mathfrak{T}_{\mathfrak{g}}$ -open covering of Ω , then, for every $\alpha \in I_{\mu}^{*}$, there exists a $\vartheta(\alpha) \in I_{\sigma}^{*}$ such that $\xi_{\alpha} \in \mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}$. Thus, $\Omega = \bigcup_{\alpha \in I_{\mu}^{*}} \{\xi_{\alpha}\} \subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\mu}^{*}\times I_{\sigma}^{*}} \mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}$ and consequently, $\langle \mathscr{O}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha))\in I_{\mu}^{*}\times I_{\sigma}^{*}}$ is a $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering of Ω . But, for every $(\alpha,\vartheta(\alpha)) \in I_{\mu}^{*} \times I_{\sigma}^{*}$, $\mathscr{O}_{\mathfrak{g},\vartheta(\alpha)} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}) \in \mathfrak{g}$ -O [$\mathfrak{T}_{\mathfrak{g}}$]. Consequently, for each $(\alpha,\vartheta(\alpha)) \in I_{\mu}^{*} \times I_{\sigma}^{*}$, there corresponds a $\mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \in \mathfrak{g}$ -O [$\mathfrak{T}_{\mathfrak{g}}$] such that $\mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} = \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\vartheta(\alpha)})$. Thus, $\Omega \subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\mu}^{*}\times I_{\sigma}^{*}} \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)}$. Hence, $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[A]})$. The proof of the proposition is complete.

Proposition 3.9 If $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ be a $\mathscr{T}_{\mathfrak{g}}$ -space generated by unit $\mathfrak{T}_{\mathfrak{g}}$ -sets of Ω , then any infinite $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ is not \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compact.

Proof Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be any infinite $\mathfrak{T}_{\mathfrak{g}}$ -set of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ generated by unit $\mathfrak{T}_{\mathfrak{g}}$ -sets of Ω . Then, since $\{\xi\} \in \mathfrak{T}_{\mathfrak{g}}$ and $\{\xi\} \subseteq \operatorname{op}_{\mathfrak{g}}(\{\xi\})$ hold for every $\{\xi\} \subset \mathscr{S}_{\mathfrak{g}}$, it follows that, for every $\xi \in \mathscr{S}_{\mathfrak{g}}$, $\{\xi\} \subseteq \operatorname{op}_{\mathfrak{g}}(\{\xi\})$. Consequently, $\mathscr{S}_{\mathfrak{g}} = \bigcup_{\xi \in \mathscr{S}_{\mathfrak{g}}} \{\xi\} \subseteq \bigcup_{\xi \in \mathscr{S}_{\mathfrak{g}}} \operatorname{op}_{\mathfrak{g}}(\{\xi\})$. Clearly, $\operatorname{op}_{\mathfrak{g}}(\{\xi\}) \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$ for every $\xi \in \mathscr{S}_{\mathfrak{g}}$ and therefore, there exists, for each $\xi \in \mathscr{S}_{\mathfrak{g}}$, a $\mathscr{U}_{\mathfrak{g},\xi} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$ such that $\mathscr{U}_{\mathfrak{g},\xi} = \operatorname{op}_{\mathfrak{g}}(\{\xi\})$. Hence, $\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{\xi \in \mathscr{S}_{\mathfrak{g}}} \mathscr{U}_{\mathfrak{g},\xi}$, implying that $\langle \mathscr{U}_{\mathfrak{g},\xi} \rangle_{\xi \in \mathscr{S}_{\mathfrak{g}}}$ is an infinite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of $\mathscr{S}_{\mathfrak{g}}$. Consequently, there exists no finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{U}_{\mathfrak{g},\vartheta(\xi)} \rangle_{(\xi,\vartheta(\xi))\in \mathscr{S}_{\mathfrak{g}}\times I_{\sigma}^{*}} \prec \langle \mathscr{U}_{\mathfrak{g},\xi} \rangle_{\xi \in \mathscr{S}_{\mathfrak{g}}}$ of $\mathscr{S}_{\mathfrak{g}}$ such that $\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\xi,\vartheta(\xi))\in \mathscr{S}_{\mathfrak{g}}\times I_{\sigma}^{*}} \mathscr{U}_{\mathfrak{g},\vartheta(\xi)}$. Hence, $\mathscr{S}_{\mathfrak{g}} \notin \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$. This completes the proof of the theorem.

Corollary 3.10 If $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ be a $\mathscr{T}_{\mathfrak{g}}$ -space generated by unit $\mathfrak{T}_{\mathfrak{g}}$ -sets of Ω and $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, then $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$ if and only if it is a finite $\mathfrak{T}_{\mathfrak{g}}$ -set in $\mathfrak{T}_{\mathfrak{g}}$.

Theorem 3.11 Let $\mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g}}$ be any $\mathfrak{T}_{\mathfrak{g}}$ -set of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. If $\mathscr{S}_{\mathfrak{g}}$ be \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compact, then it is also $\mathfrak{T}_{\mathfrak{g}}$ -compact:

$$\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathcal{A}\left[\mathfrak{T}_{\mathfrak{g}}\right] \Rightarrow \mathscr{S}_{\mathfrak{g}} \in \mathcal{A}\left[\mathfrak{T}_{\mathfrak{g}}\right].$$

$$(15)$$

Proof Let $\mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g}}$ be any $\mathfrak{T}_{\mathfrak{g}}$ -set of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ and suppose $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$. Since $\mathscr{S}_{\mathfrak{g}}$ is \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compact, there exists a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha} \in I_{\sigma}^{*}$ of $\mathscr{S}_{\mathfrak{g}}$ which has a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*} \times I_{\vartheta(\sigma)}^{*}}$ such that $\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*} \times I_{\vartheta(\sigma)}^{*}} \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)}$. The assertion that, $\mathscr{U}_{\mathfrak{g},\vartheta(\xi)} \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$ for every $(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*} \times I_{\vartheta(\sigma)}^{*}$ implies the existence of $\mathscr{O}_{\mathfrak{g},\vartheta(\xi)} \in \mathscr{T}_{\mathfrak{g}}$ such that, $\mathscr{U}_{\mathfrak{g},\vartheta(\xi)} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\vartheta(\xi)})$ for every $(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*} \times I_{\vartheta(\sigma)}^{*}$. Consequently,

$$\begin{split} \mathscr{S}_{\mathfrak{g}} &= \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \left(\mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}\cap\mathscr{S}_{\mathfrak{g}}\right) \\ &\subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \left(\mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}\cap \operatorname{op}_{\mathfrak{g}}\left(\mathscr{O}_{\mathfrak{g},\vartheta(\xi)}\right)\right) \subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \mathscr{O}_{\mathfrak{g},\vartheta(\xi)}, \end{split}$$

thereby implying, $\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^*\times I_{\vartheta(\sigma)}^*} \mathscr{O}_{\mathfrak{g},\vartheta(\xi)}$. Hence, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}A[\mathfrak{T}_{\mathfrak{g}}]$ implies $\mathscr{S}_{\mathfrak{g}} \in A[\mathfrak{T}_{\mathfrak{g}}]$. The proof of the theorem is complete. \Box

Proposition 3.12 If $\mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g}}$ be any infinite $\mathfrak{T}_{\mathfrak{g}}$ -set of a discrete $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then $\mathscr{S}_{\mathfrak{g}} \notin \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$.

Proof Let $\mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set of a discrete $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$ if and only if it is a finite $\mathfrak{T}_{\mathfrak{g}}$ -set. Since $\mathfrak{T}_{\mathfrak{g}}$ is a discrete $\mathscr{T}_{\mathfrak{g}}$ -space, consider the class $\{\{\xi\} : \xi \in \mathscr{S}_{\mathfrak{g}}\}$ of unit $\mathfrak{T}_{\mathfrak{g}}$ -sets of $\mathscr{S}_{\mathfrak{g}}$. Clearly, the relation $\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{\xi \in \mathscr{S}_{\mathfrak{g}}} \{\xi\} \subseteq \bigcup_{\xi \in \mathscr{S}_{\mathfrak{g}}} \operatorname{op}_{\mathfrak{g}}(\{\xi\})$ holds and, for every $\xi \in \mathscr{S}_{\mathfrak{g}}$, $\operatorname{op}_{\mathfrak{g}}(\{\xi\}) \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$. Accordingly, for every $\xi \in \mathscr{S}_{\mathfrak{g}}$, set $\operatorname{op}_{\mathfrak{g}}(\{\xi\}) = \mathscr{U}_{\mathfrak{g},\xi}$. Then, $\langle \mathscr{U}_{\mathfrak{g},\xi} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]\rangle_{\xi \in \mathscr{S}_{\mathfrak{g}}}$ is an infinite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of $\mathscr{S}_{\mathfrak{g}}$. Consequently, $\langle \mathscr{U}_{\mathfrak{g},\xi}\rangle_{\xi \in \mathscr{S}_{\mathfrak{g}}}$ contains no finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{U}_{\mathfrak{g},\vartheta(\xi)}\rangle_{(\xi,\vartheta(\xi))\in\mathscr{S}_{\mathfrak{g}}\times I_{\sigma}^{*}} \prec \langle \mathscr{U}_{\mathfrak{g},\xi}\rangle_{\xi \in \mathscr{S}_{\mathfrak{g}}}$ of $\mathscr{S}_{\mathfrak{g}}$ such that $\mathscr{S}_{\mathfrak{g}} \subseteq \bigcup_{(\xi,\vartheta(\xi))\in \mathscr{S}_{\mathfrak{g}}\times I_{\sigma}^{*}} \mathscr{U}_{\mathfrak{g},\vartheta(\xi)}$. Hence, $\mathscr{S}_{\mathfrak{g}} \notin \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$. The proof of the theorem is complete. \Box

Corollary 3.13 Let $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ to be a $\mathscr{T}_{\mathfrak{g}}$ -space. If $\mathfrak{T}_{\mathfrak{g}}$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{T}_{\mathfrak{g}}^{[A]})$, then it is also a $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathscr{T}_{\mathfrak{g}}^{[A]})$.

Theorem 3.14 A necessary and sufficient conditions for a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ to be a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[A]})$ is that, whenever a sequence $\langle \mathscr{V}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets is such that $\bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha} = \emptyset$, then there exists $\langle \mathscr{V}_{\mathfrak{g},\beta(\alpha)} \rangle_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \prec \langle \mathscr{V}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^{*}}$ such that the relation $\bigcap_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \mathscr{V}_{\mathfrak{g},\alpha} = \emptyset$ holds.

Proof Necessity. Suppose $\mathfrak{T}_{\mathfrak{g}}$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[A]})$ and a sequence $\langle \mathscr{V}_{\mathfrak{g},\alpha} \in \mathfrak{g} - \mathfrak{K}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets is given such that $\bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha} = \emptyset$. Then, $\bigcup_{\alpha \in I_{\sigma}^{*}} \mathscr{U}_{\mathfrak{g},\alpha} = \bigcup_{\alpha \in I_{\sigma}^{*}} \mathfrak{C}(\mathscr{V}_{\mathfrak{g},\alpha}) = \mathfrak{C}(\bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha}) = \Omega$, so that $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of $\mathfrak{T}_{\mathfrak{g}}$. Thus, there exists a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{U}_{\mathfrak{g},\beta(\alpha)} \rangle_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \prec \langle \mathscr{U}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^{*}}$ and, thus, $\bigcap_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \mathscr{V}_{\mathfrak{g},\beta(\alpha)} = \mathfrak{C}(\bigcup_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \mathscr{U}_{\mathfrak{g},\beta(\alpha)}) = \emptyset$.

Sufficiency. Conversely, suppose that, for every $\langle \mathscr{V}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{closed}$ sets such that $\bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha} = \emptyset$, there exists a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open subcovering given by $\langle \mathscr{V}_{\mathfrak{g},\beta(\alpha)} \rangle_{(\alpha,\beta(\alpha))\in I_{\sigma}^{*}\times I_{n}^{*}} \prec \langle \mathscr{V}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^{*}}$ such that $\bigcap_{(\alpha,\beta(\alpha))\in I_{\sigma}^{*}\times I_{n}^{*}} \mathscr{V}_{\mathfrak{g},\alpha}$. Further, let $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\mu}^{*}}$ stand for a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open covering of $\mathfrak{T}_{\mathfrak{g}}$. Then $\langle \mathfrak{C}(\mathscr{U}_{\mathfrak{g},\alpha}) \in \mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\mu}^{*}}$ is a sequence of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{closed}$ sets such that $\bigcap_{\alpha \in I_{\mu}^{*}} \mathfrak{C}(\mathscr{U}_{\mathfrak{g},\alpha}) = \emptyset$. Thus $\bigcap_{(\alpha,\beta(\alpha))\in I_{\mu}^{*}\times I_{n}^{*}} \mathfrak{C}(\mathscr{U}_{\mathfrak{g},\beta(\alpha)}) = \emptyset$ and $\langle \mathscr{U}_{\mathfrak{g},\beta(\alpha)} \in \mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{(\alpha,\beta(\alpha))\in I_{\mu}^{*}\times I_{n}^{*}}$ is a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open subcovering of $\mathfrak{T}_{\mathfrak{g}}$.

If $\mathfrak{T}_{\mathfrak{g},\Gamma} = (\Gamma, \mathscr{T}_{\mathfrak{g},\Gamma})$ be a $\mathscr{T}_{\mathfrak{g}}$ -space such that $(\Gamma, \mathscr{T}_{\mathfrak{g},\Gamma}) \subseteq (\Omega, \mathscr{T}_{\mathfrak{g},\Omega})$ and $(\Gamma, \mathscr{T}_{\mathfrak{g},\Gamma}) \subseteq (\Sigma, \mathscr{T}_{\mathfrak{g},\Sigma})$, where $\mathfrak{T}_{\mathfrak{g},\Omega} = (\Omega, \mathscr{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma} = (\Sigma, \mathscr{T}_{\mathfrak{g},\Sigma})$ are two $\mathscr{T}_{\mathfrak{g}}$ -spaces satisfying $(\Omega, \mathscr{T}_{\mathfrak{g},\Omega}) \neq (\Sigma, \mathscr{T}_{\mathfrak{g},\Sigma})$, then $\mathscr{T}_{\mathfrak{g},\Gamma} : \mathscr{P}(\Gamma) \longrightarrow \mathscr{P}(\Gamma)$ is the same whether $\mathfrak{T}_{\mathfrak{g},\Gamma} \subseteq \mathfrak{T}_{\mathfrak{g},\Omega}$ or $\mathfrak{T}_{\mathfrak{g},\Gamma} \subseteq \mathfrak{T}_{\mathfrak{g},\Sigma}$ and, hence, the assertion that, $\mathfrak{T}_{\mathfrak{g},\Gamma} = (\Gamma, \mathscr{T}_{\mathfrak{g},\Gamma})$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g},\Gamma}^{[A]} = (\Gamma, \mathfrak{g}$ - $\mathscr{T}_{\mathfrak{g},\Gamma}^{[A]})$ depends only on the elements forming the structure $(\Gamma, \mathscr{T}_{\mathfrak{g},\Gamma})$. Therefore, the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness of a $\mathscr{T}_{\mathfrak{g}}$ -subspace $\mathfrak{T}_{\mathfrak{g},\Gamma} = (\Gamma, \mathscr{T}_{\mathfrak{g},\Gamma})$ of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g},\Omega} = (\Omega, \mathscr{T}_{\mathfrak{g},\Omega})$ may be related to $\mathscr{T}_{\mathfrak{g},\Omega} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ by virtue of the following theorem.

Theorem 3.15 Let $\Gamma \subset \Omega$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, the following statements are equivalent:

- I. $\Gamma \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$ with respect to the absolute \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g}} : \mathscr{P}_{\mathfrak{g}}(\Omega) \longrightarrow \mathscr{P}_{\mathfrak{g}}(\Omega)$.
- II. $\Gamma \in \mathfrak{g}\text{-}A[\mathfrak{T}_{\mathfrak{g}}]$ with respect to the relative \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g},\Gamma} : \mathscr{P}_{\mathfrak{g}}(\Gamma) \mapsto \mathscr{T}_{\mathfrak{g},\Gamma} \stackrel{\text{def}}{=} \{ \mathscr{O}_{\mathfrak{g}} \cap \Gamma : \mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g}} \}.$

Proof I. \longrightarrow II. Let $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\mathfrak{r}}^*}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of Γ with respect to the

relative \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g},\Gamma}: \mathscr{P}_{\mathfrak{g}}(\Gamma) \mapsto \mathscr{T}_{\mathfrak{g},\Gamma}$. The relative \mathfrak{g} -topology being $\mathscr{T}_{\mathfrak{g},\Gamma}: \mathscr{P}_{\mathfrak{g}}(\Gamma) \mapsto \mathscr{T}_{\mathfrak{g},\Gamma} \stackrel{\text{def}}{=} \{\mathscr{O}_{\mathfrak{g}} \cap \Gamma: \mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g}}\}, \text{ it consequently follows that, for every } \alpha \in I_{\sigma}^{*}, \text{ there exists } \hat{\mathscr{O}}_{\mathfrak{g},\alpha} \in \mathscr{T}_{\mathfrak{g}} \text{ such that } \mathscr{U}_{\mathfrak{g},\alpha} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\alpha}) = \operatorname{op}_{\mathfrak{g}}(\hat{\mathscr{O}}_{\mathfrak{g},\alpha} \cap \Gamma) \subseteq \operatorname{op}_{\mathfrak{g}}(\hat{\mathscr{O}}_{\mathfrak{g},\alpha}).$ For every $\alpha \in I_{\sigma}^{*}, \text{ set } \mathscr{U}_{\mathfrak{g},\alpha} = \operatorname{op}_{\mathfrak{g}}(\hat{\mathscr{O}}_{\mathfrak{g},\alpha} \cap \Gamma).$ Thus, $\Gamma \subseteq \bigcup_{\alpha \in I_{\sigma}^{*}} \mathscr{U}_{\mathfrak{g},\alpha}$ and therefore, $\langle \mathscr{U}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^{*}}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of Γ with respect to the absolute \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g}}: \mathscr{P}_{\mathfrak{g}}(\Omega) \longrightarrow \mathscr{P}_{\mathfrak{g}}(\Omega).$ By virtue of I., $\Gamma \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$ with respect to $\mathscr{T}_{\mathfrak{g}}$ and consequently, a finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)}\rangle_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \prec \langle \mathscr{U}_{\mathfrak{g},\alpha}\rangle_{\alpha\in I_{\sigma}^{*}}$ exists where, for every $(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*} \times I_{\vartheta(\sigma)}^{*}, \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} = \operatorname{op}_{\mathfrak{g}}(\hat{\mathscr{O}}_{\mathfrak{g},\vartheta(\alpha)} \cap \Gamma).$ But then

$$\begin{split} \Gamma \subseteq \Gamma \cap \left(\bigcup_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*} \hat{\mathscr{O}}_{\mathfrak{g},\vartheta(\alpha)} \right) &= \bigcup_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*} \left(\hat{\mathscr{O}}_{\mathfrak{g},\vartheta(\alpha)} \cap \Gamma \right) \\ &= \bigcup_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*} \hat{\mathscr{U}}_{\mathfrak{g},\vartheta(\alpha)}. \end{split}$$

Thus, it follows that the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering $\langle \mathscr{U}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^*}$ contains a finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{\hat{U}}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^*\times I_{\vartheta(\sigma)}^*}$ of Γ with respect to the relative \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g},\Gamma} : \mathscr{P}_{\mathfrak{g}}(\Gamma) \mapsto \mathscr{T}_{\mathfrak{g},\Gamma}$. Hence, $(\Gamma, \mathscr{T}_{\mathfrak{g},\Gamma})$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space. This proves that I. implies II.

I. \leftarrow II. Let $\langle \hat{\mathscr{U}}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^*}$ be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of Γ with respect to the absolute \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g}} : \mathscr{P}_{\mathfrak{g}}(\Omega) \longrightarrow \mathscr{P}_{\mathfrak{g}}(\Omega)$. For every $\alpha \in I_{\sigma}^*$, there exists, then, $\hat{\mathscr{O}}_{\mathfrak{g},\alpha} \in \mathscr{T}_{\mathfrak{g}}$ such that $\hat{\mathscr{U}}_{\mathfrak{g},\alpha} = \mathrm{op}_{\mathfrak{g}}(\hat{\mathscr{O}}_{\mathfrak{g},\alpha})$. For every $\alpha \in I_{\sigma}^*$, set $\mathscr{O}_{\mathfrak{g},\alpha} = \hat{\mathscr{O}}_{\mathfrak{g},\alpha} \cap \Gamma$. Consequently, $\Gamma \subseteq \bigcup_{\alpha \in I_{\sigma}^*} \hat{\mathscr{U}}_{\mathfrak{g},\alpha}$ implies

$$\begin{split} \Gamma &\subseteq \Gamma \cap \left(\bigcup_{\alpha \in I_{\sigma}^{*}} \hat{\mathscr{U}}_{\mathfrak{g}, \alpha} \right) = \bigcup_{\alpha \in I_{\sigma}^{*}} \left(\Gamma \cap \hat{\mathscr{U}}_{\mathfrak{g}, \alpha} \right) &= \bigcup_{\alpha \in I_{\sigma}^{*}} \left(\Gamma \cap \operatorname{op}_{\mathfrak{g}} \left(\hat{\mathscr{O}}_{\mathfrak{g}, \alpha} \right) \right) \\ &= \bigcup_{\alpha \in I_{\sigma}^{*}} \operatorname{op}_{\mathfrak{g}} \left(\hat{\mathscr{O}}_{\mathfrak{g}, \alpha} \cap \Gamma \right) = \bigcup_{\alpha \in I_{\sigma}^{*}} \operatorname{op}_{\mathfrak{g}} \left(\mathscr{O}_{\mathfrak{g}, \alpha} \right) \end{split}$$

and from which it results that, $\Gamma \subseteq \bigcup_{\alpha \in I_{\sigma}^{*}} \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\alpha})$. Since $\mathscr{O}_{\mathfrak{g},\alpha} \in \mathscr{T}_{\mathfrak{g},\Gamma}$ and $\operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\alpha}) \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$ for every $\alpha \in I_{\sigma}^{*}$, set $\mathscr{U}_{\mathfrak{g},\alpha} = \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\alpha})$. Then, $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of Γ with respect to the relative \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g},\Gamma} : \mathscr{P}_{\mathfrak{g}}(\Gamma) \mapsto \mathscr{T}_{\mathfrak{g},\Gamma}$. But, by hypothesis, $\Gamma \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}}]$ with respect to the relative \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g},\Gamma} : \mathscr{P}_{\mathfrak{g}}(\Gamma) \mapsto \mathscr{T}_{\mathfrak{g},\Gamma}$ and, therefore, a finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\left\langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \right\rangle_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*} \prec \left\langle \mathscr{U}_{\mathfrak{g},\alpha} \right\rangle_{\alpha \in I_{\sigma}^*}$ exists. Accordingly,

$$\begin{split} \Gamma &\subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}}\mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} = \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \operatorname{op}_{\mathfrak{g}}\big(\mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}\big) \\ &= \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \operatorname{op}_{\mathfrak{g}}\big(\widehat{\mathscr{O}}_{\mathfrak{g},\vartheta(\alpha)}\cap\Gamma\big) = \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \big(\Gamma\cap\operatorname{op}_{\mathfrak{g}}\big(\widehat{\mathscr{O}}_{\mathfrak{g},\vartheta(\alpha)}\big)\big) \\ &= \Gamma\cap\bigg(\bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \operatorname{op}_{\mathfrak{g}}\big(\widehat{\mathscr{O}}_{\mathfrak{g},\vartheta(\alpha)}\big)\bigg) \subseteq \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \operatorname{op}_{\mathfrak{g}}\big(\widehat{\mathscr{O}}_{\mathfrak{g},\vartheta(\alpha)}\big) \\ &= \bigcup_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^{*}\times I_{\vartheta(\sigma)}^{*}} \widehat{\mathscr{U}}_{\mathfrak{g},\vartheta(\alpha)}. \end{split}$$

Thus, $\langle \hat{\mathscr{U}}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^*}$ is reducible to a a finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \hat{\mathscr{U}}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha))\in I_{\sigma}^* \times I_{\vartheta(\sigma)}^*}$ with respect to the absolute \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g}} : \mathscr{P}_{\mathfrak{g}}(\Omega) \longrightarrow \mathscr{P}_{\mathfrak{g}}(\Omega)$. Hence, $\Gamma \in \mathfrak{g}$ -A[$\mathfrak{T}_{\mathfrak{g}}$] with respect to the absolute \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g}} : \mathscr{P}_{\mathfrak{g}}(\Omega) \longrightarrow \mathscr{P}_{\mathfrak{g}}(\Omega)$. Thus proves that I. is implied by II. \Box

Theorem 3.16 Let $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ be a $\mathscr{T}_{\mathfrak{g}}$ -space. Then, the following statements are equivalent:

- I. $\mathfrak{T}_{\mathfrak{g}}$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = \left(\Omega, \mathfrak{g}$ - $\mathscr{T}_{\mathfrak{g}}^{[A]}\right)$.
- II. For every sequence ⟨𝒱_{g,α} ∈ g-K [𝔅_g]⟩_{α∈I^{*}_σ} of g-𝔅_g-closed sets of 𝔅_g, the equality relation
 ∩_{α∈I^{*}_σ} 𝒱_{g,α} = ∅ implies that the sequence ⟨𝒱_{g,α} ∈ g-K [𝔅_g]⟩_{α∈I^{*}_σ} contains a finite subsequence
 ⟨𝒱_{g,β(α)}⟩_{(α,β(α))∈I^{*}_σ×I^{*}_n} of g-𝔅_g-closed sets with ∩_{(α,β(α))∈I^{*}_σ×I^{*}_n} 𝒱_{g,β(α)} = ∅.

Proof I. \longrightarrow II. Suppose $\bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha} = \emptyset$. Then, by virtue of De Morgan's Law, it follows that $\Omega = \mathbb{C}(\emptyset) = \mathbb{C}(\bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha}) = \bigcup_{\alpha \in I_{\sigma}^{*}} \mathbb{C}(\mathscr{V}_{\mathfrak{g},\alpha}) = \bigcup_{\alpha \in I_{\sigma}^{*}} \mathscr{U}_{\mathfrak{g},\alpha}$. Therefore, $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g} - \mathbb{C}[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of $\mathfrak{T}_{\mathfrak{g}}$. But since $\mathfrak{T}_{\mathfrak{g}}$ is, by hypothesis, a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[A]})$, there exists a finite subsequence $\langle \mathscr{U}_{\mathfrak{g},\beta(\alpha)} \rangle_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}}$ of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open sets such that $\Omega = \bigcup_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \mathscr{U}_{\mathfrak{g},\beta(\alpha)}$. Thus, by De Morgan's Law, it follows that $\emptyset = \mathbb{C}(\Omega) = \mathbb{C}(\bigcup_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \mathscr{U}_{\mathfrak{g},\beta(\alpha)}) = \bigcap_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \mathbb{C}(\mathscr{U}_{\mathfrak{g},\beta(\alpha)}) = \bigcap_{(\alpha,\beta(\alpha)) \in I_{\sigma}^{*} \times I_{n}^{*}} \mathscr{V}_{\mathfrak{g},\beta(\alpha)}$. This proves that I. implies II.

 $I. \leftarrow II. \text{ Let } \left\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}O\left[\mathfrak{T}_{\mathfrak{g}}\right] \right\rangle_{\alpha \in I_{\sigma}^{*}} \text{ is a } \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\text{open covering of } \mathfrak{T}_{\mathfrak{g}}. \text{ Then, } \Omega = \bigcup_{\alpha \in I_{\sigma}^{*}} \mathscr{U}_{\mathfrak{g},\alpha}.$ Moreover, by De Morgan's Law, $\emptyset = \mathbb{C}(\Omega) = \mathbb{C}\left(\bigcup_{\alpha \in I_{\sigma}^{*}} \mathscr{U}_{\mathfrak{g},\alpha}\right) = \bigcap_{\alpha \in I_{\sigma}^{*}} \mathbb{C}(\mathscr{U}_{\mathfrak{g},\alpha}) = \bigcap_{\alpha \in I_{\sigma}^{*}} \mathscr{V}_{\mathfrak{g},\alpha}.$ Thus, $\left\langle \mathscr{V}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right] \right\rangle_{\alpha \in I_{\sigma}^{*}}$ is a sequence of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\text{closed sets and, by above, has an empty intersection.}$ By hypothesis, it follows, then, that there exists a finite subsequence $\left\langle \mathscr{V}_{\mathfrak{g},\beta(\alpha)} \right\rangle_{(\alpha,\beta(\alpha)) \in I_{*}^{*} \times I_{*}^{*}}$ of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets such that $\bigcap_{(\alpha,\beta(\alpha))\in I_{\sigma}^*\times I_n^*} \mathscr{V}_{\mathfrak{g},\beta(\alpha)} = \emptyset$. Thus, by virtue of De Morgan's Law, it results that $\Omega = \mathfrak{C}(\emptyset) = \mathfrak{C}(\bigcap_{(\alpha,\beta(\alpha))\in I_{\sigma}^*\times I_n^*} \mathscr{V}_{\mathfrak{g},\beta(\alpha)}) = \bigcup_{(\alpha,\beta(\alpha))\in I_{\sigma}^*\times I_n^*} \mathfrak{C}(\mathscr{V}_{\mathfrak{g},\beta(\alpha)}) = \bigcup_{(\alpha,\beta(\alpha))\in I_{\sigma}^*\times I_n^*} \mathscr{U}_{\mathfrak{g},\beta(\alpha)}$. Accordingly, $\mathfrak{T}_{\mathfrak{g}}$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega,\mathfrak{g}$ - $\mathscr{T}_{\mathfrak{g}}^{[A]})$ and, hence, I. is implied by II.

 $\begin{array}{ll} \textbf{Proposition 3.17} \ \textit{If} \ \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{K} \ [\mathfrak{T}_{\mathfrak{g}}] \ be \ a \ \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}} \ \text{-}closed \ set \ of} \ a \ \mathfrak{g}\text{-}\mathscr{T}_{\mathfrak{g}}^{[\mathrm{A}]} \ \text{-}space \ \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}^{[\mathrm{A}]} = \left(\Omega, \mathfrak{g}\text{-}\mathscr{T}_{\mathfrak{g}}^{[\mathrm{A}]}\right), \\ then \ \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{A} \ [\mathfrak{T}_{\mathfrak{g}}]: \end{array}$

$$\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right] \; \Rightarrow \; \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{A}\left[\mathfrak{T}_{\mathfrak{g}}\right]. \tag{16}$$

Proof Let it be assumed that $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}]$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed set of a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[A]})$. Then, $\mathfrak{l}(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$; that is, $\Omega \setminus \mathscr{S}_{\mathfrak{g}}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open set in \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]}$. Let $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}^{[A]}] \rangle_{\alpha \in I_{\sigma}^{*}}$ be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of $\mathscr{S}_{\mathfrak{g}}$ in \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]}$ and, for every $\alpha \in I_{\sigma}^{*}$, set $\hat{\mathscr{U}}_{\mathfrak{g},\alpha} = \mathscr{U}_{\mathfrak{g},\alpha} \cup \mathfrak{l}(\mathscr{S}_{\mathfrak{g}})$. Then, $\langle \widehat{\mathscr{U}}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^{*}}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of Ω . But since \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[A]})$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space, there exists a finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*} \times I_{\vartheta(\sigma)}^{*}} \prec \langle \mathscr{U}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\sigma}^{*}}$ such that $\Omega \subseteq \bigcup_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*} \times I_{\vartheta(\alpha)}^{*}} \widehat{\mathscr{U}_{\mathfrak{g},\vartheta(\alpha)}}$, where $\widehat{\mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} = \mathscr{U}_{\mathfrak{g},\vartheta(\alpha)} \cup \mathfrak{l}(\mathscr{S}_{\mathfrak{g}})$ for every $(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*} \times I_{\vartheta(\sigma)}^{*}$. Substitution of $\mathscr{I}_{\mathfrak{g},\vartheta(\alpha)} \rangle_{(\alpha,\vartheta(\alpha)) \in I_{\sigma}^{*} \times I_{\vartheta(\sigma)}^{*}}$ is a finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering of $\mathscr{S}_{\mathfrak{g}}$. Hence, $\mathscr{I}_{\mathfrak{g}} \in \mathfrak{g}$ -A $[\mathfrak{T}_{\mathfrak{g}]$. The proof of the proposition is complete. \Box

Theorem 3.18 A necessary and sufficient conditions for a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ to be a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[A]})$ is that, whenever for each $\xi \in \mathfrak{T}_{\mathfrak{g}}$ a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}$ -open neighborhood of ξ is given, there is a finite collection $\mathscr{C}_{\xi} = \{\xi_{\eta} : \eta \in I_{n}^{*}\}$ of points $\xi_{1}, \xi_{2}, \ldots, \xi_{n} \in \mathfrak{T}_{\mathfrak{g}}$ such that $\Omega = \bigcup_{\xi \in \mathscr{C}_{\xi}} \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\xi}).$

Proof Necessity. Suppose $\mathfrak{T}_{\mathfrak{g}}$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[A]})$. Let there be given, for each $\xi \in \mathfrak{T}_{\mathfrak{g}}$, a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}$ -open neighborhood of ξ . For each $\xi \in \mathfrak{T}_{\mathfrak{g}}$, there is a $\mathfrak{T}_{\mathfrak{g}}$ -open set $\mathscr{U}_{\mathfrak{g},\xi} \subset \mathfrak{T}_{\mathfrak{g}}$ satisfying $\xi \in \mathscr{U}_{\mathfrak{g},\xi} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\xi})$. Thus, for every $\xi \in \mathfrak{T}_{\mathfrak{g}}, \mathscr{U}_{\mathfrak{g},\xi} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}]$ and, consequently, $\langle \mathscr{U}_{\mathfrak{g},\xi} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\xi \in \mathfrak{T}_{\mathfrak{g}}}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of $\mathfrak{T}_{\mathfrak{g}}$. Since $\mathfrak{T}_{\mathfrak{g}}$ is a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g} - \mathscr{T}_{\mathfrak{g}}^{[A]})$, there is a finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{U}_{\mathfrak{g},\xi_{\mu}} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\mu \in I_n^*}$. But, for every $\mu \in I_n^*, \xi_\mu \in \mathscr{U}_{\mathfrak{g},\xi_\mu} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\xi_\mu})$, whence $\Omega = \bigcup_{\mu \in I_n^*} \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\xi_\mu}) = \bigcup_{\xi \in \mathscr{C}_{\xi}} \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\xi})$.

Sufficiency. Conversely, suppose that whenever, for each $\xi \in \mathfrak{T}_{\mathfrak{g}}$, a \mathfrak{g} - $\mathscr{T}_{\mathfrak{g}}$ -open neighborhood of ξ is given, there is a finite collection $\mathscr{C}_{\xi} = \{\xi_{\eta} : \eta \in I_n^*\}$ of points $\xi_1, \xi_2, \ldots, \xi_n \in \mathfrak{T}_{\mathfrak{g}}$ such

that $\Omega = \bigcup_{\xi \in \mathscr{C}_{\xi}} \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\xi})$. Let $\langle \mathscr{U}_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}O[\mathfrak{T}_{\mathfrak{g}}] \rangle_{\alpha \in I_{\sigma}^{*}}$ be a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open covering of $\mathfrak{T}_{\mathfrak{g}}$. Then, for each $\xi \in \mathfrak{T}_{\mathfrak{g}}$, there exists an $\alpha = \alpha(\xi)$ such that $\xi \in \mathscr{U}_{\mathfrak{g},\alpha(\xi)}$, and hence, $\mathscr{U}_{\mathfrak{g},\alpha(\xi)} = \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\xi})$ for every $(\xi, \alpha(\xi)) \in \mathfrak{T}_{\mathfrak{g}} \times I_{n}^{*}$. By hypothesis, there is, then, a finite collection $\mathscr{C}_{\xi} = \{\xi_{\eta} : \eta \in I_{n}^{*}\}$ of points $\xi_{1}, \xi_{2}, \ldots, \xi_{n} \in \mathfrak{T}_{\mathfrak{g}}$ such that $\Omega = \bigcup_{\xi \in \mathscr{C}_{\xi}} \mathscr{U}_{\mathfrak{g},\alpha(\xi)}$, and thus, $\mathfrak{T}_{\mathfrak{g}}$ is a $\mathfrak{g}\text{-}\mathscr{T}_{\mathfrak{g}}^{[A]}$ -space $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g}\text{-}\mathscr{T}_{\mathfrak{g}}^{[A]})$.

4. Discussion

4.1. Categorical Classifications

Having adopted a categorical approach in the classifications of the $\mathscr{T}_{\mathfrak{g}}$ -property called \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ compactness in the $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, the dual purposes of the this section are firstly, to establish
the various relationships amongst the elements of the sequences $\langle \mathfrak{g}$ - ν - $\mathfrak{T}_{\mathfrak{g}}^{[A]} = (\Omega, \mathfrak{g}$ - ν - $\mathscr{T}_{\mathfrak{g}}^{[A]}) \rangle_{\nu \in I_{\mathfrak{g}}^{0}}$,
and $\langle \mathfrak{g}$ - ν - $\mathfrak{T}^{[A]} = (\Omega, \mathfrak{g}$ - ν - $\mathscr{T}^{[A]}) \rangle_{\nu \in I_{\mathfrak{g}}^{0}}$ of \mathfrak{g} - ν - $\mathscr{T}_{\mathfrak{g}}^{[A]}$ -spaces and \mathfrak{g} - ν - $\mathscr{T}^{[A]}$ -spaces, respectively, and
secondly, to illustrate them through a so-called *categorical compactness diagram*.

Let $\mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g}}$ be any $\mathscr{T}_{\mathfrak{g}}$ -open set in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ and, for every $\nu \in I_3^0$, let there exist a $\mu \in I_3^0$ such that the relation $\operatorname{op}_{\mathfrak{g},\nu}(\mathscr{O}_{\mathfrak{g}}) \subseteq \operatorname{op}_{\mathfrak{g},\mu}(\mathscr{O}_{\mathfrak{g}})$ holds. Then, since $\mathscr{O}_{\mathfrak{g}} \subseteq \operatorname{op}_{\mathfrak{g},\nu}(\mathscr{O}_{\mathfrak{g}})$ for every $\nu \in I_3^0$, it follows that $\mathfrak{T}_{\mathfrak{g}}$ -openness implies \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -openness and the latter, in turn, implies \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -openness. But since the statement that \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness implies $\mathfrak{T}_{\mathfrak{g}}$ -compactness is a consequence of the statement that $\mathfrak{T}_{\mathfrak{g}}$ -openness implies \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -openness, it evidently follows that, \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -compactness implies \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -compactness and the latter, in turn, implies $\mathfrak{T}_{\mathfrak{g}}$ -compactness. On the other hand, for every $\mathfrak{T}_{\mathfrak{g}}$ -open set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, the relation int $\mathfrak{g}(\mathscr{S}_{\mathfrak{g}}) \subseteq cl_{\mathfrak{g}} \circ int_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \subseteq cl_{\mathfrak{g}} \circ int_{\mathfrak{g}} \circ cl_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \supseteq int_{\mathfrak{g}} \circ cl_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ holds [22, 23]. Consequently,

$$\operatorname{op}_{\mathfrak{g},0}\left(\mathscr{S}_{\mathfrak{g}}\right)\subseteq\operatorname{op}_{\mathfrak{g},1}\left(\mathscr{S}_{\mathfrak{g}}\right)\subseteq\operatorname{op}_{\mathfrak{g},3}\left(\mathscr{S}_{\mathfrak{g}}\right)\supseteq\operatorname{op}_{\mathfrak{g},2}\left(\mathscr{S}_{\mathfrak{g}}\right)\quad\forall\mathscr{S}_{\mathfrak{g}}\subset\mathfrak{T}_{\mathfrak{g}}.$$

Therefore, for each $(\mu, \nu) \in \{(0, 1), (1, 3), (2, 3)\}$, from $\mathfrak{g}-\mu-\mathfrak{T}_{\mathfrak{g}}$ -openness implies $\mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{g}}$ -openness, it results that $\mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{g}}$ -compactness implies $\mathfrak{g}-\mu-\mathfrak{T}_{\mathfrak{g}}$ -compactness. Thus, if $\mathscr{U}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ is a $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -open set then, with respect to $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -openness, the following left-hand side system of implications holds:

Such left-hand side system with respect to \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness, in turn, implies the righthand side system of implications. For visualization, a so-called *categorical compactness diagram*,

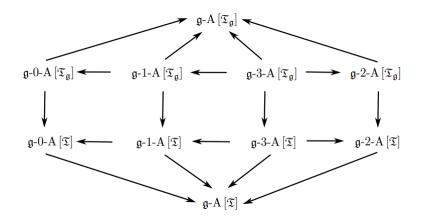


Figure 1: Relationships: classes of \mathfrak{g} - \mathfrak{T} -compact and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compact sets

expressing the various relationships amongst the classes of \mathfrak{g} - \mathfrak{T} -compact and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compact sets, is presented in Figure 1. The notion of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]}$ -spaces of category $\nu \in I_3^0$ is exemplified below.

4.2. A Nice Application

A nice application is now presented. Let $\mathscr{T}_{\mathfrak{g}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be the \mathfrak{g} -topology on $\Omega = (0, 1) \subset \mathbb{R}$ (set of real numbers) generated by $\mathscr{T}_{\mathfrak{g}}$ -open and $\mathscr{T}_{\mathfrak{g}}$ -closed sets belonging to:

$$\begin{split} \mathscr{T}_{\mathfrak{g}} & \stackrel{\text{def}}{=} & \left\{ \mathscr{O}_{\mathfrak{g},\mu} : \ \left(\forall \mu \in I_{\infty}^* \setminus I_2^* \right) \left(\left[\mathscr{O}_{\mathfrak{g},\mu} = \emptyset \right] \lor \left[\mathscr{O}_{\mathfrak{g},\mu} = \left(\frac{1}{\mu}, 1 - \frac{1}{\mu} \right) \right] \right) \right\}; \\ \neg \mathscr{T}_{\mathfrak{g}} & \stackrel{\text{def}}{=} & \left\{ \mathscr{K}_{\mathfrak{g},\mu} : \ \left(\forall \mu \in I_{\infty}^* \setminus I_2^* \right) \left(\left[\mathscr{K}_{\mathfrak{g},\mu} = \Omega \right] \lor \left[\mathscr{K}_{\mathfrak{g},\mu} = \mathbb{C} \left(\frac{1}{\mu}, 1 - \frac{1}{\mu} \right) \right] \right) \right\}, \end{split}$$

respectively. Clearly, the \mathfrak{g} -topology $\mathscr{T}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ satisfies the relations $\mathscr{T}_{\mathfrak{g}}(\emptyset) = \emptyset$, $\mathscr{T}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\mu}) \subseteq \left(\frac{1}{\mu}, 1 - \frac{1}{\mu}\right) = \mathscr{O}_{\mathfrak{g},\mu}$ and, moreover, $\mathscr{T}_{\mathfrak{g}}\left(\bigcap_{\mu \in I_{\sigma}^{*} \setminus I_{2}^{*}} \mathscr{O}_{\mathfrak{g},\mu}\right) = \bigcap_{\mu \in I_{\sigma}^{*} \setminus I_{2}^{*}} \mathscr{T}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\mu})$ and $\mathscr{T}_{\mathfrak{g}}\left(\bigcup_{\mu \in I_{\infty}^{*} \setminus I_{2}^{*}} \mathscr{O}_{\mathfrak{g},\mu}\right) = \bigcup_{\mu \in I_{\infty}^{*} \setminus I_{2}^{*}} \mathscr{T}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\mu})$ are also satisfied, since $\bigcap_{\mu \in I_{\sigma}^{*} \setminus I_{2}^{*}} \mathscr{O}_{\mathfrak{g},\mu} = \mathscr{O}_{\mathfrak{g},\mathfrak{g},\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g}}$ and $\bigcup_{\mu \in I_{\infty}^{*} \setminus I_{2}^{*}} \mathscr{O}_{\mathfrak{g},\mu} = \Omega \in \mathscr{T}_{\mathfrak{g}}$, respectively. Thus, $\mathfrak{T}_{\mathfrak{g}} = (\mathscr{T}_{\mathfrak{g}},\Omega)$ is a $\mathscr{T}_{\mathfrak{g}}$ -space and, since $\mathfrak{T}_{\mathfrak{g}} = (\mathscr{T}_{\mathfrak{g}},\Omega) = (\mathscr{T},\Omega) = \mathfrak{T}$, it is also a \mathscr{T} -space. Observe that $\langle \mathscr{O}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_{\infty}^{*} \setminus I_{2}^{*}}$ is a $\mathfrak{T}_{\mathfrak{g}}$ -open covering of Ω , since $\mathscr{O}_{\mathfrak{g},\alpha} \in O[\mathfrak{T}_{\mathfrak{g}}]$ for every $\alpha \in I_{\infty}^{*} \setminus I_{2}^{*}$ and, moreover, it is also a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open covering of Ω , since $\mathscr{O}_{\mathfrak{g},\alpha} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathscr{O}_{\mathfrak{g},\alpha}) \in \mathfrak{g}$ - $O[\mathfrak{T}_{\mathfrak{g}}]$ for every $\alpha \in I_{\infty}^{*} \setminus I_{2}^{*}$. On the other hand, for each $\sigma > 3$, the relation $\frac{1}{\sigma} \in \bigcup_{\mu \in I_{\sigma}^{*} \setminus I_{2}^{*}} \mathscr{O}_{\mathfrak{g},\mu} = \left(\frac{1}{\sigma}, 1 - \frac{1}{\sigma}\right)$. Hence, from every \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open subcovering $\langle \mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}\rangle_{(\alpha,\vartheta(\alpha))\in J_{\infty}^{*} \times J_{\vartheta(\alpha)}^{*}} \subset \langle \mathscr{O}_{\mathfrak{g},\alpha}\rangle_{\alpha \in I_{\infty}^{*} \setminus I_{2}^{*}}$, where $J_{\infty}^{*} = I_{\infty}^{*} \setminus I_{2}^{*}$ and $J_{\vartheta(\alpha)}^{*} = I_{\vartheta(\alpha)}^{*} \setminus I_{2}^{*}$, the union $\bigcup_{(\alpha,\vartheta(\alpha))\in J_{\infty}^{*} \times J_{\vartheta(\alpha)}^{*}} \mathscr{O}_{\mathfrak{g},\vartheta(\alpha)}$ must fail to contain some point of Ω and, hence, there exist no finite \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}$ -open subcovering of $\langle \mathscr{O}_{\mathfrak{g},\alpha}\rangle_{\alpha \in I_{\infty}^{*} \setminus I_{2}^{*}}$. This proves that $\mathfrak{T}_{\mathfrak{g}} = (\mathscr{T}_{\mathfrak{g},\Omega)$, where $\Omega = (0,1)$, is not a $\mathfrak{T}_{\mathfrak{g}}^{[A]}$ -space. Since \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compactness implies $\mathfrak{T}_{\mathfrak{g}}$ -compactness, it follows, consequently, that it is also not a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]}$ -space. Finally, from this case, it results that, not every $\mathfrak{T}_{\mathfrak{g}}$ -set of a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}^{[A]}$ -space is itself \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -compact.

4.3. Concluding Remarks

In this paper, a new theory called *Theory of* \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -*Compactness* has been presented, the foundation of which was based on the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets [22, 23]. The theory holds equally well when $(\Omega, \mathscr{T}_{\mathfrak{g}}) = (\Omega, \mathscr{T})$, and other characteristics adapted on this ground, in which case it might be called *Theory of* \mathfrak{g} - \mathfrak{T} -*Connectedness*.

Thus, it follows that in a $\mathscr{T}_{\mathfrak{g}}$ -space the theoretical framework categorises such statements as $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -compactness in terms of relatively open $\mathfrak{T}_{\mathfrak{g}}$ -sets, $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -compactness in terms of relatively semi-open $\mathfrak{T}_{\mathfrak{g}}$ -sets, $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -compactness in terms of relatively preopen $\mathfrak{T}_{\mathfrak{g}}$ -sets, and $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ compactness in terms of relatively semi-preopen $\mathfrak{T}_{\mathfrak{g}}$ -sets as $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -compactness of categories 0, 1, 2 and 3, respectively, and theorises the concepts in a unified way; in a \mathscr{T} -space it categorises such statements as $\mathfrak{g}-\mathfrak{T}$ -compactness in terms of relatively open \mathfrak{T} -sets, $\mathfrak{g}-\mathfrak{T}$ -compactness in terms of relatively semi-open \mathfrak{T} -sets, $\mathfrak{g}-\mathfrak{T}$ -compactness in terms of relatively preopen \mathfrak{T} -sets, and $\mathfrak{g}-\mathfrak{T}$ compactness in terms of relatively semi-preopen \mathfrak{T} -sets as $\mathfrak{g}-\mathfrak{T}$ -compactness of categories 0, 1, 2 and 3, respectively, and theorises the concepts in a unified way.

It is an interesting topic for future research to study other derived concepts called countable, sequential, and local generalized compactness (*countable, sequential, local* \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -*compactness*) in $\mathscr{T}_{\mathfrak{g}}$ -spaces. Such a study will be considered in a next paper, and this paper ends here.

5. Acknowledgements

The authors express their sincere thanks to Prof. Endre Makai, Jr. (Professor Emeritus of the Mathematical Institute of the Hungarian Academy of Sciences) for his valuable suggestions.

Declaration of Ethical Standards

The authors declare that the materials and methods used in their study do not require ethical committee and/or legal special permission.

Authors Contributions

Author [Mohammad Irshad Khodabocus]: Thought and designed the research/problem, collected the data, contribution to completing the research and solving the problem, wrote the manuscript (%70).

Author [Noor-Ul-Hacq Sookia]: Contributed to research method or evaluation of data (%30).

Conflicts of Interest

The authors declare no conflict of interest.

References

- [1] Andrijević D., On b-open sets, Matematički Vesnik, 48, 59-64, 1996.
- [2] Arens R., Dugundji J., Remarks on the concept of compactness, Portuguese Mathematical Society (SPM), 9, 141-143, 1950.
- [3] Aruna C., Selvi R., On τ^{*}-generalize semi compactness and τ^{*}-generalize semi connectedness in topological spaces, International Journal of Scientific Research Engineering and Technology, 7(2), 74-78, 2018.
- [4] Aruna C., Selvi R., τ^* -generalize b-compactness and τ^* -generalize b-connectedness in topological spaces, International Journal of Trend in Scientific Research and Development, 4(2), 2897-2900, 2018.
- [5] Balan K.B., Janaki C., On πp-compact spaces and πp-connectedness, International Journal of Scientific and Research Publications, 3(9), 1-3, 2013.
- Bayhan S., Kanibir A., Reilly I.L., On functions between generalized topological spaces, Applied General Topology, 14(2), 195-203, 2013.
- [7] Benchalli S.S., Bansali P.M., gb-compactness and gb-connectedness in topological spaces, International Journal of Contemporary Mathematical Sciences, 6(10), 465-475, 2011.
- [8] Boonpok C., On generalized continuous maps in Čech closure spaces, General Mathematics, 19(3), 3-10, 2011.
- Caldas M., Jafari S., On some applications of b-open sets in topological spaces, Memoirs of the Faculty of the Science, Kochi University Series A Mathematics, 2, 11-19, 2007.
- [10] Császár Á., γ-connected sets, Acta Mathematica Hungarica, 101(4), 273-279, 2003.
- [11] Császár Á., Generalized open sets in generalized topologies, Acta Mathematica Hungarica, 106(1-2), 53-66, 2005.
- [12] Császár Á., Remarks on quasi-topologies, Acta Mathematica Hungarica, 119(1-2), 197-200, 2008.
- [13] Dixmier J., General Topology, Springer-Verlag, 1984.
- [14] Dube K.K., Panwar O.S., Some properties of s-connectedness between sets and set s-connected mappings, Indian Journal of Pure and Applied Mathematics, 15(4), 343-354, 1984.
- [15] Duraiswamy I., View on compactness and connectedness via semi-generalised b-open sets, International Journal of Pure and Applied Mathematics, 118(17), 537-548, 2018.
- [16] El-Monsef M.E.A., Radwan A.E., Ibrahem F.A., Nasir A.I., Some generalized forms of compactness, International Mathematical Forum, 7(56), 2767-2782, 2012.
- [17] Gál I.S., On the theory of (m,n)-compact topological spaces, Pacific Journal of Mathematics, 8(4), 721-734, 1958.
- [18] Greever J., On some generalized compactness properties, Publications of the Research Institute for Mathematical Sciences, Kyoto University Series A, 4, 39-49, 1968.
- [19] Jafari S., Noiri T., Properties of β-connected spaces, Acta Mathematica Hungarica, 101(3), 227-236, 2003.

- [20] Janaki C., Sreeja D., On $\pi_{b\mu}$ -compactness and $\pi_{b\mu}$ -connectedness in generalized topological spaces, Journal of Academia and Industrial Research, 3(4), 168-172, 2014.
- [21] John S.J., Thomas J., On soft μ-compact soft generalized topological spaces, Journal of Uncertainty in Mathematics Science, 2014(2014), 1-9, 2014.
- [22] Khodabocus M.I., Sookia N.-U.-H., Theory of generalized sets in generalized topological spaces, Journal of New Theory, 36, 18-38, 2021.
- [23] Khodabocus M.I., A Generalized Topological Spaces Endowed with Generalized Topologies, Ph.D. Thesis, University of Mauritius, 2020.
- [24] Krishnaveni K., Vigneshwaran M., bT^μ-compactness and bT^μ-connectedness in supra topological spaces, European Journal of Pure and Applied Mathematics, 10(2), 323-334, 2017.
- [25] Maheshwari S.N., Thakur S.S., On α-compact spaces, Bulletin of the Institute of Mathematics, Academia Sinica, 13, 341-347, 1985.
- [26] Mashhour A.S., Allam A.A., Mahmoud F.S., Khedr F.H., On supra topological spaces, Indian Journal of Pure and Applied Mathematics, 14(4), 502-510, 1983.
- [27] Mustafa J.M., μ-semi-compactness and μ-semi-lindelöfness in generalized topological spaces, International Journal of Pure and Applied Mathematics, 78(4), 535-541, 2012.
- [28] Njåstad O., On some classes of nearly open sets, Pacific Journal of Mathematics, 15(3), 961-970, 1965.
- [29] Pavlović V., Cvetković A.S., On generalized topologies arising from mappings, Matematički Vesnik, 38(3), 553-565, 2012.
- [30] Piękosz A., Wajch E., Compactness and compactifications in generalized topology, Topology and its Applications, 194, 241-268, 2015.
- [31] Robert A., Missier S.P., Connectedness and compactness via semi^{*}α-open sets, International Journal of Mathematics Trends and Technology, 12(1), 1-7, 2014.
- [32] Sagiroglu S., Kanibir A., co-γ-compact generalized topologies and c-generalized continuous functions, Mathematica Balkanica, 23(1-2), 85-96, 2009.
- [33] Sekar S., Jothilakshmi B., On semi-generalized *b-connectedness and semi-generalized *bcompactness in topological spaces, Malaya Journal of Matematik, 3(1), 119-130, 2015.
- [34] Shi F.-G., S_{β} -compactness in L-topological spaces, Proyectiones, 24(2), 153-165, 2005.
- [35] Singal M.K., Mathur A., On nearly compact spaces, Bollettino dell'Unione Matematica Italiana, 6(4), 702-710, 1969.
- [36] Solai R.S., g-compactness like in generalized topological spaces, Asia Journal of Mathematics, 1(2), 164-175, 2014.
- [37] Thomas J., John S.J., μ-compactness in generalized topological spaces, Journal of Advanced Studies in Topology, 3(3), 18-22, 2012.
- [38] Thomas J., John S.J., Soft generalized separation axioms in soft generalized topological spaces, International Journal of Scientific and Engineering Research, 6(3), 969-974, 2015.
- [39] Willard S., General Topology, Addison-Wesley Publishing Company, 1970.
- [40] Valenzuela F.M.V., Rara H.M., μ-rgb-connectedness and μ-rgb-sets in the product space in a generalized topological space, Applied Mathematical Sciences, 8(106), 5261-5267, 2014.