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Abstract: The Cramér-Rao bound is derived for SNR estimation of BPSK modulated signals in Rayleigh fading 
channels with correlated dual MRC diversity. 
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Rayleigh Sönümlü Kanallarda İki Anten Kullanarak En Yüksek Oran 
Birleştirmeye Dayalı İlintili Çeşitleme Durumunda BPSK Modülasyonlu 

İşaretlerin İşaret Gürültü Oranı Kestiricilerine İlişkin Cramér-Rao Sınırı 

Özet: Rayleigh sönümlü kanallarda iki anten kullanarak en yüksek oran birleştirmeye dayalı ilintili çeşitleme duru-
munda ikili evre kaydırmalı anahtarlama modülasyonlu işaretlerin işaret gürültü oranı kestiricilerine ilişkin Cramér-
Rao sınırı elde edilmiştir. 
Anahtar Kelimeler: İşaret gürültü oranı kestirimi, Cramér-Rao sınırı, Çeşitleme, Rayleigh sönümlenme. 

1. INTRODUCTION 

In many communication systems, where examples include channel quality estimation for link ad-
aptation (Balachandran, Kadaba and Nanda, 1999), optimum decoding of turbo codes on fading channels 
(Hall and Wilson, 1998), and selection diversity combining (Proakis, 1983), it is necessary to obtain an 
estimate of the channel signal-to-noise ratio (SNR) from received signals. It is therefore of great interest to 
assess the performance of any practical SNR estimator in terms of its bias and variance. A well-known 
lower bound on the variance of any unbiased estimator is the Cramér-Rao bound (CRB) (Kay, 1993), 
which is particularly useful in making performance predictions of systems before any estimator is actually 
designed, and can serve as a benchmark for practical estimators. Recently, a CRB work on the SNR esti-
mation of binary phase shift keying (BPSK) signals transmitted over Rayleigh fading channels employing 
dual maximal ratio combining (MRC) diversity has appeared in Ertaş and Dilaveroğlu (2004), where the 
correlated branch assumptions were treated very concisely for both data aided (DA) and non-data aided 
(NDA) cases due to the limitation of space and results were presented only in the form of a plot. However, 
as it is not virtually possible to obtain uncorrelated fading even with dual branches considering the size 
limitations of portable hand-held devices with today’s technology and current systems, correlated branch 
fading becomes a more appropriate assumption in the analysis. In this paper, we therefore present a thor-
ough treatment of the correlated fading case in Ertaş and Dilaveroğlu (2004) to fill the gap between the 
relevant results appearing only as plots and the data model therein. 

2. DATA MODEL 

As given in Ertaş and Dilaveroğlu (2004), the data model assumes a BPSK signal received by two 
antennas through flat and slowly Rayleigh fading paths such that the fading remains constant during at 
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least one-bit interval. The thk  symbol received at the maximal ratio combiner output after coherent de-
modulation can be written as 
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where 1±=kb  is the transmitted information bits with equal a priori probability, 0NEb=γ  in which 

bE  corresponds to the energy per information bit and 0N  is the single-sided power spectral density of the 

additive white Gaussian noise at the receiver input, )(k
iα and )(k

in  denote the fading amplitude and zero-
mean Gaussian noise with variance 2/1  at the thk  bit interval on the thi  branch, ,2,1=i  respectively, 
and K  is the total number of observed data bits. Assuming sufficient channel interleaving, the fading am-
plitude )(k

iα ’s are considered independent for a given branch, and identically Rayleigh distributed and 
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and )(0 ⋅I  is the modified Bessel function of the first kind with order zero. The average SNR at the com-
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, and our interest is to find the CRB on the variance of any 

unbiased estimator of the SNR 
0N

Eb=γ , which we denote by γCRB , by using the observed data K
kkv 1}{ = . 

3. THE CRB FOR NDA ESTIMATION 

Treating the correlation coefficient ρ  as an unknown parameter, the γCRB  is given by (Kay, 
1993) 

11
1 )],([CRB ργ= −

γ I , (3) 

where ),( ργI  is the Fisher information matrix (FIM) of ),( ργ  given by 
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in which ),;(ln ργkvp  is the log-likelihood function of ),( ργ  for the thk  data sample kv , }{⋅
kvE  de-

notes expectation with respect to kv , and 11
1 )],([ ργ−I  is the first row-first column element of ),(1 ργ−I . 

By using (1) and (2) we obtain the likelihood function of ),( ργ  for the non-data-aided estimation as 
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where 
ρ+

+γ=
1

1A  and 
ρ−

+γ=
1

1B . 

Using (5), we obtain the elements of the FIM in (4) as follows: 
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where in (6)-(8) 
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Here, in the equalities )(1 rf  to )(5 rf , r  takes the values A  and B  in turn, and A , B , and 
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generalized Riemann’s zeta function. The CRB can then be obtained by substituting (6)-(8) into (4) and 
then finally into (3). 

4. THE CRB FOR DA ESTIMATION 

For the data-aided estimation, removing the dependency of kv  on the information bits kb  in (1), 

we obtain the likelihood function of ),( ργ  for the thk  data sample kv  as 
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Using this PDF in (4), we find surprisingly that the elements of the FIM for the DA estimation ap-
pear to be exactly the same as those for the NDA estimation except for the case in which only )(5 Af  and 

)(5 Bf  should read as )(3 Af  and )(3 Bf , respectively, in the first row-first column element of (4) in (6). 
Now, obtaining the CRB is then straightforward in the same way as in Section 3. 

5. CONCLUSION 

We have derived the Cramér-Rao bound with details on data and non-data-aided SNR estimation 
of BPSK signals in Rayleigh fading channels employing correlated dual MRC diversity. The derived ex-
pressions constructing the bound, which were not included in Ertaş and Dilaveroğlu (2004), can now be 
directly used to obtain the bound. 
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