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Abstract: The Cramér-Rao bound is derived for SNR estimation of BPSK modulated signals in Rayleigh fading
channels with correlated dual MRC diversity.
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Rayleigh Soniimlii Kanallarda ki Anten Kullanarak En Yiiksek Oran
Birlestirmeye Dayah Ilintili Cesitleme Durumunda BPSK Modiilasyonlu
Isaretlerin isaret Giiriiltii Oram Kestiricilerine Iliskin Cramér-Rao Sinir1

Ozet: Rayleigh soniimlii kanallarda iki anten kullanarak en yiiksek oran birlestirmeye dayali ilintili ¢esitleme duru-
munda ikili evre kaydirmali anahtarlama modiilasyonlu igaretlerin isaret giirtiltii oran1 kestiricilerine iligkin Cramér-
Rao sinir1 elde edilmistir.

Anahtar Kelimeler: Isaret giiriiltii oran1 kestirimi, Cramér-Rao sinir1, Cesitleme, Rayleigh séniimlenme.

1. INTRODUCTION

In many communication systems, where examples include channel quality estimation for link ad-
aptation (Balachandran, Kadaba and Nanda, 1999), optimum decoding of turbo codes on fading channels
(Hall and Wilson, 1998), and selection diversity combining (Proakis, 1983), it is necessary to obtain an
estimate of the channel signal-to-noise ratio (SNR) from received signals. It is therefore of great interest to
assess the performance of any practical SNR estimator in terms of its bias and variance. A well-known
lower bound on the variance of any unbiased estimator is the Cramér-Rao bound (CRB) (Kay, 1993),
which is particularly useful in making performance predictions of systems before any estimator is actually
designed, and can serve as a benchmark for practical estimators. Recently, a CRB work on the SNR esti-
mation of binary phase shift keying (BPSK) signals transmitted over Rayleigh fading channels employing
dual maximal ratio combining (MRC) diversity has appeared in Ertas and Dilaveroglu (2004), where the
correlated branch assumptions were treated very concisely for both data aided (DA) and non-data aided
(NDA) cases due to the limitation of space and results were presented only in the form of a plot. However,
as it is not virtually possible to obtain uncorrelated fading even with dual branches considering the size
limitations of portable hand-held devices with today’s technology and current systems, correlated branch
fading becomes a more appropriate assumption in the analysis. In this paper, we therefore present a thor-
ough treatment of the correlated fading case in Ertag and Dilaveroglu (2004) to fill the gap between the
relevant results appearing only as plots and the data model therein.

2. DATA MODEL

As given in Ertag and Dilaveroglu (2004), the data model assumes a BPSK signal received by two
antennas through flat and slowly Rayleigh fading paths such that the fading remains constant during at
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least one-bit interval. The kth symbol received at the maximal ratio combiner output after coherent de-
modulation can be written as
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where b, =1 is the transmitted information bits with equal a priori probability, y = £, / Nq in which
E; corresponds to the energy per information bit and N, is the single-sided power spectral density of the
(k)
1

mean Gaussian noise with variance 1/2 at the kth bit interval on the ith branch, i =1,2, respectively,

additive white Gaussian noise at the receiver input, o’ and nlgk) denote the fading amplitude and zero-

and K is the total number of observed data bits. Assuming sufficient channel interleaving, the fading am-
(k)

plitude o;"’’s are considered independent for a given branch, and identically Rayleigh distributed and
independent of the noise with £ {((xl(k))z} =1 for convenience for any i and k. The joint probability

density function (PDF) of ocfk) and ocgk ) s given by
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where p = cov(rl2 ,r22 ) / \/ Var(rlz)var(rzz) is the power correlation coefficient between the two branches

and /(-) is the modified Bessel function of the first kind with order zero. The average SNR at the com-
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biner output is b E E {(ocl(.k))z} =% and our interest is to find the CRB on the variance of any
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unbiased estimator of the SNR v = N_b , which we denote by CRB, , by using the observed data {v; },Ile .
0

3. THE CRB FOR NDA ESTIMATION
Treating the correlation coefficient p as an unknown parameter, the CRBy is given by (Kay,
1993)

CRB, =[1"' (v.p)]y1. 3)
where /(y,p) is the Fisher information matrix (FIM) of (y,p) given by
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in which In p(v;;7y,p) is the log-likelihood function of (y,p) for the kth data sample v, E, {} de-
notes expectation with respect to v, , and [/ -1 (v,p)];; is the first row-first column element of / -l (v,p) -
By using (1) and (2) we obtain the likelihood function of (y,p) for the non-data-aided estimation as
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where 4 = , 1+\/_ and B = / _\/_

Using (5), we obtain the elements of the FIM in (4) as follows:
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where in (6)-(8)
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Here, in the equalities f(r) to f5(r), r takes the values 4 and B in turn, and 4, B, and
A+B

in the equalities f¢(7) to fg(r) involving numerical integrations. {(s,a) = Z(n +a)” is the
n=0

generalized Riemann’s zeta function. The CRB can then be obtained by substituting (6)-(8) into (4) and

then finally into (3).

4. THE CRB FOR DA ESTIMATION

For the data-aided estimation, removing the dependency of v on the information bits b, in (1),

we obtain the likelihood function of (y,p) for the kth data sample v, as
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Using this PDF in (4), we find surprisingly that the elements of the FIM for the DA estimation ap-
pear to be exactly the same as those for the NDA estimation except for the case in which only f5(A) and

f5(B) should read as f3(A) and f5(B), respectively, in the first row-first column element of (4) in (6).

Now, obtaining the CRB is then straightforward in the same way as in Section 3.

5. CONCLUSION

We have derived the Cramér-Rao bound with details on data and non-data-aided SNR estimation
of BPSK signals in Rayleigh fading channels employing correlated dual MRC diversity. The derived ex-
pressions constructing the bound, which were not included in Ertag and Dilaveroglu (2004), can now be
directly used to obtain the bound.
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