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ABSTRACT 

 

The second strain gradient theory is a non-classical continuum theory that captures the behavior of micrometer 

and nanometer sized beam structures. Timoshenko and Euler-Bernoulli theories are classical beam models 

that neglect the effects of small size structures when compared to the second strain gradient theory-based 

beam model. In this study, an optimal boundary control problem is formulated for the second strain gradient 

theory-based beam model to control free vibrations in the system. A quadratic performance index expressing 
the dynamic response of the system is to be minimized while an affordable control is in use. An indirect 

method based on Pontryagin’s maximum principle is used to derive a necessary condition analytically for 

optimal control. Then, the problem is transformed into a system of partial differential equations consisting of 
state and costate (adjoint) variables together. The solution of the control problem is carried out using the 

computer codes produced in MATLAB©. The effectiveness and competence of the introduced optimal 

boundary control are presented in numerical simulations.  

Keywords: Second strain gradient theory-based beam, boundary control, maximum principle, vibration. 
 

 

1. INTRODUCTION 

 

Different beam theories such as Euler-Bernoulli, Timoshenko, and Mindlin have been 

developed over the last decades for the analysis of the vibrations ([1], [2]). Timoshenko beam 

models are generally described by the system of PDEs including the displacement, rotation angle 

and their derivatives with respect to space and time variables. Euler-Bernoulli beam is suitable 

when the cross-sectional dimension of the beam is negligible relative to its length ([3], [4]). Euler-

Bernoulli and Timoshenko beam theories comparing to Mindlin’s beam theory have a 

disadvantage for obtaining the accurate results due to ignoring the microstructural effects in the 

beam. Due to this observation, Mindlin presented a general theory (1964) to characterize the 

elastic behavior of isotropic materials taking into account of microstructural effects ([5], [6], [7]). 

Mindlin also considered that strains and gradient of strains are quadratically formed the potential 

energy density and kinetic energy function consisting of the quadratic form of both velocities and 

 
* Corresponding Author: e-mail: seda.korpeoglu@gedik.edu.tr, tel: (216) 452 45 85 / 1229   

 

Sigma Journal of Engineering and Natural Sciences 

Sigma Mühendislik ve Fen Bilimleri Dergisi 

 



1282 

 

 

gradients of velocities [8]. However, using higher order gradients introduces new constants that 

are difficult to be determined. To overcome this difficulty Mindlin proposed three simpler 

versions of his theory. These new versions are known as Form I, II and III which conclude the 

same equation of motion. Further, Mindlin suggested a new theory, known as the second gradient 

elastic theory that captures the behavior of micrometer and nanometer-sized structures (1965). In 

his new theory, the potential energy is dependent on strains, the gradient of strains and the second 

gradient of str ains. The constitutive equation is a partial differential equation of sixth order ([9], 

[10], [11]).  

In [12], a microscale Timoshenko beam model is developed based on the strain gradient 

elasticity theory. Ouakad et al. used a nonlocal strain gradient theory to discuss the static and 

dynamic response of a carbon nanotube that is electrically actuated. The aim of the authors is to 

examine the vibrational response of the nano-actuator with the effect of length-scale parameters. 

In their study, the nano-actuator is modeled as Euler–Bernoulli beam [13]. Al-shujairi et al. [14] 

studied the dynamic stability of a micro-beam exposed to a parametric axial excitation with 

different boundary conditions consisting of thermal effects. Ji et al. studied static and dynamic 

analyses of micro-beams by comparing the strain gradient effects for each component [15]. 

Oskouie et al. [16] developed Timoshenko nanobeams’ strain gradient formulations. Shokravi 

[17] presented a forced vibration response in nanocomposite cylindrical shells - based on strain 

gradient beam theory. A new mesh free method for modeling strain gradient micro beams is 

presented by Sayyidmousavi et al [18]. Ghazavi et al. [19] investigated the nonlinear analysis of 

the micro-nanotube based on second strain gradient theory. 

Control of vibrations in structures is an ongoing research area over the last decades due to the 

long life span of structures. Singh et al. used piezoelectric materials to the active control of 

vibrations for a beam [20]. The control of vibrations with viscoelastic materials is studied by 

Grootenhuis [21]. Kucuk et al. [22] presented an optimal vibration control of piezolaminated 

smart beams by the maximum principle. In [23], Yildirim et al. presented the vibration control of 

the Timoshenko beam as a differential equation including the derivatives of the state variable and 

the fourth order time derivative by using the Pontryagin’s maximum principle. Studies in the 

literature about vibration control and control strategies can be examined in the literature [5, 24, 

25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. By comparing the studies existing in the literature, the 

present paper has the following research results, which are important for future studies in this 

area. First result is to control free vibrations in the beam which is modelled using second strain 

gradient theory that is capable of micro and nano effects in structures. Second result is to obtain 

the optimal control function analytically using Pontryagin maximum principle for a beam system 

including sixth order derivative with respect to space variable. The present study deals with a 

beam model that expresses accurately the deformation behavior of beam structures at micro and 

nanoscales. The original contribution of the present paper to the literature is that the boundary 

vibration control of a second strain gradient theory based beam system, including the sixth order 

spatial derivative, is studied via the Pontryagin’s maximum principle. Also, the mathematical 

model of the beam includes 𝑤𝑡𝑡 and 𝑤𝑥𝑥𝑡𝑡. They represent the size effects in micro and nanoscale 

structures in the beam. By means of these terms, terminal conditions of the adjoint equation is re-

figured by comparing the studies existing in the literature.The rest of the paper is organized as 

follows. The problem formulation, uniqueness, and controllability of the system are examined in 

Section 2. In Section 3, we discuss the optimal control problem. In Section 4, a boundary control 

characterization is introduced and the optimal control function is obtained via the Pontryagin’s 

maximum principle. This approach leads to a system of partial differential equations where state 

and adjoint variables associated with the fixed terminal time, initial and boundary conditions. The 

obtained system is solved by using MATLAB. In Section 5, numerical results are presented to 

verify the effectiveness and competence of the introduced boundary control algorithm. The cost 

functional to be minimized is specified as a weighted quadratic functional of the dynamic 
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response of the beam. The expenditure of the control energy is taken in the cost functional as a 

penalty term. Section 6 closes the paper by stating the findings of the present paper. 

 

2. PROBLEM FORMULATION 

 

The beam model under consideration is initially an undeformed rest position - Figure 1 and is 

mathematically formulated as follows [10]:  

 

 
 

Figure 1. The scheme of the beam 

 

𝑤𝑥𝑥 −
13

12
ℓ2𝑤𝑥𝑥𝑥𝑥 +

ℓ4

72
𝑤𝑥𝑥𝑥𝑥𝑥𝑥 −

1

𝑐2
𝑤𝑡𝑡 +

1

𝑐2
ℓ2

3

�́�

𝜌
𝑤𝑥𝑥𝑡𝑡= 0                                                          (1) 

 

where 𝑤 = 𝑤(𝑥, 𝑡) ∈ 𝑆 = (0, ℓ) × (0, 𝑡𝑓) is the transversal displacement at position 𝑥 and 

time 𝑡, ℓ is the length of the beam, 𝑡𝑓 is the fixed terminal time, 𝑐2 =
𝐸

𝜌
, 𝑐 is a constant, 𝐸 is 

Young’s modulus, 𝜌′ and 𝜌 is the density of the microstructural effects. Eq. (1) is subjected to the 

following boundary conditions,  
 

𝑤(0, 𝑡)   =   𝑤(ℓ, 𝑡)             = 0  

𝑤𝑥𝑥(0, 𝑡) =   𝑤𝑥𝑥(ℓ, 𝑡)        = 0                                                                                                      (2)  

𝑤𝑥𝑥𝑥𝑥(0, 𝑡)  =  𝑤𝑥𝑥𝑥𝑥(ℓ, 𝑡)      = 𝑝(𝑡)           
 

where 𝑝(𝑡) is the control function to be computed optimally and the initial conditions,  
 

𝑤(𝑥, 0) = 𝑤0(𝑥),  𝑤𝑡(𝑥, 0) = 𝑤1(𝑥)                                                                                          (3) 
 

in which 𝑤0(𝑥) and 𝑤1(𝑥) are known functions.  

Assume that  
 

𝜕𝑗𝑤

𝜕𝑡𝑗
,
𝜕𝑖𝑤

𝜕𝑥𝑖
,
𝜕𝑘+𝑗𝑤

𝜕𝑡𝑘𝜕𝑥𝑗
∈ 𝐿2(𝑆),   𝑖 = 0, . . . ,6, 𝑗 = 0,1,2, 𝑘 = 0, 1,2;                                                    (4a) 

 

𝑝(𝑡) is an analytic function, and 𝑤0(𝑥) ∈ 𝐻
1(0, ℓ), 𝑤1(𝑥) ∈ 𝐿

2(0, ℓ),                                     (4b) 
 

where 𝐻(0, ℓ)=𝐿2(0, ℓ) is Hilbert space. Let the admissible control set be  
 

                                        𝑃𝑎𝑑 = {𝑝: (0, 𝑡𝑓) → ℝ,  |𝑝(𝑡)| < 𝑚0 < ∞},  𝑚0 is a constant, 
 

in which the inner product of two functions 𝑞 and 𝑟 on 𝑆 with  
 

< 𝑞, 𝑟 >= ∫ 𝑞
𝑆
(𝑠)𝑟(𝑠)𝑑𝑠                                                                                                               (5) 

 

and the norm  
 

‖𝑞‖2 =< 𝑞, 𝑞 > 
 

for all 𝑞, 𝑟 ∈ 𝐿2(0, ℓ). Then, the system given by Eqs. (1)-(3) has a solution [35].  

The uniqueness of the solution to the system given by Eqs. (1)-(3) is shown next to make use 

of it in the uniqueness of the control.  
 

Lemma 1. The problem given by Eqs (1)-(3) has a unique solution.  

Proof. Suppose that 𝑤1 and 𝑤2 are two solutions to the system given by Eqs. (1)-(3). Then, the 

difference function  
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𝑢(𝑥, 𝑡) = 𝑤1(𝑥, 𝑡) − 𝑤2(𝑥, 𝑡) 
 

will satisfy the homogeneous equation  
 

𝑢𝑥𝑥 −
13

12
ℓ2𝑢𝑥𝑥𝑥𝑥 +

ℓ4

72
𝑢𝑥𝑥𝑥𝑥𝑥𝑥 −

1

𝑐2
𝑢𝑡𝑡 +

1

𝑐2
ℓ2

3

�́�

𝜌
𝑢𝑥𝑥𝑡𝑡 = 0                                                            (6) 

 

subject to homogeneous boundary conditions and initial conditions, respectively,  
 

𝑢(0, 𝑡) = 𝑢(ℓ, 𝑡)  = 𝑢𝑥𝑥(0, 𝑡) = 𝑢𝑥𝑥(ℓ, 𝑡) = 𝑢𝑥𝑥𝑥𝑥(0, 𝑡) = 𝑢𝑥𝑥𝑥𝑥(ℓ, 𝑡) = 0,                              (7) 
 

𝑢(𝑥, 0) = 𝑢𝑡(𝑥, 0) = 0.                                                                                                                  (8) 
 

For the uniqueness, let the energy integral be introduced as 
 

𝐸(𝑡) =
1

2
∫ {
ℓ

0

1

𝑐2
𝑢𝑡
2(𝑥, 𝑡) +

ℓ2�́�

3𝑐2𝜌
𝑢𝑥𝑡
2 (𝑥, 𝑡) + 𝑢𝑥

2(𝑥, 𝑡) +
13ℓ2

12
𝑢𝑥𝑥
2 (𝑥, 𝑡) +

ℓ2

72
𝑢𝑥𝑥𝑥
2 (𝑥, 𝑡)}𝑑𝑥,             (9) 

 

and show that it is independent of 𝑡. Differentiating 𝐸(𝑡) with respect to 𝑡 yields  
 

𝑑𝐸(𝑡)

𝑑𝑡
= ∫ {

ℓ

0

1

𝑐2
𝑢𝑡𝑡 −

ℓ2�́�

3𝑐2𝜌
𝑢𝑥𝑥𝑡𝑡 − 𝑢𝑥𝑥 +

13ℓ2

12
𝑢𝑥𝑥𝑥𝑥 −

ℓ2

72
𝑢𝑥𝑥𝑥𝑥𝑥𝑥}𝑢𝑡𝑑𝑥  

+{𝑢𝑥𝑡𝑡𝑢𝑡 + 𝑢𝑥𝑢𝑡 + 𝑢𝑥𝑥𝑢𝑥𝑡 − 𝑢𝑥𝑥𝑥𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑢𝑥𝑥𝑡 − 𝑢𝑥𝑥𝑥𝑥𝑢𝑥𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑥𝑢𝑡}|0
ℓ .  

 

By using Eq. (6) and boundary conditions given by (7), it follows that  
 

𝑑𝐸(𝑡)

𝑑𝑡
= 0, 

 

that is, 𝐸(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Taking the initial conditions given by Eq. (8) into consideration, 

the following equality holds  
 

𝐸(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐸(0) =
1

2
∫ {
ℓ

0

1

𝑐2
𝑢𝑡
2(𝑥, 𝑡) +

ℓ2�́�

3𝑐2𝜌
𝑢𝑥𝑡
2 (𝑥, 𝑡) + 𝑢𝑥

2(𝑥, 𝑡) +
13ℓ2

12
𝑢𝑥𝑥
2 (𝑥, 𝑡) +

ℓ2

72
𝑢𝑥𝑥𝑥
2 (𝑥, 𝑡)}|𝑡=0𝑑𝑥 =0. 

 

It immediately follows from Eq. (9) and the initial conditions given by Eq. (8) that 𝑢(𝑥, 𝑡) is 

identically equal to zero over 𝑆, i.e., 𝑤1 = 𝑤2, that completes the proof.  

  The uniqueness of the solution for the beam system defined by Eqs. (1)-(3) implies the 

uniqueness of the control function [36]. Hence, the studied system is observable and controllable 

by Hilbert uniqueness theorem [6], [34].  

 

3. OPTIMAL CONTROL PROBLEM 

 

It is desired to determine an optimal control function 𝑝(𝑡) placed on the boundary to damp 

out undesired vibrations. To this end, the cost functional (performance index) that is to be 

minimized over the time interval 0 ≤ 𝑡 ≤ 𝑡𝑓 is defined in two parts: The first part measures the 

dynamical response of the system at the terminal time 𝑡𝑓 and the second term is the penalty 

function that minimizes the expenditure of the control force used over [0, 𝑡𝑓]. The performance 

index is defined as   
 

𝒥(𝑝(𝑡)) = ∫ [
ℓ

0
𝜇1𝑤

2(𝑥, 𝑡𝑓) + 𝜇2𝑤𝑡
2(𝑥, 𝑡𝑓)]𝑑𝑥 + 𝜇3 ∫ 𝑝2

𝑡𝑓
0

(𝑡)𝑑𝑡                                                (10) 
 

where 𝑝(𝑡) ∈ 𝐿2(0, 𝑡𝑓) is to be determined optimally and 𝜇1, 𝜇2 and 𝜇3 weighting coefficients 

satisfying 𝜇1, 𝜇2 ≥ 0, 𝜇1 + 𝜇2 ≠ 0 and 𝜇3 > 0. Hence, the optimal boundary control problem of 

our main interest is expressed in the following manner:  
 

𝒥(𝑝∘(𝑡)) = min
𝑝(𝑡)∈𝑃𝑎𝑑

𝒥 (𝑝(𝑡))                                                                                                 (11) 
 

subject to Eqs. (1)-(3).  
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4. BOUNDARY CONTROL CHARACTERIZATION 

 

The Pontryagin’s maximum principle provides an optimal control function analytically and is 

used to derive a necessary condition for the optimal control in terms of Hamiltonian. Since the 

performance index function satisfies convexity, optimality conditions obtained from results of 

maximum principle is also sufficient condition [30]. The Pontryagin’s maximum principle also 

enables us to obtain a relationship between state and control variables implicitly. For this purpose, 

let us introduce a Hamiltonian and an adjoint variable 𝑣. The adjoint system related to Eqs. (1)-(3) 

is  
 

𝑣𝑥𝑥 −
13

12
ℓ2𝑣𝑥𝑥𝑥𝑥 +

ℓ4

72
𝑣𝑥𝑥𝑥𝑥𝑥𝑥 −

1

𝑐2
𝑣𝑡𝑡 +

1

𝑐2
ℓ2

3

�́�

𝜌
𝑣𝑥𝑥𝑡𝑡 = 0.                                                         (12) 

 

The boundary conditions are  
 

𝑣(0, 𝑡) = 𝑣(ℓ, 𝑡)     = 0,  
𝑣𝑥𝑥(0, 𝑡) = 𝑣𝑥𝑥(ℓ, 𝑡)   = 0,                                                                                                           (13) 

𝑣𝑥𝑥𝑥𝑥(0, 𝑡) = 𝑣𝑥𝑥𝑥𝑥(ℓ, 𝑡) = 0,  
 

and terminal conditions are  
 

ℓ2�́�

3𝑐2𝜌
𝑣𝑥𝑥𝑡(𝑥, 𝑡𝑓) −

1

𝑐2
𝑣𝑡(𝑥, 𝑡𝑓) = 2𝜇1𝑤(𝑥, 𝑡𝑓),                                                                              (14) 

ℓ2�́�

3𝑐2𝜌
𝑣𝑥𝑥(𝑥, 𝑡𝑓) −

1

𝑐2
𝑣(𝑥, 𝑡𝑓) = −2𝜇2𝑤𝑡(𝑥, 𝑡𝑓).  

 

For the problem given by Eq. (1)-(3), the maximum principle is expressed as follows:  
 

Theorem 1. (Maximum Principle) If 𝑝∘(𝑡) ∈ 𝑃𝑎𝑑 is an optimal control then it satisfies the 

maximum principle: 
 

𝑚𝑎𝑥
𝑝(𝑡)∈𝑃𝑎𝑑

 ℋ(𝑡; 𝑣, 𝑝) = ℋ(𝑡; 𝑣∘, 𝑝∘)                                                                                       (15) 
 

where the Hamiltonian is  
 

ℋ(𝑡; 𝑣, 𝑝) = −𝑝(𝑡)𝑅(𝑡) − 𝜇3𝑝
2(𝑡)                                                                                             (16) 

 

in which  
 

𝑅(𝑡) =
ℓ4

72
(𝑣𝑥(0, 𝑡) − 𝑣𝑥(ℓ, 𝑡)).                                                                                                   (17) 

 

Proof. First, let us introduce an operator,  
 

Ψ(𝑤) = 𝑤𝑥𝑥 −
13

12
ℓ2𝑤𝑥𝑥𝑥𝑥 +

ℓ4

72
𝑤𝑥𝑥𝑥𝑥𝑥𝑥 −

1

𝑐2
𝑤𝑡𝑡 +

1

𝑐2
ℓ2

3

�́�

𝜌
𝑤𝑥𝑥𝑡𝑡,                                              (19) 

 

and deviations are given by  
 

Δ𝑤 = 𝑤(𝑥, 𝑡) − 𝑤∘(𝑥, 𝑡),  Δ𝑝 = 𝑝(𝑥, 𝑡) − 𝑝∘(𝑥, 𝑡).                                                                 (20) 
 

The operator defined by Eq. (19) satisfies   
 

Ψ(Δ𝑤) = 0, 
 

and subjected to the following boundary conditions and initial conditions, respectively,  
 

Δ𝑤(𝑥, 𝑡) = Δ𝑤𝑥𝑥(𝑥, 𝑡) = 0,  Δ𝑤𝑥𝑥𝑥𝑥(𝑥, 𝑡) = Δ𝑝(𝑡),  𝑥 = 0 and 𝑥 = ℓ                                (21) 
 

Δ𝑤(𝑥, 0) = Δ𝑤𝑡(𝑥, 0) = 0.                                                                                                          (22) 
 

Consider 
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∫ ∫ (
𝑡𝑓
0

ℓ

0
Δ𝑤Ψ(𝑣) − 𝑣Ψ(Δ𝑤))𝑑𝑡𝑑𝑥 = ∫ ∫ {

𝑡𝑓
0

ℓ

0
Δ𝑤(𝑣𝑥𝑥 −

13

12
ℓ2𝑣𝑥𝑥𝑥𝑥 +

ℓ4

72
𝑣𝑥𝑥𝑥𝑥𝑥𝑥 −

1

𝑐2
𝑣𝑡𝑡 +

1

𝑐2
ℓ2

3

�́�

𝜌
𝑣𝑥𝑥𝑡𝑡)  

−𝑣(Δ𝑤𝑥𝑥 −
13

12
ℓ2Δ𝑤𝑥𝑥𝑥𝑥 +

ℓ4

72
Δ𝑤𝑥𝑥𝑥𝑥𝑥𝑥 −

1

𝑐2
Δ𝑤𝑡𝑡 +

1

𝑐2
ℓ2

3

�́�

𝜌
Δ𝑤𝑥𝑥𝑡𝑡)}𝑑𝑡𝑑𝑥  

= ∫ ∫ [
𝑡𝑓
0

ℓ

0
Δ𝑤𝑣𝑥𝑥 − 𝑣Δ𝑤𝑥𝑥]𝑑𝑡𝑑𝑥⏟                  

𝐼

+ ∫ ∫ [
𝑡𝑓
0

ℓ

0

13

12
ℓ2Δ𝑤𝑥𝑥𝑥𝑥𝑣 −

13

12
ℓ2𝑣𝑥𝑥𝑥𝑥Δ𝑤]𝑑𝑡𝑑𝑥⏟                            

𝐼𝐼

 

                                                               +∫ ∫ [
𝑡𝑓
0

ℓ

0

ℓ4

72
Δ𝑤𝑣𝑥𝑥𝑥𝑥𝑥𝑥 −

ℓ4

72
𝑣Δ𝑤𝑥𝑥𝑥𝑥𝑥𝑥]𝑑𝑡𝑑𝑥⏟                          

𝐼𝐼𝐼

+

∫ ∫ [
𝑡𝑓
0

ℓ

0

1

𝑐2
Δ𝑤𝑡𝑡𝑣 −

1

𝑐2
𝑣𝑡𝑡Δ𝑤]𝑑𝑡𝑑𝑥⏟                    

𝐼𝑉

  

                                 +∫ ∫ [
𝑡𝑓
0

ℓ

0

1

𝑐2
ℓ2

3

�́�

𝜌
Δ𝑤𝑣𝑥𝑥𝑡𝑡 −

1

𝑐2
ℓ2

3

�́�

𝜌
𝑣Δ𝑤𝑥𝑥𝑡𝑡]𝑑𝑡𝑑𝑥⏟                            

𝑉

 = 0.                           (23) 

 

In view of Eqs. (21)-(22), the integration by parts is applied to the terms I, II, III, IV, V Eq. 

(23). It is observed that calculating I  

𝐼 = ∫ ∫ [
𝑡𝑓
0

ℓ

0
Δ𝑤𝑣𝑥𝑥 − 𝑣Δ𝑤𝑥𝑥]𝑑𝑡𝑑𝑥 = 0  (Integration by parts used twice).   

Similarly using integration by parts four times in II yields  
 

𝐼𝐼 = ∫ ∫ [
𝑡𝑓
0

ℓ

0

13

12
ℓ2Δ𝑤𝑥𝑥𝑥𝑥𝑣 −

13

12
ℓ2𝑣𝑥𝑥𝑥𝑥Δ𝑤]𝑑𝑡𝑑𝑥 = 0.  

 

By applying integration by parts six times to III, the following relation is obtained  
 

𝐼𝐼𝐼 = ∫ ∫ [
𝑡𝑓
0

ℓ

0

ℓ4

72
Δ𝑤𝑣𝑥𝑥𝑥𝑥𝑥𝑥 −

ℓ4

72
𝑣Δ𝑤𝑥𝑥𝑥𝑥𝑥𝑥]𝑑𝑡𝑑𝑥 = ∫

ℓ4

72

𝑡𝑓
0

(𝑣𝑥(ℓ, 𝑡)Δ𝑤𝑥𝑥𝑥𝑥(ℓ, 𝑡) −

𝑣𝑥(0, 𝑡)Δ𝑤𝑥𝑥𝑥𝑥(0, 𝑡))𝑑𝑡.   
 

Similarly, the following equalities are observed:  
 

𝐼𝑉 = ∫ ∫ [
𝑡𝑓
0

ℓ

0

1

𝑐2
Δ𝑤𝑡𝑡𝑣 −

1

𝑐2
𝑣𝑡𝑡Δ𝑤]𝑑𝑡𝑑𝑥 = ∫

1

𝑐2
ℓ

0
(Δ𝑤𝑡(𝑥, 𝑡𝑓)𝑣(𝑥, 𝑡𝑓) − Δ𝑤(𝑥, 𝑡𝑓)𝑣𝑡(𝑥, 𝑡𝑓))𝑑𝑥,  

 

𝑉 = ∫ ∫ [
𝑡𝑓
0

ℓ

0

1

𝑐2
ℓ2

3

�́�

𝜌
Δ𝑤𝑣𝑥𝑥𝑡𝑡 −

1

𝑐2
ℓ2

3

�́�

𝜌
𝑣Δ𝑤𝑥𝑥𝑡𝑡]𝑑𝑡𝑑𝑥 = ∫

1

𝑐2
ℓ

0

ℓ2

3

�́�

𝜌
(Δ𝑤(𝑥, 𝑡𝑓)𝑣𝑥𝑥𝑡(𝑥, 𝑡𝑓) −

Δ𝑤𝑡(𝑥, 𝑡𝑓)𝑣𝑥𝑥(𝑥, 𝑡𝑓))𝑑𝑥.  
 

Substituting these equalities into Eq. (23) and using terminal conditions given by Eq. (14) 

give  
 

∫ {
ℓ

0
2𝜇1Δ𝑤(𝑥, 𝑡𝑓)𝑤(𝑥, 𝑡𝑓) + 2𝜇2Δ𝑤𝑡(𝑥, 𝑡𝑓)𝑤𝑡(𝑥, 𝑡𝑓)}𝑑𝑥 = ∫ {

𝑡𝑓
0

ℓ4

72
(𝑣𝑥(0, 𝑡) − 𝑣𝑥(ℓ, 𝑡))}Δ𝑝(𝑡)𝑑𝑡.  

 

To analyze the deviation in the performance index functional, the following equality is 

observed 
 

Δ𝒥(𝑝) = 𝒥(𝑝) − 𝒥(𝑝∘) = ∫ {
ℓ

0
𝜇1[𝑤

2(𝑥, 𝑡𝑓) − 𝑤
∘2(𝑥, 𝑡𝑓)] + 𝜇2[𝑤𝑡

2(𝑥, 𝑡𝑓) − 𝑤𝑡
∘2(𝑥, 𝑡𝑓)]}𝑑𝑥  

          +𝜇3 ∫ [
𝑡𝑓
0
𝑝2(𝑡) − 𝑝∘

2
(𝑡)]𝑑𝑡                                                                                                (24) 

                                                                               

Using Taylor series for 𝑤2(𝑥, 𝑡𝑓) and 𝑤𝑡
2(𝑥, 𝑡𝑓) about 𝑤∘(𝑥, 𝑡𝑓) and 𝑤𝑡

∘(𝑥, 𝑡𝑓), respectively, 

leads to the following relation   
 

𝑤2(𝑥, 𝑡𝑓) − 𝑤
∘2(𝑥, 𝑡𝑓) = 2𝑤

∘(𝑥, 𝑡𝑓)Δ𝑤(𝑥, 𝑡𝑓) + 𝑟1,                                                                 (25a) 
 

𝑤𝑡
2(𝑥, 𝑡𝑓) − 𝑤𝑡

𝑜2(𝑥, 𝑡𝑓) = 2𝑤𝑡
∘(𝑥, 𝑡𝑓)Δ𝑤𝑡(𝑥, 𝑡𝑓) + 𝑟2,                                                               (25b) 

 

where remainders 𝑟1 and 𝑟2 are  
 

𝑟1 = 2(Δ𝑤)
2+. . . > 0 and 𝑟2 = 2(Δ𝑤𝑡)

2+. . . > 0.  
 

S. Göktepe Körpeoğlu, I. Kucuk, K. Yildirim     / Sigma J Eng & Nat Sci 37 (4), 1281-1292, 2019 



1287 

 

 

Substituting Eq. (25) into Eq. (24) results in  
 

Δ𝒥(𝑝) = ∫ {
ℓ

0
2𝜇1[𝑤

𝑜(𝑥, 𝑡𝑓)Δ𝑤
∘(𝑥, 𝑡𝑓) + 𝑟1] + 2𝜇2[𝑤𝑡

∘(𝑥, 𝑡𝑓)Δ𝑤𝑡
∘(𝑥, 𝑡𝑓) + 𝑟2]}𝑑𝑥 +

𝜇3 ∫ [
𝑡𝑓
0
𝑝2(𝑡) − 𝑝∘

2
(𝑡)]𝑑𝑡 ≥ 0. 

 

Since 2𝜇1𝑟1 + 2𝜇2𝑟2 ≥ 0, the following inequality is obtained 
 

Δ𝒥(𝑝) ≥ ∫{

𝑡𝑓

0

ℓ4

72
(𝑣𝑥(0, 𝑡) − 𝑣𝑥(ℓ, 𝑡))}𝑓(𝑡)𝑑𝑡 + 𝜇3∫[

𝑡𝑓

0

𝑝2(𝑡) − 𝑝∘
2
(𝑡)]𝑑𝑡 ≥ 0 

 

and 
 

Δ𝒥(𝑝) ≥ ∫{

𝑡𝑓

0

ℓ4

72
𝑝(𝑡)𝑅(𝑡) + 𝜇3𝑝

2(𝑡) − (
ℓ4

72
𝑝∘(𝑡)𝑅(𝑡) + 𝜇3𝑝

∘2(𝑡))}𝑑𝑡 ≥ 0. 

 

Hence, 
 

maxℋ(𝑡; 𝑣, 𝑝) = ℋ(𝑡; 𝑣∘, 𝑝∘) , ∀ 𝑝 ∈ 𝑃𝑎𝑑 
 

and  
 

𝒥(𝑝) ≥ 𝒥(𝑝∘), ∀ 𝑝 ∈ 𝑃𝑎𝑑.  
 

The first variation of Hamiltonian ℋ(𝑡; 𝑣, 𝑝) vanishes at 𝑝∘; therefore, the optimal control 

function indicates clearly as follows;  
 

𝑝∘(𝑡) =
ℓ4

144

{𝑣𝑥(ℓ,𝑡)−𝑣𝑥(0,𝑡)}

𝜇3
.                                                                           (26) 

 

5. NUMERICAL SIMULATIONS 

 

In this section, numerical simulations of the developed theory in the previous sections are 

presented to show the effectiveness of the technique by using MATLAB. In this process, firstly 

homogeneous boundary conditions are obtained by defining a new variable. Then, the adjoint 

system given by Eqs. (12)-(14) is solved using the eigenfunction expansion method in terms of 

the sine Fourier series and optimal control function Eq. (26) is computed. Finally, the obtained 

distributed parameter system with homogeneous boundary conditions is solved by using the Nth-

terms of sine Fourier series, similarly by finding undetermined constants. 

In the numerical simulations, the following parameters are taken [37]: 
 

• The size of the unit cell is taken as ℓ =1 m,  

• The density of the microstructural effects are given by 𝜌′ = 𝜌 = 6. 104𝑘𝑔/𝑚3, 

• 𝑐2 =
𝐸

𝜌
, 𝐸 = 2. 107𝑁/𝑚2, 𝑡𝑓 = 3, 

• The displacement and velocity of the beam are given at the midpoint of the beam, that is, 

𝑥 = 0.5,  
• Weighting coefficients are taken into account as 𝜇1 = 𝜇2 = 1 and 𝜇3 = 10

−3 for 

controlled case.  
 

Also, in the simulations, it is assumed that beam under consideration subject to the following 

initial conditions;  
 

𝑤(𝑥, 0) = √2 sin(𝜋𝑥) ,  𝑤𝑡(𝑥, 0) = √2 cos(𝜋𝑥). 
 

Let us define the dynamical response of the system at the terminal time 𝑡𝑓 and control force 

spend in [0, 𝑡𝑓] as follows, respectively, 
 

𝒥(𝑤) = ∫ [
1

0
𝑤2(𝑥, 𝑡𝑓) + 𝑤𝑡

2(𝑥, 𝑡𝑓)]𝑑𝑥,    𝒥(𝑝) = ∫ 𝑝2
𝑡𝑓
0

(𝑡)𝑑𝑡.  
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The results obtained for 𝒥(𝑤) and 𝒥(𝑝) by using the values 𝜇1,2 = 1  and different values of 

𝜇3 are summarized in Table 1. By observing Table 1, it is concluded that, as the weighted 

coefficient 𝜇3 on the control function decreases, the dynamic response of the beam decreases 

corresponding to an increase in the control force. Similar observations can be done by examining 

Figure 2 and Figure 3. Displacement and velocity of the beam are plotted for the controlled and 

uncontrolled cases in Figure 2 and Figure 3, respectively. These figures show that introduced 

boundary control damps out the free vibrations such that the amplitude of the vibrations is close 

to zero at the terminal time 𝑡𝑓. By observing the Figure 2, the difference between controlled and 

uncontrolled displacements of the beam means that introduced boundary control algorithm is very 

effective and it reaches the objective of the control problem. Figure 4 shows the optimal control 

solutions for the case with 𝑡𝑓 = 3 and different weighted coefficients 𝜇3 . 
 

Table 1. The results obtained for 𝓙(𝒘) and 𝓙(𝒑) by using the values 𝝁𝟏,𝟐 = 𝟏  and different 

values of 𝝁𝟑 
 

𝜇3  10−3  10−2 10−1 100 101 102  103   

𝒥(𝑤)  0.6583e-4  0.5986e-2  0.5766  46.6916  1166.54  3238.67  3717.51   

𝒥(𝑝)  8151.19  8132.44  7952.54  6440.64  1609.13  44.67  0.51   

 

 
 

Figure 2. The displacement in the controlled/ uncontrolled beam. 
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Figure 3. The velocity in the controlled/ uncontrolled beam. 

 

 
 

Figure 4. Optimal control solution for the case with 𝒕𝒇 = 𝟑 and different weight coefficients 𝝁3 

 

6. CONCLUSION 

 

Analyzing micro and nanoscale structures has recently become one of the most researched 

topics in nonclassical continuum theories. Mindlin’s second strain gradient theory (1965) is an 

extremely important nonclassical theory when it comes to the correct expression of small-scale 

effects. Timoshenko and Euler Bernoulli beam theories are other different types of beam theories, 

but they do not meet the expectations about microscopic effects of the structures when compared 
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to the second strain gradient theory. In this paper, the optimal vibration control of a beam model 

described by a linear higher-order distributed parameter system is presented. The beam model to 

be controlled is the second strain gradient theory based beam model that captures the behavior of 

micrometer and nanometer-sized structures. The boundary control is implemented to the beam 

model via the Pontryagin’s maximum principle. The uniqueness of the solution and controllability 

of the system are discussed. A cost functional to be minimized in the control duration is chosen as 

a sum of performance measure and penalty function. The performance measure is expressed as a 

dynamic response of the beam and penalty function assures the minimum expenditure of control 

forces. The Pontryagin’s maximum principle is used to compute the optimal control function 

analytically that leads to a partial differential equations system including state and adjoint 

variables, which are related by the terminal, initial and boundary conditions. Numerical results are 

presented in graphical and table forms by using MATLAB©. It is observed that the dynamic 

response decreases corresponding to an increase in the control. Comparisons of the displacement 

and velocity profiles for the controlled and uncontrolled beam are presented. In addition, optimal 

control solutions for different weight coefficients are obtained. It is shown that the introduced 

boundary control is effective for the second strain gradient theory-based beam.  
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