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Abstract

In this paper the global dynamics of susceptible-infected-recovered-susceptible (SIRS)
epidemic model with saturated incidence rate and saturated treatment function is studied.
Firstly, the basic reproduction number R0 is calculated and the existence of the disease-free
and positive equilibria is showed. In addition, local stability of the equilibria is investigated.
Then, sufficient conditions are achieved for global stability of disease-free and endemic
equilibria. Finally, the numerical examples are presented to validate the theoretical results.

1. Introduction

In epidemiology, mathematical modeling is an important tool for observing the dynamic evolution and effects of infectious disease [1]. Using
mathematical models, researchers can identify trends in disease, analyze epidemiological studies, and make general predictions about disease.
For this purpose, stability and bifurcation analysis of many SIRS epidemic models have been investigated in [2]-[6]. The total population
consists of three subpopulations based on disease status in classical infectious disease models: S(t)-susceptible population, I(t)-infective
population and R(t)-recovered population, at any given time t. The classic SIRS epidemic model, assuming that the recovering population
has transient immunity, can be given as

dS
dt

= A−ρS− f (I)S+δR,

dI
dt

= f (I)S− (ρ + γ)I−T (I),

dR
dt

= γI− (ρ +δ )R+T (I).

where the parameter A denotes the natality of susceptible population, ρ is the mortality rate and δ shows the rate of loss of immunity and
return to the susceptible class of recovered individuals. γ is the recovery rate of the infected population. f (I)S denotes the incidence rate,
and the f (I) function measures the infectious strength of the disease.
In this study, we take a saturated incidence rate

f (I) =
β I

1+αI
,

which firstly presented by Capasso and Serio in [2]. Here, β I calculates the infectious strength of the disease and 1
1+αI calculates the

inhibitory effect from behavioral change or crowding of infective individuals when the number of susceptible individuals increases.
In addition, we take saturated treatment function as

T (I) =
rI

1+ εI
,

which is continuous and differentiable [3]. Here, rI > 0 and ε ≥ 0. r means the cure rate and ε quantifies the extent of the effect of delaying
the infected to cure.
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In this paper, we present the SIRS epidemic model with saturated incidence rate and saturated treatment function as follows:

dS
dt

= A− βSI
1+αI

−ρS+δR, (1.1)

dI
dt

=
βSI

1+αI
− (ρ + γ)I− rI

1+ εI
, (1.2)

dR
dt

= γI− (ρ +δ )R+
rI

1+ εI
. (1.3)

The remainder of this article is organized as follows. In Section 2, the local stability of the equilibria is examined. In Section 3, adequate
conditions for global stability of equilibria are provided by using Lyapunov functions. In Section 4, to validate our theoretical results, some
numerical examples are given.

2. Equilibria and Local Dynamics

We start with investigating the positivity and boundedness properties of solutions for system (1.1)-(1.3), for the purpose of ensuring that the
model is biologically well-behaved.

Theorem 2.1. If the initial conditions are S(0)≥ 0, I(0)≥ 0,R(0)≥ 0, the solutions of system (1.1)-(1.3) are nonnegative and bounded for
all t ≥ 0.

Proof. From the model system (1.1)-(1.3), we have

dS
dt
|S=0 = A+δR,

dI
dt
|I=0 = 0,

dR
dt
|R=0 = γI +

rI(t)
1+ εI(t)

.

It is clear that these ratios are not negative in the bounding planes of the non-negative cone of R3. Therefore, if we start inside this cone, we
will always stay inside this cone in the inward direction of the vector field in all bounding planes. Consequently, all solutions of (1.1)-(1.3)
are not negative.
For the proof of boundedness, we denote the total population size as M = S+ I +R. Adding Eqns. (1.1)-(1.3), we obtain

dM
dt

= A−ρM. (2.1)

If we solve the Eq. (2.1), we find

M(t) =
A
ρ
−
(

A
ρ
−M(t0)

)
e−ρ(t−t0)

where M(t0)> 0 is an initial condition. Thus,

lim
t→∞

M(t) =
A
ρ

which shows the conclusion.

From the above theorem, we obtain the following region:

Γ = {(S, I,R) ∈ R3
+|S+ I +R≤ A

ρ
, S≥ 0, I ≥ 0, R≥ 0}

which is a positively invariant set for Eqns. (1.1)-(1.3).
Since the limit set of Eqns. (1.1)-(1.3) is on the plane S+ I +R = A

ρ
, we can concentrate on the following reduced system:

dI
dt

=
β I

1+αI

(
A
ρ
− I−R

)
− (ρ + γ)I− rI

1+ εI
, (2.2)

dR
dt

= γI− (ρ +δ )R+
rI

1+ εI
(2.3)

Clearly,

Λ =

{
(I,R)|I ≥ 0,R≥ 0, I +R≤ A

ρ

}
.

is the positively invariant set of system (2.2)-(2.3)
To put the model in dimensionless form, we build the following variable change:

I′ =
β

ρ + γ
I, R′ =

β

ρ + γ
R, t ′ = (ρ + γ)t.

To avoid making the mathematical notation look bad, we still indicate (I′,R′, t ′) by (I,R, t). Then we get
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dI
dt

=
I

1+mI
(B− I−R)− I− pI

1+qI
, (2.4)

dR
dt

= rI−nR+
pI

1+qI
(2.5)

where m =
α(ρ+γ)

β
, B = βA

ρ(ρ+γ)
, p = r

ρ+γ
, q =

ε(ρ+γ)
β

, r = ρ

ρ+γ
, n = ρ+δ

ρ+γ
. It can be seen that m,n, p,q,r,B > 0 and the positively invariant

set of system (2.4)-(2.5) is

Λ̃ = {(I,R)|I ≥ 0,R≥ 0, I +R≤ B}.

Clearly, system (2.4)-(2.5) always has a unique disease-free equilibrium E0 = (I0,R0) = (0,0). The positive equilibria of system (2.4)-(2.5)
can be obtained by solving the following equation

f (I) = A1I2 +B1I +C1 = 0 (2.6)

where

A1 =
(

1+m+
r
n

)
q,

B1 = q(1−B)+1+m+
r+ p

n
+ pm,

C1 = (p+1)
(

1− B
p+1

)
,

Denote R0 =
B

p+1 .

R∗ =
1
n

(
rI∗+

pI∗

1+qI∗

)
where I∗ is the positive root of the Eq. (2.6). Therefore, system (2.4)-(2.5) has a unique endemic equilibrium E∗ = (I∗,R∗).
The Jacobian matrix corresponding to the model Eqns. (2.4)-(2.5) is as follows:

J =

(
1

(1+mI)2 (B− I−R)− I
1+mI −

p
(1+qI)2 −1 − I

1+mI
r+ p

(1+qI)2 −n

)
.

Now using the variable matrix J obtained above, we get the local stability of the equilibria.

Theorem 2.2. (i) If R0 < 1 the disease free equilibrium E0 of the system (2.4)-(2.5) is locally asymptotically stable otherwise it is unstable.
(ii) If R0 > 1, A2 < 0 and B2 > 0, then the unique endemic equilibrium E∗ locally asymptotically stable.

Proof. (i) The Jacobian matrix corresponding to E0 = (0,0) of Eqns. (2.4)-(2.5) is as follows

J0 =

(
B− p−1 0

r+ p −n

)
.

The eigenvalues of J0 are

λ1 =−n, λ2 = B− p−1.

Obviously, λ1 < 0. Note that if R0 < 1, λ2 < 0 and so the disease-free equilibrium E0 is locally asymptotically stable. Conversely, if R0 > 1,
λ2 > 0 and so E0 is unstable.
(ii) The Jacobian matrix corresponding to E∗ = (I∗,R∗) of Eqns. (2.4)-(2.5) is as follows

J∗ =

(
1

(1+mI∗)2 (B− I∗−R∗)− I∗
1+mI∗ −

p
(1+qI∗)2 −1 − I∗

1+mI∗

r+ p
(1+qI∗)2 −n

)
.

The roots of the equation

λ
2 +A2λ +B2 = 0

are the eigenvalues of J∗. Here

A2 = n+1+
p

(1+qI∗)2 +
I∗

1+mI∗
+

1
(1+mI∗)2 (I

∗+R∗−B),

B2 = n
(

1+
p

(1+qI∗)2 +
I∗

1+mI∗
+

1
(1+mI∗)2 (I

∗+R∗−B)
)

+

(
r+

p
(1+qI∗)2

)(
I∗

1+mI∗

)
.

If A2 < 0 and B2 > 0, the eigenvalues of J∗ are negative. Thus, proof is completed.
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3. Global Stability

In this chapter, we have obtained the sufficient conditions for global stability for E0 and E∗.

Theorem 3.1. If R0 < 1, the disease-free equilibrium E0 = (0,0) of Eqns. (2.4)-(2.5) is globally asymptotically stable provided that the
following condition holds:

Bq < (p+1)m.

Proof. Now we will construct a Lyapunov function and use the direct method of Lyapunov to prove the global stability of E0. Take into the
following Lyapunov function

V0(I,R) = I.

Clearly V0 is a positive definite function. If we differentiate V0 with respect to t, we get

dV0

dt
=

dI
dt

=
I

1+mI
(B− I−R)− I− pI

1+qI

≤ BI
1+mI

− (p+1)I
1+qI

− qI2

1+qI

≤ B− (p+1)
(1+qI)(1+mI)

I +
Bq− (p+1)m
(1+qI)(1+mI)

I2

Obviously, if R0 < 1 and Bq < (p+ 1)m, then dV0
dt ≤ 0. Furthermore, dV0

dt = 0 if and only if I = 0. According to LaSalle’s principle of
invariance [5], this means that all solutions in Λ̃ approach the plane I = 0 and R = 0 as t→ ∞. Therefore, we conclude that E0 is globally
asymptotically stable in Λ̃.

Theorem 3.2. If R0 > 1, then the infected equilibrium E∗ = (I∗,R∗) is globally asymptotically stable supplied that the following condition
holds:

z11 < 0.

Proof. To verify the global asymptotic stability of E∗, we apply the method of Lyapunov functions integrated with the Volterra-Lyapunov
stable matrices theory [5, 7]. For this, we determine the Lyapunov function as follows:

V ∗ = w1(I− I∗)2 +w2(R−R∗)2,

where w1,w2 are positive constants. If we differentiate V ∗ with respect to time, we get

dV ∗

dt
= 2w1(I− I∗)

dI
dt

+2w2(R−R∗)
dR
dt

= 2w1

(
I

1+mI
(B− I−R)− I∗

1+mI∗
(B− I∗−R∗)− (I− I∗)− pI

1+qI
+

pI
1+qI

)
(I− I∗)

+ 2w2

(
r(I− I∗)−n(R−R∗)+

pI
1+qI

− pI
1+qI

)
(R−R∗)

= 2w1

(
B− I−R− (1+mI)I∗

(1+mI)(1+mI∗)
− p

(1+qI)(1+qI∗)

)
(I− I∗)2

− 2w1
I∗

(1+mI∗)
(I− I∗)(R−R∗)+2w2

(
r+

p
(1+qI)(1+qI∗)

)
(I− I∗)(R−R∗)

− 2w2n(R−R∗)2

= Y (WZ +ZTW T )Y T .

Here, Y = (I− I∗,R−R∗), W = diag(w1,w2) and

Z =

(
z11 z12
z21 z22

)
,

where

z11 =
B− I−R− (1+mI)I∗

(1+mI)(1+mI∗)
− p

(1+qI)(1+qI∗)

z12 = − I∗

1+mI∗

z21 = r+
p

(1+qI)(1+qI∗)
z22 = −n

It is clear that z12 < 0, z21 > 0 and z22 < 0. If z11 < 0, then Z is Volterra-Lyapunov stable matrix. Therefore, dV ∗
dt < 0, and by LaSalle’s

invariance principle [5], E∗ is globally asymptotically stable in the interior of Λ̃.
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Figure 4.1: The infected equilibrium is E∗ = (I∗,R∗) = (0.7737,7.7221) and it is globally asymptotically stable

Figure 4.2: When R0 > 1, the phase portrait of Eqns. (2.4)-(2.5) with E∗ = (0.7737,7.7221).

4. Numerical Simulations

We now present some examples to confirm the global stability of the model investigated in Section 3.
Example 4.1: In this example, we set the hypothetical initial values as (I(0),R(0)) = (5,1). We also take the parameter values as m = 0.005,
n = 0.1, B = 1, p = 0.5, q = 0.005, r = 0.5. Thus, R0 > 1 and the infected equilibrium is E∗ = (I∗,R∗) = (0.7737,7.7221). Therefore
E∗ = (I∗,R∗) = (0.7737,7.7221) is globally asymptotically stable (See Fig. 4.1 and Fig. 4.2).
Example 4.2: In this example, we set the hypothetical initial values as (I(0),R(0)) = (5,1). We also take the parameter values as m = 0.005,
n = 0.1, B = 10, p = 0.5, q = 0.004, r = 0.5. Thus, R0 < 1 and the disease-free equilibrium E0 = (0,0) is globally asymptotically stable
(See Fig. 4.3).

5. Conclusion

In this paper, the local and global stability of a SIRS epidemic model with a saturated incidence ratio and a saturated treatment function
has been investigated. The basic reproduction number R0 has been obtained for this model. Next, when R0 < 1 it has been shown that the
disease-free equilibrium is globally asymptotically stable , and the infected equilibrium is globally asymptotically stable when R0 > 1. This
means that if R0 < 1, the disease has disappeared, otherwise the disease becomes endemic. In this context, we can say that our theoretical
results are confirmed by numerical results.
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Figure 4.3: When R0 < 1, the phase portrait of Eqns. (2.4)-(2.5) with E0 = (0,0).
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