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ABSTRACT 

 
In this paper, a Lyapunov-type inequality and  the existence  of the positive solutions for boundary value 

problems of the nonlinear fractional Caputo-Fabrizio differential equation have been presented. By using the 
Guo Krasnoselskii’s fixed point theorem on  cone and the properties of the associated Green`s function, we 

prove the existence of the positive solution. Finally, we gave some numerical examples to validate the 

theoretical findings. 
Keywords: Lyapunov-type  inequality, fractional Caputo-Fabrizio derivative, Green’s function, positive 

solution, fixed point. 

 
 

1. INTRODUCTION 

 

In recent years, the fractional differential calculus has been appeared frequently and has been 

studied by many researchers so that it has strong mathematical background and many papers are 

attributed to the development of it. For more details, the readers can refer to [1, 2, 3, 4]. Physical 

phenomena such as control systems, mechanics, viscoelasticity can be modelled by fractional 

calculus [5],[6][7]. More frequently used fractional derivatives are the Riemann-Lioville and 

Caputo derivative [1]. Some other commonly used fractional derivatives in the literature include 

conformable fractional derivative [8-11]. In the recent years, a new definition of fractional order 

derivative has been defined by Caputo and Fabrizio [12] with a regular kernel. Some existence 

results on this new fractional calculus have been studied in [13],[14]. This new definition can 

describe better heterogeneousness and systems with different scales with memory effects [13]. In 

this paper, we fisrt derive a Lyapunov-type inequlaity for the fractional boundary value problem 

of the fractionla Caputo-Fabrizio differential equation of order 𝜎 ∈ (2,3] and then we prove the 

existence of positive solutions of the fractional boundary value problem of the fractional Caputo-

Fabrizio differential equation of order 𝜎 ∈ (1,2]. The well-known Lyapunov inequality provides 

that if there is a non-zero solution of the differential equatiıon 
 

𝑢′′(𝑥) + 𝑟(𝑥)𝑢(𝑥) = 0, 𝑎 < 𝑥 < 𝑏,  
𝑢(𝑎) = 𝑢(𝑏) = 0,  
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where 𝑟 is a continuous function, then  one has 
 

∫ |𝑟(𝑡)|𝑑𝑡 >  
4

𝑏−𝑎

𝑏

𝑎
.  

 

The constant 4 can not be changed any bigger number. There are number of papers and 

studies that provide generalizations and extensions of (2), e.g., see [15-16]. The studies for 

Lyapunov-type inequalities for the fractional boundary value problems have recently been 

investigated in a number of papers, see e.g. [17-21]. To the best of our knowledge, there is a few 

result on Lyapunov-type ineqalities for the fractional Caputo-Fabrizio differential equation, see 

[20]. To fill this gap, we provide a Lyapunov-type inequality for the boundary value problem of 

the fractional Caputo-Fabrizio differential equaiton. To provide a Lyapunov-type inequality, one 

usually converts to the fractional differental equation to an integral equaiton with the 

corresponding Green’s function. Then, one finds the maximum value of the Green’s function to 

obtain the desired inequality. However, finding the maximum value of the Green function is not 

easy task. Secondly, we prove the existence of the positive solution of the fractional boundary 

value problem of the fractional Caputo-Fabrizio differential equaiton. The existence of (positive) 

solutions has been investigated by many researchers [22-27]. Although many papers are devoted 

to the existence of positive solutions of fractional differential equations in the sense of Riemann-

Lioville or Caputo derivative, there is no result, to the best of our knowledge, on the existence of 

positive solution of fractional boundary value problem involving the Caputo-Fabrizio derivative. 

This is the first paper on the existence of positive solution for the fractional Caputo-Fabrizio 

differential equaiton of order 𝛼 + 1 ∈ (1,2). 

The rest of the paper is organized as follows. In Section 2, some definitions and related 

studies have been introduced. A Lyapunov-type inequality have been presented in Section 3. The 

existence of positive solution of fractional boundary value problem is provided in Section 4. In 

Section 5, some numerical examples are examined. 

 

2. DEFINITIONS AND PREVIOUS RESULTS 

 

We recall the frequently used fractional derivatives in the literature and related results of the 

new fractional Caputo-Fabrizio derivative that are needed in the sequel. 
 

Definition 1 Let 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ 𝑁 and 𝑓 ∈ 𝐶𝑛+1[𝑎, 𝑏], 𝑎 < 𝑏. The fractional Caputo 

derivative of the function 𝑓 of order 𝛼 defined as  
 

𝐷𝐶
𝛼𝑓(𝑥) =

1

Γ(𝑛+1−𝛼)
∫ (𝑥 − 𝑡)𝑛−𝛼𝑓(𝑛+1)𝑥

𝑎
(𝑡)𝑑𝑡.  

 

Definition 2 Let 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ 𝑁 and 𝑓 ∈ 𝐶𝑛+1[𝑎, 𝑏], 𝑎 < 𝑏. The fractional Caputo-

Fabrizio derivative of the function 𝑓 of order 𝛼 defined as  
 

𝐷𝐶
𝛼𝑓(𝑥) =

1

n+1−α
∫ exp (−

𝛼−𝑛

𝑛+1−𝛼
(𝑥 − 𝑡))𝑓(𝑛+1)𝑥

𝑎
(𝑡)𝑑𝑡.  

 

Definition 3 Let 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ 𝑁 and 𝑓 ∈ 𝐶𝑛+1[𝑎, 𝑏], 𝑎 < 𝑏. The fractional Caputo-

Fabrizio integral operator of order 𝛼 defined as  
 

𝐼𝑎
𝛼𝑓(𝑥) = (1 + 𝑛 − 𝛼)𝐼𝑎

𝑛𝑓(𝑥) + (𝛼 − 𝑛)𝐼𝑎
𝑛+1𝑓(𝑥),   𝑥 ≥ 𝑎,  

 

where 𝐼𝑎
𝑛𝑓(𝑥) is the iterated Cauchy integral given by 

 

𝐼𝑎
𝑛𝑓(𝑥) =

1

(𝑛−1)!
∫ (𝑥 − 𝑡)𝑛−1𝑓(𝑡)𝑑𝑡, with the adaption

𝑥

𝑎
 𝐼𝑎

0𝑓(𝑥) = 𝑓(𝑥).  
  

Lemma 4 [15] Let 𝛼 ∈ (𝑛, 𝑛 + 1]. Then we have the following relation 
 

𝐼𝑎
𝛼𝐷𝐶𝐹

𝛼 𝑓(𝑥) = 𝑓(𝑥) − ∑
(𝑥−𝑎)𝑘

𝑘!
𝑛
𝑘=0 𝑓(𝑘)(𝑎).   

 

  We first prove a Lyapunov-type inequality for the following boundary value problem of the 

fractional Caputo-Fabrizio differential equation in the next section.   
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𝐷𝐶𝐹
𝜎 𝑢(𝑥) + 𝑓(𝑥, 𝑢(𝑥)) = 0,    𝜎 ∈ (2,3],    𝑎 ≤ 𝑥 ≤ 𝑏,

𝑢(𝑎) = 𝑢’(𝑎) = 0,    𝑢(𝑏) = 0.
                                                                  (1) 

 

3. LYAPUNOV-TYPE INEQUALITY FOR FRACTIONAL BOUNDARY VALUE 

PROBLEMS 

 

We present a Lyapunov-type inequality for the fractional boundary value problem (1) when 

𝑓(𝑥, 𝑢(𝑥)) = 𝑝(𝑥)𝑢(𝑥) for 𝑝 ∈ 𝐶([𝑎, 𝑏], ℝ) in this section. As applications of this inequality, we 

obtain a Lyapunov-type inequality for the linear third order ordinary differential equation and a 

lower bound for the eigenvalues of the fractional boundary value problems. 
 

Lemma 5 Let ℎ ∈ 𝐶([𝑎, 𝑏], ℝ). Then the following fractional boundary value problem of the 

fractional Caputo-Fabrizio differential equation 
 

𝐷𝐶𝐹
𝜎 𝑢(𝑥) + ℎ(𝑥) = 0,    𝜎 ∈ (2,3],    𝑎 ≤ 𝑥 ≤ 𝑏,

𝑢(𝑎) = 𝑢’(𝑎) = 0,    𝑢(𝑏) = 0.
                                                                            (2) 

 

has the solution 𝑢(𝑥) that is also solution of the following integral equation 
 

𝑢(𝑥) = ∫ 𝐻(𝑥, 𝑡)ℎ(𝑡)𝑑𝑡 ,
𝑏

𝑎
  

 

where the Green’s  function 𝐻(𝑥, 𝑡) is given by 
 

H(x, t) = {
ℎ1(𝑥, 𝑡),   𝑎 ≤ 𝑡 ≤ 𝑥 ≤ 𝑏,

ℎ2(𝑥, 𝑡),   𝑎 ≤ 𝑡 ≤ 𝑥 ≤ 𝑏,
  

 

with  
 

ℎ1(𝑥, 𝑡) = ℎ2(𝑥, 𝑡) −
2(3−𝜎)(𝑥−𝑡)(𝑏−𝑎)2+(𝜎−2)(𝑥−𝑡)2(𝑏−𝑎)2

2(𝑏−𝑎)2 ,  
 

and  
 

 ℎ2(𝑥, 𝑡) =
2(3−𝜎)(𝑥−𝑎)2(𝑏−𝑡)+(𝜎−2)(𝑥−𝑎)2(𝑏−𝑡)2

2(𝑏−𝑎)2
.  

 

Proof. By Lemma 4, we get  
 

𝐼𝑎
𝛼𝐷𝐶𝐹

𝛼 𝑢(𝑥) = 𝑢(𝑥) − 𝑢(𝑎) − (𝑥 − 𝑎)𝑢’(𝑎) −
(𝑥−𝑎)2

2
𝑢”(𝑎).  

 

Thus, by applying the high order fractional Caputo-Fabrizio integral operator to the equation 

(2), we find that  
 

𝑢(𝑥) − 𝑢(𝑎) − (𝑥 − 𝑎)𝑢’(𝑎) −
(𝑥−𝑎)2

2
𝑢”(𝑎) = −𝐼𝑎

𝜎ℎ(𝑥).  
 

The boundary conditions 𝑢(𝑎) = 𝑢’(𝑎) = 0 imply that  
 

𝑢(𝑥) =
(𝑥−𝑎)2

2
𝑢”(𝑎) − 𝐼𝑎

𝜎ℎ(𝑥).  
 

Using the boundary condition 𝑢(𝑏) = 0, we obtain  
 

𝑢(𝑥) =
(3−𝜎)

(𝑏−𝑎)2  ∫ (𝑥 − 𝑎)2(𝑏 − 𝑡)ℎ(𝑡)𝑑𝑡
b

a
+

𝜎−2

2(𝑏−𝑎)2  ∫ (𝑥 − 𝑎)2(𝑏 − 𝑡)2ℎ(𝑡)𝑑𝑡
b

a
   

− (3 − 𝜎) ∫ (𝑥 − 𝑡)ℎ(𝑡)𝑑𝑡
𝑥

𝑎
−

𝜎−2

2
∫ (𝑥 − 𝑡)2ℎ(𝑡)𝑑𝑡,

𝑥

𝑎
  

 

or, equivalently  
 

u(x) = ∫ ℎ1(𝑥, 𝑡)ℎ(𝑡)𝑑𝑡 
x

a
+ ∫ ℎ1(𝑥, 𝑡)ℎ(𝑡)𝑑𝑡

𝑏

𝑥
  

= ∫ 𝐻(𝑥, 𝑡)ℎ(𝑡)𝑑𝑡
b

a
.  

 

The proof is completed. 
 

Lemma 6 The Green’s function 𝐻(𝑥, 𝑡) has the following bound: 
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𝐻(𝑥, 𝑡) ≤
2(3−𝜎)(𝑏−𝑎)+(𝜎−2)(𝑏−𝑎)2

2
,     𝜎 ∈ (2,3], 𝑥, 𝑡 ∈ [𝑎, 𝑏].  

 

Proof. Since 𝑥 − 𝑎 ≤ 𝑏 − 𝑎, we find that  
 

2(3−𝜎)(𝑥−𝑎)2(𝑏−𝑡)+(𝜎−2)(𝑥−𝑎)2(𝑏−𝑡)2

2(𝑏−𝑎)2   

−
2(3−𝜎)(𝑥−𝑡)(𝑏−𝑎)2+(𝜎−2)(𝑥−𝑡)2(𝑏−𝑎)2

2(𝑏−𝑎)2
 ≤   

2(3−𝜎)(𝑏−𝑡)+(𝜎−2)(𝑏−𝑡)2−2(3−𝜎)(𝑥−𝑡)−(𝜎−2)(𝑥−𝑡)2

2
 .  

          

Note that for 𝑎 ≤ 𝑡 ≤ 𝑥 ≤ 𝑏, we have  
 

2(3 − 𝜎)((𝑏 − 𝑡) − (𝑥 − 𝑡)) = 2(3 − 𝜎)(𝑏 − 𝑥) ≤ 2(3 − 𝜎)(𝑏 − 𝑎),  
 

and 
 

(𝜎 − 2)((𝑏 − 𝑡)2 − (𝑥 − 𝑡)2) ≤ (𝜎 − 2)(𝑏 − 𝑡)2 ≤ (𝜎 − 2)(𝑏 − 𝑎)2.  
 

We now see that for 𝑎 ≤ 𝑡 ≤ 𝑥 ≤ 𝑏,  
 

𝐻(𝑥, 𝑡) ≤
2(3−𝜎)(𝑏−𝑎)+(𝜎−2)(𝑏−𝑎)2

2
.  

 

For the case when 𝑎 ≤ 𝑥 ≤ 𝑡 ≤ 𝑏, we have 𝑥 − 𝑎 ≤ 𝑡 − 𝑎 ≤ 𝑏 − 𝑎, and we can write  
 

2(3−𝜎)(𝑥−𝑎)(𝑥−𝑎)(𝑏−𝑡)+(𝜎−2)(𝑥−𝑎)(𝑥−𝑎)(𝑏−𝑡)(𝑏−𝑡)

2(𝑏−𝑎)2
   

≤
2(3−𝜎)(𝑡−𝑎)(𝑡−𝑎)(𝑏−𝑡)+(𝜎−2)(𝑡−𝑎)(𝑏−𝑡)(𝑡−𝑎)(𝑏−𝑡)

2(𝑏−𝑎)2 .  
 

Now, using the inequalities (𝑡 − 𝑎)(𝑏 − 𝑡) ≤ ((𝑡 − 𝑎) + (𝑏 − 𝑡))
2
 and 

(𝑡 − 𝑎)(𝑏 − 𝑡) ≤ (𝑏 − 𝑎)2, we have  
 

2(3−𝜎)(𝑡−𝑎)(𝑡−𝑎)(𝑏−𝑡)+(𝜎−2)(𝑡−𝑎)(𝑏−𝑡)(𝑡−𝑎)(𝑏−𝑡)

2(𝑏−𝑎)2
  

≤
2(3−𝜎)(𝑏−𝑎)+(𝜎−2)(𝑏−𝑎)2

2
.  

 

This shows that  
 

𝐻(𝑥, 𝑡) ≤
2(3−𝜎)(𝑏−𝑎)+(𝜎−2)(𝑏−𝑎)2

2
 for 𝑎 ≤ 𝑥 ≤ 𝑡 ≤ 𝑏.  

 

Thus, the proof is completed. 

Next, we establish a Lyapunov-type inequality for the fractional boundary value problem of 

the fractional  Caputo-Fabrizio differential equation of order 𝜎 ∈ (2,3] in the next theorem. 
 

Theorem 7 For 𝜎 ∈ (2,3] and 𝑝 ∈ 𝐶([𝑎, 𝑏], ℝ), if the following fractional boundary value 

problem 
 

𝐷𝐶𝐹
𝜎 𝑢(𝑥) + 𝑝(𝑥)𝑢(𝑥) = 0,    𝜎 ∈ (2,3],    𝑎 ≤ 𝑥 ≤ 𝑏,

𝑢(𝑎) = 𝑢’(𝑎) = 0,    𝑢(𝑏) = 0.
                                                                    (3) 

 

has a non zero solution, then the function 𝑝 obeys the following  integral inequality 
 

∫ |𝑝(𝜂)|𝑑𝜂 ≥
2

2(3−𝜎)(𝑏−𝑎)+(𝜎−2)(𝑏−𝑎)2 .
𝑏

𝑎
  

 

Proof. Let 𝐶[𝑎, 𝑏]C[a,b] be the Banach space with maximum norm, that is, 
 

∥ 𝑢 ∥= max
𝑥∈[𝑎,𝑏]

|𝑢(𝑥)|,    𝑢 ∈ 𝐶[𝑎, 𝑏].  
 

By Lemma 5, the solution of the boundary value problem (3) has the form  
 

𝑢(𝑥) = ∫ 𝐻
b

a
(𝑥, 𝑡)𝑝(𝑡)𝑢(𝑡)𝑑𝑡    𝑥, 𝑡 ∈ [𝑎, 𝑏].  

 

Taking the maximum norm of the both side of the equation yields  
 

∥ 𝑢 ∥≤ max
𝑥∈[𝑎,𝑏]

∫ |
b

a
𝐻(𝑥, 𝑡)𝑝(𝑡)| ∥ 𝑢 ∥ 𝑑𝑡  
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which gives that  
 

max
𝑥∈[𝑎,𝑏]

∫ |
b

a
𝐻(𝑥, 𝑡)𝑝(𝑡)|𝑑𝑡 ≥ 1.  

 

The bound on the Green‘s function 𝐻 leads to have  
 

1 ≤
2(3−𝜎)(𝑏−𝑎)+(𝜎−2)(𝑏−𝑎)2

2
∫ |

b

a
𝑝(𝑡)|𝑑𝑡,  

 

or  
 

∫ |
b

a
𝑝(𝑡)|𝑑𝑡 ≥

2

2(3−𝜎)(𝑏−𝑎)+(𝜎−2)(𝑏−𝑎)2
.  

 

This completes the proof.  

We now give some consequences of Theorem 7. First, we obtain a Lyapunov-type inequality 

for the linear third order ordinary differential equation.  
 

Corollary 8 If 𝑝 ∈ 𝐶([𝑎, 𝑏], ℝ) and the following third order ordinary differential equation 
 

𝑢′′′(𝑥) + 𝑝(𝑥)𝑢(𝑥) = 0,     𝑎 ≤ 𝑥 ≤ 𝑏,

𝑢(𝑎) = 𝑢’(𝑎) = 0,    𝑢(𝑏) = 0,
  

 

has a non zero solution, then one has 
 

∫ |𝑝(𝜂)|𝑑𝜂 ≥
2

(𝑏−𝑎)2
.

b

a
  

 

Secondly, we present a bound for the eigenvalues of fractional boundary value problems of 

the fractional Caputo-Fabrizio differential equation. 
 

Corollary 9 If λ is an eigenvalue of the following fractional boundary value problem 
 

𝐷𝐶𝐹
𝜎 𝑢(𝑥) + 𝜆𝑢(𝑥) = 0,    𝜎 ∈ (2,3],    𝑎 ≤ 𝑥 ≤ 𝑏,

𝑢(𝑎) = 𝑢’(𝑎) = 0,    𝑢(𝑏) = 0,
  

 

then 
 

|λ| ≥
2

2(3−𝜎)(𝑏−𝑎)2+(𝜎−2)(𝑏−𝑎)3
.  

 

Proof. Since 𝜆 is an eigenvalue of the fractional boundary value problem, there exists a non zero 

solution. Thus, appealing to Theorem 7 when 𝑝 replaced by 𝜆, we get  
 

∫ |
b

a
𝜆| 𝑑𝑠 ≥

2

2(3−𝜎)(𝑏−𝑎)+(𝜎−2)(𝑏−𝑎)2,  
 

which leads to  
 

|𝜆| ≥
2

2(3−𝜎)(𝑏−𝑎)2+(𝜎−2)(𝑏−𝑎)3
,  

 

that completes the proof.  

 

4. POSITIVE SOLUTIONS FOR NONLINEAR FRACTIONAL BOUNDARY VALUE 

PROBLEMS 

 

We further study the existence of positive solutions of the following nonlinear fractional 

differential equation 
 

DCF
σ 𝑢(𝑥) = ℎ(𝑥, 𝑢(𝑥)),    𝜎 ∈ (1,2],    0 ≤ 𝑥 ≤ 1,

𝑢(0) = 𝑢(1) = 0.
                                                                         (4) 

 

where 𝐷𝐶𝐹
𝜎  is the Caputo-Fabrizio fractional derivative and ℎ ∈ 𝐶([0,1] × [0, ∞), [0, ∞)). We 

first convert the fractional differential equation to the integral equation in the next lemma. 
 

Lemma 10 [15] If 𝑢(𝑥) is the solution of the fractional boundary value problem (4), then 𝑢(𝑥) 

also solves the following integral equation  
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𝑢(𝑥) = ∫ 𝐺(𝑥, 𝑡)ℎ(𝑡, 𝑢(𝑡)𝑑𝑡,
1

0
  

 

where  
 

G(x, t) = {
(1 − 𝑥)((𝜎 − 1)𝑡 − 2 + 𝜎),   0 ≤ 𝑡 ≤ 𝑥 ≤ 1,

𝑥((𝜎 − 1)(1 − 𝑡) + 2 − 𝜎),   0 ≤ 𝑡 ≤ 𝑥 ≤ 1.
                                                              (5) 

 

Consider the Banach space 𝐶[0,1] equipped with maximum norm ∥ 𝑦 ∥= max𝑡∈[0,1]|𝑦(𝑡)|. 

We define the cone 𝑄 = {𝑦 ∈ 𝐶[0,1]: 𝑦(𝑥) ≥ 0, 𝑥 ∈ [0,1]}.  Let us define the operator 𝒦: 𝑄 → 𝑄 

by 
 

𝒦𝑢(𝑥) = ∫ 𝐺
1

0
(𝑥, 𝑡)ℎ(𝑡, 𝑦(𝑡))𝑑𝑡,    𝑥 ∈ [0,1],                                                                              (6) 

 

where the Green‘s function 𝐺(𝑥, 𝑡) is defined by (5). We show the existence of solutions for 

the fractional boundary value problem (4) by proving the operator 𝒦 has a fixed point in 𝑄. 
 

Lemma 11 The operator 𝒦: 𝑄 → 𝑄 is completely continuous. 
 

Proof. We first show that the operator 𝒦 is continuous. For 𝑢1(𝑥), 𝑢2(𝑥) ∈ [0, ∞) and 𝜖 > 0, 

there exists 𝛿 > 0 with |𝑢1(𝑥) − 𝑢2(𝑡)| < 𝛿 so that |ℎ(𝑥, 𝑢1) − ℎ(𝑥, 𝑢2)| <
𝜖

3−𝜎
 since ℎ ∈

𝐶([0,1] × [0, ∞), [0, ∞)). 
 

|𝒦𝑢1(𝑥) − 𝒦𝑢2(𝑥)| ≤ ∫ (
𝑥

0
1 − 𝑥)((𝜎 − 1)𝑡 − 2 + 𝜎)|ℎ(𝑡, 𝑢1(𝑡)) − ℎ(𝑡, 𝑢2(𝑡))| 𝑑𝑡  

                                           + ∫ 𝑥
1

𝑥
 ((𝜎 − 1)(1 − 𝑡) + 2 − 𝜎)|ℎ(𝑡, 𝑢1(𝑡)) − ℎ(𝑡, 𝑢2(𝑡))|𝑑𝑡  

≤ ((𝜎 − 1)
𝑥2(1−𝑥)

2
+ (2 − 𝜎)𝑥(1 − 𝑥))

𝜖

3−𝜎
  

                                         +𝑥((𝜎 − 1)(
1

2
− 𝑥 +

𝑥2

2
) + (2 − 𝜎)𝑥(1 − 𝑥))

𝜖

3−𝜎
≤

𝜖

2
+

𝜖

2
= 𝜖   

 

showing that the operator 𝒦 is continuous. Let 𝐵 ⊂ 𝑄 be a bounded subset. We show that 

𝒦(𝐵) is bounded and equicontinuous. Let 𝑀 = max𝑥∈[0,1],𝑢∈𝐵|ℎ(𝑥, 𝑢(𝑥))|. We have for 𝑢 ∈ 𝐵  
 

|𝒦𝑢(𝑥)| ≤ ∫ (
x

0
1 − 𝑥)((𝜎 − 1)𝑡 − 2 + 𝜎)|ℎ(𝑡, 𝑢(𝑡))| 𝑑𝑡 + ∫ 𝑥

1

x
((𝜎 − 1)(1 − 𝑡) + 2 − 𝜎)   

 ≤ 𝑀(
𝜎−1

2
+ 2 − 𝜎) + 𝑀(

𝜎−1

2
+ 2 − 𝜎) = (3 − 𝜎)𝑀  

 

which shows that 𝒦(𝐵) is bounded. Now, let 𝑥1, 𝑥2 ∈ [0,1], 𝑥1 < 𝑥2 and 𝑢 ∈ 𝐵, then  
 

|𝒦𝑢(𝑥1) − 𝒦𝑢(𝑥2)| ≤ ∫ [
x1

0
(1 − 𝑥1)((𝜎 − 1)𝑡 − 2 + 𝜎) − (1 − 𝑥2)((𝜎 − 1)𝑡 − 2 +

𝜎)]|ℎ(𝑡, 𝑢(𝑡))| 𝑑𝑡  

+ ∫ (
x2

x1

  1 − 𝑥2)((𝜎 − 1)𝑡 − 2 + 𝜎)|ℎ(𝑡, 𝑢(𝑡))| 𝑑𝑡 

+ ∫ [
1

x2
𝑥1((𝜎 − 1)(1 − 𝑡) + 2 − 𝜎) − 𝑥2((𝜎 − 1)(1 − 𝑡) + 2 − 𝜎)]|ℎ(𝑡, 𝑢(𝑡))| 𝑑𝑡   

−(1 − 𝑥2)((𝜎 − 1)𝑡 − 2 + 𝜎)]|ℎ(𝑡, 𝑢(𝑡))| 𝑑𝑡   

+ ∫ 𝑥1
x2

x1
((𝜎 − 1)(1 − 𝑡) + 2 − 𝜎)|ℎ(𝑡, 𝑢(𝑡))|𝑑𝑡   

≤ 𝑀[(𝑥2 − 𝑥1)((𝜎 − 1)𝑥1
2 − (2 − 𝜎)𝑥1) + (1 − 𝑥2)((𝜎 − 1)(

𝑥2
2

2
−

𝑥1
2

2
)  

 −(2 − 𝜎(𝑥2 − 𝑥1)) + (𝑥1 − 𝑥2) ((𝜎 − 1) (
1

2
− 𝑥2 +

𝑥2
2

2
) + (2 − 𝜎)(𝑥2 − 𝑥1))  

+𝑥1(9𝜎 − 1)(𝑥1 − 𝑥2 +
𝑥2

2

2
−

𝑥1
2

2
) + (2 − 𝜎)(𝑥2 − 𝑥1)].  

 

We see that |𝒦𝑢(𝑥1) − 𝒦𝑢(𝑥2)| → 0 as 𝑥2 → 𝑥1 implying that 𝒦(𝐵) is equicontinuous. By 

the well known theorem of Arzela- Ascolli, we conclude that the operator 𝒦 is completely 

continuous.  
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Next, we show the existence of positive solution for the fractional differential equation (4) by 

the help of Guo-Krasnoselskii fixed point theorem.  
 

Theorem 12 Let 𝜎 ∈ (1,2] and ℎ ∈ 𝐶([0,1] × [0, ∞), [0, ∞)). Assume that there exist positive 

constants 𝑟1 < 𝑟2 so that 
 

(A)   ℎ(𝑥, 𝑡) ≥
8𝑟1

𝜎−1
  𝑓𝑜𝑟 (𝑥, 𝑡) ∈ [0,1] × [0, 𝑟1),  

(B)   ℎ(𝑥, 𝑡) ≤
𝑟2

3−𝜎
  𝑓𝑜𝑟 (𝑥, 𝑡) ∈ [0,1] × [0, 𝑟2).   

 

Then, there exists at least one postive solution of the fractional boundary value problem (4). 
 

Proof. Let us define two subsets of the convex set 𝑄: 𝜔1 = {𝑢 ∈ 𝑄: ∥ 𝑢 ∥≤ 𝑟1} and 𝜔2 = {𝑢 ∈
𝑄: ∥ 𝑢 ∥≤ 𝑟2}. If 𝑢 ∈ 𝑄 ∩ 𝜕𝜔1, then we have 0 ≤ 𝑢(𝑥) ≤ 𝑟1 for 𝑥 ∈ [0,1]. We then obtain by 

using the assumption (A)  
 

∥ 𝒦𝑢 ∥= max
0≤𝑥≤1

|𝒦𝑢(𝑥)| = max
0≤𝑥≤1

∫ 𝐺
1

0
(𝑥, 𝑡)ℎ(𝑡, 𝑢(𝑡)) 𝑑𝑡 ≥

8𝑟1

𝜎−1
max

0≤𝑥≤1
∫ 𝐺

1

0
(𝑥, 𝑡) 𝑑𝑡.  

 

We compute  
 

max
0≤𝑥≤1

∫ 𝐺
1

0
(𝑥, 𝑡)𝑑 = max

0≤𝑥≤1
∫ (1 − 𝑥)

𝑥

0
[(𝜎 − 1)𝑡 − 2 + 𝜎]𝑑𝑡  

                                  + ∫ 𝑥
1

x
[(𝜎 − 1)(1 − 𝑡) + 2 − 𝜎] 𝑑𝑡)    

                                  = max
0≤𝑥≤1

((𝜎 − 1)
(1−𝑥)𝑥2

2
− (2 − 𝜎)𝑥(1 − 𝑥) + (𝜎 − 1)𝑥(

1

2
− 𝑥 +

𝑥2

2
)  

                                  +(2 − 𝜎)𝑥(1 − 𝑥)) = max
0≤𝑥≤1

𝜎−1

2
(𝑥 − 𝑥2) =

𝜎−1

8
.  

 

Thus we find that ∥ 𝒦𝑢 ∥≥ 𝑟1 ≥∥ 𝑢 ∥ for 𝑢 ∈ 𝑄 ∩ 𝜕𝜔1. If 𝑢 ∈ 𝑄 ∩ 𝜕𝜔2, then we have 

0 ≤ 𝑢(𝑥) ≤ 𝑟2 for 𝑥 ∈ [0,1]. We then obtain by using the assumption (B),  
 

∥ 𝒦𝑢 ∥= max
0≤𝑥≤1

|𝒦𝑢(𝑥)| = max
0≤𝑥≤1

∫ 𝐺
1

0
(𝑥, 𝑡)ℎ(𝑡, 𝑢(𝑡))𝑑𝑡 ≤

𝑟2

3−𝜎
max

0≤𝑥≤1
∫ 𝐺

1

0
(𝑥, 𝑡)𝑑𝑡  

                                ≤
𝑟2

3−𝜎
max

0≤𝑥≤1
((𝜎 − 1)

(1−𝑥)𝑥2

2
+ (2 − 𝜎)𝑥(1 − 𝑥)  

+(𝜎 − 1)𝑥(
1

2
− 𝑥 +

𝑥2

2
) + (2 − 𝜎)𝑥(1 − 𝑥))  

 

Since (1 − 𝑥)𝑥2 ≤ (1 − 𝑥)𝑥 ≤ 1 and 𝑥(
1

2
− 𝑥 +

𝑥2

2
) ≤

1

2
 for 𝑥 ∈ [0,1], we get  

∥ 𝒦𝑢 ∥≤
𝑟2

3−𝜎
(

3−𝜎

2
+

3−𝜎

2
) = 𝑟2, so we have ∥ 𝒦𝑢 ∥≤∥ 𝑢 ∥ for 𝑢 ∈ 𝑄 ∩ 𝜕𝜔2. Therefore, by 

Guo Krasnoselskii’s fixed point theorem, the existence of at least one positive solution is proved. 

This completes the proof. 

 

5. NUMERICAL EXAMPLES 

 

In this section, we give some numerical examples to show the existence of positve solutions 

of the fractional differential equations. 
 

Example 13 Consider the following fractional boundary value problem 
 

DCF

3

2 𝑢(𝑥) = exp(−𝑢(𝑥)) + 1,        0 ≤ 𝑥 ≤ 1,

𝑢(0) = 𝑢(1) = 0.
                                                                               (7) 

 

We select 𝑟1 =
1

17
 and 𝑟2 = 4. We then have 

 

ℎ(𝑥, 𝑢(𝑥)) = exp(−𝑢(𝑥)) + 1 ≤ 2 ≤
4
3

2

=
8

3
  𝑓𝑜𝑟 (𝑥, 𝑢) ∈ [0,1] × [0,4],  

         ℎ(𝑥, 𝑢(𝑥)) = exp(−𝑢(𝑥)) + 1 ≥ 1 ≥
8(

1

17
)

1

2

=
16

17
 𝑓𝑜𝑟 (𝑥, 𝑢) ∈ [0,1] × [0,

1

17
 ].  
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By Theorem 12, there exists at least one positive solution of (7) satisfying 
1

17
≤ ||𝑢|| ≤ 4. 

 

Example 14 Consider the following fractional boundary value problem 
 

DCF

3

2 𝑢(𝑥) =
u(x)+1

1+x2 ,        0 ≤ 𝑥 ≤ 1,

𝑢(0) = 𝑢(1) = 0.
                                                                                                 (8) 

 

We select 𝑟1 =
1

32 
 and 𝑟2 = 3. We then have 

 

ℎ(𝑥, 𝑢(𝑥)) =
u(x)+1

x2+1
≤

2

𝑥2+1
≤ 2 ≤

3
3

2

= 2  𝑓𝑜𝑟 (𝑥, 𝑢) ∈ [0,1] × [0,3],  

 

       ℎ(𝑥, 𝑢(𝑥)) =
𝑢(𝑥)+1

𝑥2+1
≥

1

𝑥2+1
≥

1

2
≥

8(
1

32
)

1

2

=
1

2
  𝑓𝑜𝑟 (𝑥, 𝑢) ∈ [0,1] × [0,

1

32
].  

 

By Theorem 12, there exists at least one positive solution of (8) satisfying 
1

32
≤ ||𝑢|| ≤ 3. 
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