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ABSTRACT 

 

In this paper, we study perfect codes in the Lee-Rosenbloom-Tsfasman-Jain (LRTJ) metric over the finite 

field ℤp. We begin by deriving some new upper bounds focusing on the number of parity check digits for 

linear codes correcting all error vectors of LRTJ weight up to w, 1 ≤ w ≤ 4. Furthermore, we establish 

sufficient conditions for the existence of perfect codes correcting all error vectors with certain weights. We 

also search for linear codes which attain these bounds to determine the possible parameters of perfect codes. 

Moreover, we derive parity check matrices corresponding linear codes correcting all error vectors of LRTJ 

weight 1 over ℤp, and correcting all error vectors of LRTJ weight up to 2 over ℤ3 and ℤ11. We also construct 

perfect codes for these cases. Lastly, we obtain non-existence results on w-perfect linear codes over ℤp for 

2 ≤ w ≤ 4.  

Keywords: Linear codes, perfect codes, LRTJ weight, LRTJ metric. 
 

 

1. INTRODUCTION 

 

The study of perfect codes is one of the major topics for optimum solutions in coding theory. 

The readers may refer to the articles [3, 4, 5, 8, 9, 10]. The investigation of non-trivial perfect 

codes plays an important role in the theory of error-correcting codes. These approaches include 

techniques from studies in group theory, cryptography, graph theory and geometry. 

The existence of perfect codes is one of the most important problem in the field. Many 

researchers have studied the existence of perfect codes in different metrics [5, 7, 10, 11]. 

Hamming metric is one of the most used metric. The only known examples in the Hamming 

metric are the binary repetition codes for odd length, the Hamming codes and the Golay codes 

which are the code with parameters [23,12,7] over the binary field and the code with parameters 

[11,6,5] over the ternary field. Hamming codes are single error correcting codes, Golay codes 

over the binary field are three-error-correcting codes and Golay codes over the ternary field are 

two-error-correcting codes. In addition, it has been shown that there exist no perfect Hamming 

codes over prime alphabet other than the above known examples [7, 11]. 

In this paper, we consider perfect codes in the Lee-Rosenbloom-Tsfasman-Jain (LRTJ) metric 

over ℤp. LRTJ metric [5] is obtained by a combination of Lee metric [6] and RT metric [13]. 
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Firstly, we st ate some basic terminology and cover some preliminary definitions and facts. 

For every prime p, the ring of integers modulo p is a finite field of order p and is denoted by 

ℤp. Let ℤp
n denote the set of all vectors of length n with entries in ℤp. Then ℤp

n is a vector space 

over ℤp. A code C is said to be an (n, M) −linear code if and only if C is a subspace of ℤp
n of size 

M. A linear code C of length n and dimension k over ℤp is called a p −ary [n, k] −code. 

Lee weight for a single-letter a is defined as  
 

|a| = {

a if    0 ≤ a ≤
p

2

p − a if    
p

2
< a ≤ p − 1                                                                                                 (1) 

 

and RT weight of y is defined as  
 

max
j=1,…,n

{j: yj ≠ 0}.                                                                                                                             (2) 
 

The LRTJ weight Γ(Y) for Y = (y0, y1, … , yn−1) ∈ ℤp
n, is defined as  

 

Γ(Y) = {

max
j=0,1,…,n−1

|yj| + max
j=0,1,…,n−1

{j: yj ≠ 0} if      Y ≠ 0

                                 0 if      Y = 0                                                         (3) 

 

For any u, v ∈ ℤp
n, the LRTJ distance dLRTJ between two vectors u and v is given by  

 

d(u, v) = Γ(u − v).                                                                                                                         (4) 
 

Note that Lee distance coincides with Hamming distance but LRTJ distance does not coincide 

with Hamming distance over ℤ2 and ℤ3. 

Next, we give the definition of a w-perfect linear code. 
 

Definition 1.  A p −ary [n, k] −code is called a w-perfect linear code if for a given positive 

integer w, the code corrects all error vectors of weight up to w but no error vectors of weight 

greater than w.  
 

For a perfect linear code correcting errors of weight up to w, the number of error vectors of 

weight up to w having the vector of all zeros is equal to the number of available cosets. 

The organization of this paper is as follows. In Section 2, we obtain formulas for the number 

of error vectors of LRTJ weight. In Section 3, we obtain an upper bound on the number of parity 

check digits for linear codes correcting all error vectors of LRTJ weight 1. Also, we characterize 

all 1-perfect linear codes and their parity-check matrices. In Section 4, upper bounds on the 

number of parity check digits for linear codes correcting all error vectors of LRTJ weight up to 2 

is obtained over ℤ3 and ℤ11. Also, parity-check matrices are characterized for these cases. 

Moreover, we show that there does not exist a 2-perfect linear code over ℤp when p ≠ 3,7. In 

Sections 5 and 6, we prove nonexistence results for 3-perfect linear codes over ℤp and 4-perfect 

linear codes over ℤp. Finally, the paper concludes in Section 7. 

 

2. THE NUMBER OF ERROR VECTORS OF LRTJ WEIGHT 

 

In this section, we enumerate the number of all error vectors of a given LRTJ weight w. Then, 

we generalize this to the number of all error vectors of LRTJ weight up to w. 

For a p-ary [n, k]-code, the number of all error vectors of LRTJ weight w will be denoted by 

sw. Clearly, s0 = 1 and s1 = 2. For w ≥ 2, the value of sw is given in the following lemma. 
 

Lemma 1.  For a p-ary [n, k]-code, the number of all error vectors of LRTJ weight w, w ≥ 2, is 
 

sw = 2 + ∑w−1
i=1 [(2i + 1)w−i(2i) − (2i − 1)w−i(2i − 2)]                                                           (5)  
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Proof. Assume that p ≥ 5 is prime, LRTJ we ight is w ≥ 2 and u = (u1, … , un) is a vector. Then 

we will consider the equation  
 

max |ui| +  wtRT(u) = w.                                                                                                              (6) 
 

If RT weight is 0, then max |ui| +  wtRT(u) = w + 0 = w. In this case, the number of all 

error vectors of LRTJ weight w are 2. These vectors are as follows:  
 

    w, 0,0, … ,0,
−w, 0,0, … ,0.

  
 

If RT weight is r, then we have max |ui| +  wtRT(u) = (w − r) + r = w. Assume that 

maximum Lee weight of a vector is w − r = i. For the first r digits, we have 2i + 1 different 

choices for each digit. For the (r + 1)th digit, zero is not a possible choice so we have 2i choices. 

Thus, we obtained (2i + 1)r2i vectors. But if the Lee weight of each of the first r + 1 digits are 

less than or equal i − 1, then this contradicts with having weight w. There are (2i − 1)r(2i − 2) 

such vectors. We subtract these and we obtain Equation (5). 

For a p-ary [n, k]-code, the number of all error vectors of LRTJ weight up to w will be 

denoted by Sw = ∑w
t=0 st. For w = 0,1, we have S0 = 1 and S1 = 3, respectively. For w ≥ 2, the 

value of Sw is given in the following lemma. 
 

Lemma 2.  The number of all error vectors of LRTJ weight up to w over ℤp, w ≥ 2 and p ≥ 5 

prime, is  
 

 Sw = 3 + ∑w
t=2 [2 + ∑t−1

i=1 [(2i + 1)t−i(2i) − (2i − 1)t−i(2i − 2)]]                                           (7)  
 

Proof. By definition, Sw = ∑w
t=0 st = s0 + s1 + ∑w

t=2 st. Then, the result follows directly from 

Lemma 2.  

In Table 1, we tabulate the values of sw and Sw for 1 ≤ w ≤ 15. In this table, S1 = 3 and 

S2 = 11 are prime. We will analyze these cases in details in later sections. 

 

Table 1. The number of error vectors for LRTJ weights over ℤp, p ≥ 5.  
 

w sw Sw primality of Sw 

1 2 3 yes 

2 8 11 yes 

3 34 45 no 

4 160 205 no 

5 834 1039 yes 

6 4776 5815 no 

7 29762 35577 no 

8 200192 235769 no 

9 1444354 1680123 no 

10 11120008 12800131 yes 

11 90948450 103748581 no 

12 787057440 890806021 no 

13 7181085506 8071891527 no 

14 68861316008 76933207535 no 

15 692064556162 768997763697 no 
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3. PERFECT LINEAR CODES CORRECTING ALL ERROR VECTORS OF LRTJ 

WEIGHT 1 

 

In this section, we will examine whether there exist 1-perfect linear codes; that is, perfect 

linear codes correcting all error vectors of LRTJ weight 1 but no error vectors of LRTJ weight 

greater than 1. For this purpose, we will first give an upper bound on the number of parity check 

digits for linear codes correcting all error vectors of LRTJ weight 1 over ℤp. Then, we will 

examine this bound to determine the possible 1-perfect linear code parameters. Lastly, we will 

illustrate this with an example. 
 

Theorem 1.  Let C be a p-ary [n, k]-linear code. If all errors of weight 1 of C can be corrected, 

then the parity check digits satisfy n − k ≥ logp3.  
 

Proof.  Firstly we will count all error vectors of LRTJ weight 1. These error vectors are 1,0,0, … ,0 

and (p − 1),0,0, … ,0. If we also include the zero vector, then we obtain three vectors; that is, 

S1 = 3, as given in Table 1. 

Error vectors must be in distinct cosets and the number of all cosets is pn−k. Therefore, we 

have pn−k ≥ 3. 

Hence the proof is completed.  

Note that the number of all error vectors with LRTJ weight 1 does not depend on the value of 

n. 
 

Lemma 3. Let C be a p-ary [n, k]-linear code. If C is a 1-perfect linear code, then pn−k = 3. 
 

pn−k = 3 holds only when n − k = 1 and p = 3.  

Next, we will find the possible perfect code parameters [n, k] satisfying this equality. The set 

of [n, k] values is as follows:  
 

Mpn−k = {  [n, k]:  k = n − 1, n ≥ 2, n ∈ ℤ}.                                                                               (9) 
 

Theorem 2.  Let C be a 1 −perfect linear code. The parity check matrix is in [x1 , x2, … , xn] form 

where x1 ≠ 0 and xi ∈ ℤ3, i = 2, … , n.  

Proof. The error vectors of LRTJ weight 1 and the zero vectors are as follows: 
 

0,0,0, … ,0,
1,0,0, … ,0,
2,0,0, … ,0.

    

 

Let H = [x1 , x2, … , xn]1×n be the parity check matrix of C. The syndromes of error vectors 

can be calculated as follows:  
 

Error  vector Syndrome
0,0, … ,0 0
1,0, … ,0 x1

2,0, … ,0 2x1

  

 

All syndromes are disjoint in ℤ3.  
 

Corollary 1. The [n, k] elements of M3n−k satisfy parity check matrices for n ≥ 2 and k ≥ 1.  

Example 1. Consider a 3-ary [2,1]-code C with parity check matrix H = [1  2]. 
 

The error patterns and their syndromes are tabulated in Table 2. 
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Table 2. Error vectors of LRTJ weight up to 1 and their syndromes 
 

  Error vector Syndrome 

0,0 0 

1,0 1 

2,0 2 

 

The associated syndromes of error vectors with LRTJ weight of up to 1 are independent. 

Therefore, C is a 1-perfect linear code.  

 

4. PERFECT LINEAR CODES CORRECTING ALL ERROR VECTORS OF LRTJ 

WEIGHT 2 

  

In this section, we will first obtain an upper bound on the number of parity check digits for 

linear codes correcting all error vectors of LRTJ weight up to 2 over ℤ3 and ℤp. Then, we will 

study the existence of 2-perfect linear codes over ℤ3 and ℤp. 
 

Theorem 3. Let C be a 3-ary [n, k]-linear code. If all errors of weight up to 2 of C code can be 

corrected, then the parity check digits satisfy n − k ≥ logp9. 
 

Proof. Firstly, we will determine all error vectors of LRTJ weight 2 over ℤ3. Each error vector 

has maximum two nonzero positions and the possible values are 0, 1 and p − 1 = 2 for the first 

part, and 1 and 2 for the second part. So, all error vectors of LRTJ weight 2 over ℤ3 are listed as:  
 

0,1,0, … ,0,
1,1,0, … ,0,
2,1,0, … ,0,
0,2,0, … ,0,
1,2,0, … ,0,
2,2,0, … ,0.

  

 

From Table 1, the number of vectors with LRTJ weight up to 1 is 3. Consequently, the 

number of parity check digits is at least 9. Thus,  
 

pn−k ≥ 9.                                                                                                                                    (10)  
 

Next, we will analyze the case for 2-perfect linear codes.  
 

Lemma 4  Let C be a 3-ary [n, k]-linear code. If C is a 2-perfect linear code, then  
 

pn−k = 32.                                                                                                                                    (11)  
 

Equation (11) holds only when n − k = 2 and p = 3. The set of possible [n, k] values is as 

follows  
 

M32 = {  [n, k]:  k = n − 2, n ≥ 3, n ∈ ℤ}.                                                                                  (12) 
 

In the following example, we will illustrate Lemma 4.  
 

Example 2. Consider a 3-ary [3,1]-code C = {000,101,202} with parity check matrix  
 

H = [
1  1  2
1  0  2

].  
 

Linear code C corrects all error vectors of LRTJ weigh up to 2. We tabulate error patterns and 

their syndromes in Table 3.  

Indeed, the error vectors of LRTJ weight up to 2 and their corresponding syndromes are 

distinct. Therefore, C is a 2-perfect linear code.  
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Table 3. Error vectors of LRTJ weight up to 2 and their syndromes 
 

  Error vector Syndrome 

0,0,0 00 

1,0,0 11 

2,0,0 22 

0,1,0 10 

1,1,0 21 

2,1,0 02 

0,2,0 20 

1,2,0 01 

2,2,0 12 

 

Theorem 4.  Let C be a p-ary [n, k]-linear code. If all errors of weight up to 2 of C can be 

corrected, then parity check digits satisfy n − k ≥ logp11.  
 

Proof. Firstly, we will generate all error vectors of LRTJ weight 2 over ℤp. Each error vector has 

maximum two nonzero positions and the possible values are 2, 1, 0, (p − 1) and p − 2 for the 

first part, and 1 and p − 1 for the second part. So, all error vectors of LRTJ weight 2 over ℤp are 

listed as:  
 

2 0 0 … 0,
(p − 2) 0 0 … 0,
1 1 0 … 0,
0 1 0 … 0,
(p − 1) 1 0 … 0,
1 (p − 1) 0 … 0,

0 (p − 1) 0 … 0,
(p − 1) (p − 1) 0 … 0.

 

 

The value S1 is 3. Therefore, we have 11 error vectors of LRTJ weight up to 2 over ℤp. See 

also Table 3. Each error vector must be in different cosets. So, we have the following inequality:  
 

pn−k ≥ 11. 
 

Next, we will analyze the case for 2-perfect linear codes over ℤp.  
 

Lemma 5.  Let C be a p-ary [n, k]-linear code. If C is a 2-perfect linear code, then  
 

pn−k = 11.                                                                                                                                    (13) 
 

Equation 8 holds only when n − k = 1 and p = 11. The set of possible [n, k] values is as 

follows:  
 

M111 = {  [n, k]:  k = n − 1, n ≥ 2, n ∈ ℤ}.                                                                                (14) 
 

The length of error vectors must at least 2. Otherwise, it is not possible to calculate the 

number of all error vectors of LRTJ weight 2. 
 

Theorem 5.  Let 0 ≠ a ∈ ℤ11 and n ≥ 2. The parity check matrix for a 2 −perfect linear code is a 

1 × n matrix and has two possible forms: 
 

i.   [a 4a 0 … 0],  
ii.  [a p − 4a 0 … 0]. 

   

Proof. The parity check matrices in Forms i. and ii. cover all possibilities when we consider the 

error vectors with LRTJ weight up to 2.  
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Example 3. Consider a 11-ary [3,2]-code C with parity check matrix  
 

H = [6  2  5].  
 

The syndrome values of corresponding error vectors with LRTJ weight of up to 2 are 

tabulated in Table 4. These values cover all possibilities in ℤ11. So C is a 2-perfect code over ℤ11. 

 

Table 4. Error vector and their corresponding syndromes 
 

  Error vector Syndrome 

0,0,0 0 

1,0,0 6 

10,0,0 5 

2,0,0 1 

9,0,0 10 

1,1,0 8 

0,1,0 2 

10,1,0 7 

1,10,0 4 

0,10,0 9 

10,10,0 3 

 

Theorem 6. There does not exist a 2-perfect linear code over ℤp expect ℤ3 and ℤ11.  
 

Proof. The proof follows from Lemma 4 and Lemma 5.  

 

5. PERFECT LINEAR CODES CORRECTING ALL ERROR VECTORS OF LRTJ 

WEIGHT 3 

  

In this section, we will first obtain an upper bound on the number of parity check digits for 

linear codes correcting all error vectors of LRTJ weight up to 3 over ℤp. Then we will show that 

there does not exist a 3-perfect linear code over ℤp. 
   

Theorem 7.  Let C be a p-ary [n, k]-linear code. If all errors of weight up to 3 of C can be 

corrected, then parity check digits satisfy n − k ≥ logp45.  
   

Proof. The value of S3 is 45 as given in Table 1. These vectors are tabulated in Table 5. Each of 

these vectors must belong to a distinct coset and we have pn−k cosets in total. Therefore, we have 

an upper for the number of parity check digits for LRTJ weight up to 3 as pn−k ≥ 45.  
 

Theorem 8.  There does not exist a 3 −perfect linear code over ℤp. 
 

Proof. Suppose that there exists a 3 −perfect linear code C over ℤp  If C is a 3 −perfect linear 

code, then equation pn−k = 45 is satisfied for a prime p. This is not possible as 45 is not a prime 

power. 
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Table 5. All error vectors of LRTJ weight up to 3 
 

(p − 2), (p − 2),0, … ,0 (p − 1),2,0, … ,0 

(p − 1), (p − 2),0 … ,0 0,2,0, … ,0 

0, (p − 2),0, … ,0 1,2,0, … ,0 

1, (p − 2),0, … ,0 2,2,0, … ,0 

2, (p − 2),0, … ,0 (p − 1), (p − 1), (p − 1),0, … ,0 

(p − 2), (p − 1)0 … 0 0, (p − 1), (p − 1),0, … ,0 

(p − 1), (p − 1)0 … 0 1, (p − 1), (p − 1),0, … ,0 

0, (p − 1)0 … 0 (p − 1),0, (p − 1),0, … ,0 

1, (p − 1)0 … 0 0,0, (p − 1),0, … ,0 

2, (p − 1)0 … 0 1,0, (p − 1),0, … ,0 

(p − 3),0,0, … ,0 (p − 1),1, (p − 1),0, … ,0 

(p − 2),0,0, … ,0 0,1, (p − 1),0, … ,0 

(p − 1),0,0, … ,0 1,1, (p − 1),0, … ,0 

0,0,0, … ,0 (p − 1), (p − 1),1,0, … ,0 

1,0,0, … ,0 0, (p − 1),1, … ,0 

2,0,0, … ,0 1, (p − 1),1,0, … ,0 

3,0,0, … ,0 (p − 1),0,1,0, … ,0 

(p − 2),1,0, … ,0 0,0,1,0 … ,0 

(p − 1),1,0, … ,0 1,0,1,0 … ,0 

0,1,0, … ,0 (p − 1),1,1,0, … ,0 

1,1,0, … ,0 0,1,1,0, … ,0 

2,1,0, … ,0 (p − 1),1,1,0, … ,0 

(p − 2),2,0, … ,0  

 

6. PERFECT LINEAR CODES CORRECTING ALL ERROR VECTORS OF LRTJ 

WEIGHT 4 

 

In this section, we will first obtain an upper bound on the number of parity check digits for 

linear codes correcting all error vectors of LRTJ weight up to 4 over ℤp. Then, we will show that 

there does not exist a 4-perfect linear code over ℤp. 
   

Theorem 9. Let C be a p-ary [n, k]-linear code. If all errors of weight up to 4 of C can be 

corrected, then parity check digits satisfy n − k ≥ logp205. 
 

Proof. The value of S4 is 205 as given in Table 1. The proof is similar to the proof of Theorem 

5.1. 
 

Theorem 10. There does not exist a 4-perfect linear code over ℤp. 
 

Proof. As 205 is not a prime power, it is not possible to have for a prime p. 

 

7. CONCLUSION 

 

In this work, we have studied the existence of perfect linear codes over ℤp with respect to the 

LRTJ metric. We characterized all 1-perfect linear codes over ℤp and all 2-perfect linear codes 

over ℤ3 and over ℤ11. Moreover, we showed that there does not exist a 2-perfect linear code over 

ℤp when p ≠ 3,7. Then, we showed that there does not exist a 3-perfect linear code over ℤp and a 

M. Bulut Yılgör, F. Demirkale     / Sigma J Eng & Nat Sci 37 (4), 1325-1333, 2019 



1333 

 

 

4-perfect linear code over ℤp. These results can be generalized for larger w values when Sw is not 

a prime power. The smallest unresolved case is when w = 5. 
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