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ABSTRACT 

 
To adapt changing market conditions, firms must make quick decisions and response them as fast as possible. 

Simulation is a powerful tool to analyze the effects of changes in an industrial or service system on a virtual 

environment and usage of simulation models have become widespread with the developments in computers. 
Simulation isn’t adequate to optimize the system parameters and additional methods are needed to integrate 

with simulation for optimization. In this study, a multi-objective optimization of a production system is 

considered. In this system, management aims to decide the optimal combination of workers in considered 

workstations. To cope with the problem a Data Envelopment Analysis (DEA) based metamodel is obtained 

and this metamodel is used as the objective function of the mathematical model with relevant constraints. In 

metamodeling stage two level factorial design is used. 
Keywords: Simulation optimization, multi-objective simulation optimization, data envelopment analysis, 

metamodeling. 

 
 

1. INTRODUCTION 

 

Analytically modelling real world problems is very complex and needs many assumptions. It 

is usually difficult to obtain an accurate and reliable analytical model that reflects the behavior of 

the system. Simulation models are more capable of reflecting the behavior of the system and 

evaluating performance of the alternatives. Simulation has been applied to various sectors, such as 

manufacturing, services, defence, healthcare, and public services widely owing to invention and 

evolution of the computer, which has supported the uptake of practical simulation tools and 

techniques [1]. 

Simulation is not sufficient to optimize the system parameters, so an approach of integrating 

both simulation and optimization is needed. Simulation optimization (SO) requires the evaluation 

of a simulation model in the form of responses to a “What if” question and this question demand 

answers on certain performance measures for a given set of values for the decision variables of 

the system [2]. Simulation optimization aims to find the best values for simulation model input 

parameters in the search of one or more desired outputs [3]. There are many approaches to carry 

out the integration of simulation model and optimization techniques such as response surface 

methods, gradient search methods, stochastic approximation methods and heuristic search 
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methods [4]. Simulation optimization is generally a slow process that takes a large amount of time 

and the accomplishment of innumerous experiments [5]. 

A general form of the simulation optimization problem minimizes the expected value of the 

objective function with respect to its constraint set as in Equation 1. 
 

𝑚𝑖𝑛
𝜃∈Θ

𝐽(𝜃),                                                                                         (1) 
 

where 𝐽(𝜃) = 𝐸[𝐿(𝜃, 𝜀)] is the performance measure of the problem, 𝐿(𝜃, 𝜀) is the sample 

performance, 𝜀 represents the stochastic effects in the system, 𝜃 is a vector of controllable factors 

and Θ is the set containing all the feasible 𝜃 [6].  

Many real-world problems have multiple conflicting objectives and these need to be 

optimized simultaneously. When the simulation optimization is considered, obtaining the 

compromise solution set becomes very complex and time-consuming due to the stochastic nature 

of the simulation.  

In this paper, I propose a framework for multi-objective simulation optimization that 

combines meta modelling with data envelopment analysis (DEA) to determine the optimum levels 

of the factors for a manufacturing line. In literature there are some studies combining simulation 

optimization and DEA. Azadeh et. al [7], solved workshop facility layout design problem with 

ambiguous environmental and health indicators using an integrated algorithm based on fuzzy 

simulation, fuzzy linear programming and fuzzy  DEA. Authors use fuzzy simulation to model 

different layout alternatives and fuzzy DEA (FDEA) to rank the alternatives to find the optimal 

layout design alternatives. Miranda et. al [8], proposed a method to identify the best ranges for 

each integer decision variable, in which providing a reduction in computational cost without loss 

of the quality in the response combining discrete event simulation, and DEA. Orthogonal arrays 

are used to obtain the input scenarios and super-efficiency analysis is applied in DEA stage. 

Shadkam and Bijari [9], solved supplier selection and order quantity allocation to each supplier 

problem using Cuckoo optimization algorithm, discrete event simulation, supply chain model and 

generalized DEA. Zarrin and Azadeh [10], simulated a manufacturing organization with 

maintenance strategy to evaluate the impacts of resilience engineering principles on lean 

practices. The researchers calculated considered outputs by simulation and analyzed the optimal 

values of scenarios' efficiencies using DEA. The results of the DEA were validated by using 

principal component analysis. Azadeh et. al [11], used simulation optimization to assess the 

appropriate scenarios approved by experts in an emergency department in Iran. Scenarios were 

examined and evaluated by stochastic DEA. Azadeh and Moradi [12] used fuzzy simulation to 

model different layout alternatives with safety and ergonomics factors using FDEA and fuzzy 

analytic hierarchy process (FAHP) In the study, feasible layout alternatives are generated using 

fuzzy simulation, FAHP for weighting non-crisp ergonomics and safety factors and finally, FDEA 

to obtain the optimum layout alternatives. Miranda et. al [5], aimed to define optimum variation 

intervals for each decision variable combining DEA with fuzzy logic. In the study, Taguchi's 

orthogonal arrays were utilized to generate the decision making units, and the output variables 

were obtained by the simulation model. Lin et. al [13], proposed a framework combining genetic 

algorithm (GA) and DEA for multi-objective simulation optimization. In this framework, a design 

point's relative efficiency score was obtained by DEA and this score was used as its fitness value 

in the selection operation of GA. Villarreal-Marroquin et. al [14], compared two metamodel based 

methodologies for multi-criteria simulation optimization for a molding process. The first 

methodology with linear regression metamodels and DEA, while the second one with a Gaussian 

process metamodel and calculates an expected improvement to determine the new input runs 

sequentially. 

On the other hand, it is possible to encounter some studies combining simulation optimization 

and metamodeling. Mirfenderesgi and Mousavi [15], developed a hybrid optimization-simulation 

model by linking a stretching particle swarm optimization algorithm and used four metamodel 

types of artificial neural networks, support vector machines, Kriging and polynomial response 
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functions to optimize water allocation at basin scale. Dengiz et. al [16], used simulation modeling 

and the regression metamodeling approach – as an objective function – to design and optimize an 

automotive production system. Pedrielli and Ng [17], proposed a Kriging-Based Trust Region 

Method for global optimization called G-STAR. Ryu et al [18] proposed a method for 

approximating the Pareto front of a multi-objective simulation optimization problem using a 

metamodeling scheme for objective function employing a weighted sum method to convert the 

MOP into a set of single objective optimization problems. Yang and Tseng [19] used a simulation 

metamodel for the ink-marking operation using a fractional factorial experimental design and 

regression analysis. Obtained metamodel solved by a hybrid response surface method and 

lexicographical goal programming approach. Zakerifar et al. [20] used Kriging metamodeling for 

multi-objective simulation optimization for an inventory system. Dengiz et al [21], built a 

multiple regression metamodel as a simulation optimization-based decision support system. Yang 

et. al [22], solved a multi response simulation problem by using a dual-response system and 

scatter-search method. Yang and Chou [23] proposed a hybrid Taguchi method and TOPSIS to 

solve the multi response simulation optimization in an integrated-circuit packaging company. 

Similarly, Kuo et al. [24] integrates Taguchi method and grey relational analysis and Belgin [25] 

integrates Taguchi method and grey relational analysis with fuzzy AHP weighting for multi 

response simulation optimization. Nezhad and Mahlooji [26], presented artificial neural network 

metamodels for expensive continuous simulation optimization with stochastic constraints. 

Sreekanth and Datta [27], developed a methodology based on simulation-optimization for the 

management of production and barrier wells in a coastal aquifer. In the study, a neural network 

based metamodel and a multi-objective genetic algorithm are used. Shirazi et. al [27], described 

an intelligent co-simulator for real time production control of a complex flexible manufacturing 

system using dynamic metamodeling for simulation optimization. 

Any study was not encountered in the literature that use DEA and metamodeling for multi-

objective simulation optimization. The main contribution of this study is on the integration of 

DEA and metamodeling approaches for the multi-objective simulation optimization. DEA is 

employed to unify the more than one objective values into a single value.  The results of DEA are 

used as the response values of the experimental design to obtain the metamodel. After that, 

metamodel is used as the objective function of a nonlinear mathematical model including relevant 

constraints and optimum values for the considered variables are obtained solving the 

mathematical model.  

 

2. PROPOSED METHODOLOGY 

 

In this study, metamodeling and DEA are used together for the multi-objective optimization 

of the considered production system. Since in metamodeling corresponding model is obtained 

using only one response value for each experiment, two objectives are combined into a single 

value using DEA. The efficiency values obtained by DEA are used as response value. In this 

section firstly, metamodeling approach then details of DEA and finally the structure of the 

proposed methodology will be mentioned. 

 

2.1. Metamodeling Approach 

 

In simulation optimization, it is required to run simulation models several times and this 

requires excessive computation. To reduce the time required, usage of metamodeling approach 

can be appropriate. Metamodels can be described as the models of the model briefly. These 

metamodels are usually deterministic approximating functions for the function that are 

inexpensive to compute [28]. 

The main steps in metamodeling can be listed as follows [28]: 
 

- the choice of a functional form for the function  
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- the design of experiments 

- fitting the function to the simulation response using the experimental data  

- the assessment of the adequacy of the fitted metamodel  
 

In this study two-level (2k) factorial design is used to obtain the metamodel. In other words, k 

factors are considered, each at two coded levels as low (-1) and high (+1). This design allows us 

to obtain a regression model including main effects of the factors and interactions among the 

factors. The general form of the regression model including three factors are given in Equation 2.  
 

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑗𝑗

𝑖<𝑗

+ 𝛽123𝑥123 + 𝜀𝑖                                              (2) 

 

where 𝑌 is response, 𝛽0 is regression intercept, 𝛽𝑖  is first order effect of factor 𝑖, 𝛽𝑖𝑗  two 

factor interaction between factor i and j (𝑖 ≠ 𝑗), 𝛽123 is three-factor interaction between all factors 

and 𝜀 is the fitting error of the regression model.  

 

2.2. Data Envelopment Analysis 

 

DEA is a nonparametric technique based on linear programming and can be used to rank and 

compare the relative performance of decision making units (DMUs). DEA provides a unified 

performance efficiency measurement (efficiency score) for each DMU using a set of input and 

output variables [29]. First paper on DEA was published in 1978 by Charnes, Cooper, and Rhodes 

[30] and this model is named as CCR model in DEA terminology and it presents a constant return 

of scale.  

The linear form of CCR model is given below. 
 

max 𝐸𝑘 = ∑ 𝑢𝑟𝑘𝑦𝑟𝑘
𝑠
𝑟=1      𝑘 = 1,2,3, … , 𝑛                                                       (3) 

 

Subject to 
 

∑ 𝑢𝑟𝑘𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑘𝑥𝑖𝑗 ≤ 0𝑚
𝑖=1

𝑠
𝑟=1   𝑗 = 1,2,3, … , 𝑛                                                       (4) 

 

∑ 𝑣𝑖𝑘𝑥𝑖𝑘 = 1𝑚
𝑖=1                                                                           (5) 

 

𝑢𝑟𝑘 ≥ 0     𝑟 = 1,2,3, … , 𝑠                                                                         (6) 
  

𝑣𝑖𝑘 ≥ 0     𝑖 = 1,2,3, … , 𝑚                                                                                (7) 
 

where 𝐸𝑘 is the relative efficiency value of each DMUs. 𝑚 and 𝑠 are the number of inputs and 

number of outputs respectively. 𝑛 denotes for the number of DMUs, 𝑥𝑖𝑗  is amount of ith input 

used by the jth DMU, 𝑦𝑟𝑘 is amount of rth output produced by the jth DMU. The weights of inputs 

and outputs are 𝑢𝑟𝑘 and 𝑣𝑖𝑘 succesively. 

Results of a DEA can give more than one efficient DMUs and the decision makers may want 

to know which DMU is more efficient. For this purpose, super-efficiency DEA model can be 

employed which eliminates the upper bound on the technical efficiency score and gives additional 

information regarding the relative performance of the efficient unit [31]. In super-efficiency DEA 

model an efficient DMU may increase its input vector proportionally while preserving efficiency 

with a score above one [32]. The mathematical model of super-efficiency DEA model is given 

below. 
 

𝑚𝑎𝑥 𝐸𝑗 = ∑ 𝑢𝑟𝑦𝑟0
𝑠
𝑟=1     

∑ 𝑢𝑟𝑘𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑘𝑥𝑖𝑗 ≤ 0𝑚
𝑖=1
𝑗≠𝑘

𝑠
𝑟=1
𝑗≠𝑘

  𝑗 = 1,2,3, … , 𝑛 

∑ 𝑣𝑖𝑘𝑥𝑖𝑘 = 1𝑚
𝑖=1                                                                           (8) 

𝑢𝑟𝑘 ≥ 0     𝑟 = 1,2,3, … , 𝑠  

𝑣𝑖𝑘 ≥ 0     𝑖 = 1,2,3, … , 𝑚 
 

The model above gives continuous technical efficiency without upper bound. Main difference 

in super-efficiency DEA model is exclusion of unit 𝑘 from the constraint set [31]. 
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 Any DEA model has two orientations as input-oriented and output-oriented. Input-oriented 

models are used to test if a DMU under evaluation can reduce its inputs while keeping the outputs 

at their current levels, output-oriented models are used to test if a DMU under evaluation can 

increase its outputs while keeping the inputs at their current levels [33].  

 

2.3. Structure of the Proposed Methodology 

 

The proposed methodology including metamodeling and DEA consists of five main stages as 

in Figure 1.  

The main steps of the methodology are as follows: 
 

1. The considered problem is defined and the factors to be optimized are determined. The 

lower and upper bounds of the factors are determined. 

2. Considering the factors 2k factorial design is constructed for Objective I and Objective II. 

For the response value of each design points, simulation model is run. As a result two sets of 

factorial designs are obtained. 

3. After the experiment stage the factorial designs are unified. The inputs values (factor 

levels) are same in each design but output values (response values) are different. Since every 

outputs have different measuring units these values are normalized. For unifying stage CCR 

super-efficiency DEA model is run and the efficiency values are obtained as response values for 

each design points.  

4. The regression metamodel is obtained using factor levels and efficiency values. After the 

statistical validation tests the most appropriate model is determined. 

5. Finally a non-linear mathematical model is constructed subject to certain constraints 

related to the production line. The objective function of the model is the metamodel which is 

obtained in previous step. 
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Figure 1. Structure of the proposed methodology 

 

3. CASE STUDY 

 

In this section the case study on determining optimum resource levels in a production line is 

mentioned. Firstly, the details of the considered production line is given. The working flow of the 

production line and the current performance of the system are mentioned. After the system 

description the design of experiment stage is given and then CCR super-efficiency DEA model 

results is given in the unifying stage of the response values. After that, the metamodel is 

constructed and the relevant statistical validations are done. Finally, the mathematical model is 

constructed using metamodel as objective function and relevant constraints are added to the 

model. At the end, the optimum levels of the resources are obtained.  

 

3.1. Simulation Model of the Production System 

 

The corresponding production system was handled firstly in Belgin (2015). The working flow 

of the production line is given in Fig. 2 and it has been modeled using Arena® 9.0 simulation 

software of Rockwell Automation. Water, electric and natural gas meters are produced in this 

system. These products are manufactured in three separate lines. The characteristics of the 

production process are based on assembly of the relevant parts. In every line there are control 

points and if the operator in the production line encounters any problem the meter is sent to 

repairing station. If the problem is solved, then the meter continues in the production line from the 

point last sent. In the repairing station the meter may be accepted as scrap with a certain 

percentage. The meters with no problem are packaged in the packaging station which serves to all 
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production lines. In water meter line there are 12, in electric meter line there are 11 and in natural 

gas meter line there are 12 processes. One worker is responsible for each process. Water meter 

and natural gas lines have 6 control points and electric meter line has 5 control points along the 

assembly line and there are 2 workers in packaging station. 

At the current situation, there are 36 workers in all production system totally. The 

management’s priorities are on increasing workforce productivity and decreasing amount of 

work-in-process. The management aims to obtain optimal number of workers in repairing stations 

of each line and packaging station. For this reason, firm management encounters a multi-objective 

optimization problem consisting of two contradicting objectives – increasing workforce 

productivity and reducing work in process. To solve this problem DEA method and 

metamodeling are used together. In the current situation workforce productivity level is 1,792 and 

work in process level is 8,183. 

 

 
Figure 2. Working flow of production line 

 

3.2. Design of Experiment 

 

To optimize the considered production line with compromise objectives a mathematical 

description of the system is needed. For this purpose, 2k factorial design is utilized. Factorial 

designs are widely used in experiments involving several factors where it is necessary to study the 

joint effect of the factors on a response [33]. The 2k means the designs with k factors in which 

each factor has two levels, i.e. “low” or “high”.  

In this study 24 factorial design is used to develop metamodels. The relevant four factors and 

their levels are given in Table 1. These factors are number of workers in repairing station 1, 

number of workers in repairing station 2, number of workers in repairing station 3 and number of 

workers in packaging station. 
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Table 1. Relevant factors and their levels 
 

Factors Lower Bound Upper Bound 

No. of workers in repairing station 1 (A) 1 3 

No. of workers in repairing station 2 (B) 1 3 

No. of workers in repairing station 3 (C) 1 3 

No. of workers in packaging station  (D) 2 4 

 

In the simulation optimization manner simulation model is run with the all levels of the 

factors and the best solution is decided as the optimal solution. This means 3x3x3x3=81 

experiments and when all experiments are run 10 times and the factorial design is replicated 5 

times 81x10x5=4050 simulation runs are required. By means of factorial design we need 5x24=80 

experiments and this means 800 simulation runs totally.  

Since two objectives are considered in the problem, the response values for each objective are 

given separately. These objectives are workforce productivity (PR) and number of work-in-

process in the production line (WIP). PR is number of packed goods for each worked hour and 

WIP is average number of uncompleted goods in the production line. In Table 2 and Table 3 the 

results of the 24 factorial design for PR and WIP are given including 5 replications. 

 

Table 2. Results of 24 factorial design for PR 
 

No. of 

Experiment 

Factors PR 

A B C D Rep.1 Rep.2 Rep.3 Rep.4 Rep.5 Average 

1 1 3 3 4 1,961 1,960 1,959 1,957 1,956 1,959 

2 3 1 1 4 1,978 1,940 2,034 2,044 2,055 2,010 

3 3 3 1 2 1,976 1,954 1,879 1,869 1,718 1,879 

4 3 1 1 2 2,018 1,979 1,950 1,926 1,894 1,953 

5 3 1 3 4 1,828 1,860 1,859 1,858 1,851 1,851 

6 3 3 3 4 1,854 1,858 1,853 1,860 1,864 1,858 

7 1 3 1 2 2,072 2,092 2,106 2,096 2,010 2,075 

8 3 3 1 4 1,881 1,885 1,872 1,859 1,873 1,874 

9 3 3 3 2 1,909 1,911 1,897 1,890 1,859 1,893 

10 1 1 3 4 2,046 2,052 2,070 2,099 2,087 2,071 

11 1 1 3 2 2,177 2,247 2,243 2,254 2,234 2,231 

12 3 1 3 2 1,898 1,869 1,869 1,896 1,886 1,884 

13 1 3 1 4 1,956 1,917 1,893 1,853 1,808 1,885 

14 1 1 1 4 2,204 2,164 2,232 2,255 2,304 2,232 

15 1 1 1 2 2,002 1,931 1,909 2,025 1,909 1,955 

16 1 3 3 2 2,304 2,284 2,296 2,291 2,269 2,289 

 

According to Table 2 Experiment 5 has minimum average PR value with 1,851 and 

Experiment 16 has maximum average PR value with 2,289. As for Table 3, Experiment 16 has 

minimum average WIP value with 7,147 and Experiment 12 has maximum average WIP value 

with 9,449. 
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Table 3. Results of 24 factorial design for WIP 
 

No. of 

Experiment 

Factors WIP 

A B C D Rep.1 Rep.2 Rep.3 Rep.4 Rep.5 Average 

1 1 3 3 4 7,242 7,231 7,277 7,291 7,297 7,268 

2 3 1 1 4 8,960 8,971 8,954 8,943 8,937 8,953 

3 3 3 1 2 8,339 8,356 8,369 8,369 8,419 8,370 

4 3 1 1 2 9,166 9,175 9,175 9,172 9,160 9,170 

5 3 1 3 4 9,306 9,295 9,313 9,299 9,306 9,304 

6 3 3 3 4 8,306 8,327 8,349 8,362 8,376 8,344 

7 1 3 1 2 8,530 8,506 8,473 8,443 8,419 8,474 

8 3 3 1 4 8,473 8,468 8,484 8,492 8,492 8,482 

9 3 3 3 2 8,329 8,332 8,326 8,326 8,349 8,332 

10 1 1 3 4 8,100 8,100 8,110 8,110 8,121 8,108 

11 1 1 3 2 7,860 7,860 7,872 7,882 7,882 7,871 

12 3 1 3 2 9,453 9,456 9,459 9,444 9,435 9,449 

13 1 3 1 4 8,790 8,780 8,787 8,818 8,849 8,805 

14 1 1 1 4 7,963 7,963 7,948 7,950 7,953 7,955 

15 1 1 1 2 7,795 7,792 7,783 7,752 7,715 7,767 

16 1 3 3 2 7,161 7,184 7,138 7,129 7,122 7,147 

 

3.3. Unifying Two Objectives Using DEA 

 

As in mentioned before DEA is used to unify two different responses for the metamodel. In 

this study only the efficiency values are dealt with and for this reason CCR super-efficiency DEA 

model is used. The CCR model is input-oriented because we have control on input values. Super-

efficiency allows efficient DMUs to have efficiency value over one and enables to rank the most 

efficient DMUs.  

Table 4. Super-efficiency values of design points 
 

No. of 

Experiment 

Factors Super-efficiency values 

A B C D Rep.1 Rep.2 Rep.3 Rep.4 Rep.5 Average 

1 1 3 3 4 0,301 0,246 0,262 0,254 0,406 0,294 

2 3 1 1 4 0,897 0,898 1,059 1,090 1,098 1,008 

3 3 3 1 2 0,689 0,643 0,604 0,607 0,636 0,636 

4 3 1 1 2 1,711 1,688 1,677 1,689 1,689 1,691 

5 3 1 3 4 0,936 0,929 0,937 0,937 0,944 0,937 

6 3 3 3 4 0,398 0,404 0,418 0,424 0,441 0,417 

7 1 3 1 2 1,521 1,585 1,575 1,533 1,399 1,523 

8 3 3 1 4 0,654 0,645 0,661 0,667 0,695 0,664 

9 3 3 3 2 0,554 0,558 0,565 0,543 0,606 0,565 

10 1 1 3 4 1,050 1,065 1,081 1,088 1,091 1,075 

11 1 1 3 2 1,452 1,895 1,689 1,695 1,560 1,658 

12 3 1 3 2 1,143 1,141 1,139 1,133 1,135 1,138 

13 1 3 1 4 1,190 1,207 1,235 1,285 1,332 1,250 

14 1 1 1 4 2,161 1,965 2,300 2,337 2,559 2,264 

15 1 1 1 2 0,791 0,679 0,673 0,781 0,684 0,722 

16 1 3 3 2 1,364 1,095 1,136 1,092 1,068 1,151 
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To reduce the effects of various measuring units of responses on relative efficiency analysis in 

DEA, experimental data are normalized. For PR variable, it is better to be larger but for WIP 

value it is better to be smaller. Two types of data normalization are used; smaller-the-better and 

larger the better. Output values are transformed to 

'
ijy

 using Eq. 14 and 15. 

For smaller the better type, 
 

)(min)(max

)(max
'

jj

jij

ij
yy

yy
y

−

−
=

                                                          (14) 
 

For larger the better type, 
 

)(min)(max

)(min
'

jj

jij

ij
yy

yy
y

−

−
=

                                                          (15) 
 

The super-efficiency values of each design point obtained using normalized response values 

are given in Table 4. The values are obtained using EMS (Efficiency Measurement System) [36]. 

According to Table 4 Experiment 1 has minimum average super-efficiency value with 0,294 

and Experiment 14 has maximum average super-efficiency value with 2,264. 

 

3.4. Developing Metamodel 

 

In Table 5 estimated effects and coefficients for unified values of PR and WIP based on 

super-efficiency DEA values are given. In the first column of the table sources are given. Second 

column shows degrees of freedom values, third column shows adjusted sum of square values, 

adjusted mean square values, fifth column shows F-value and last column shows p value. The 

table is obtained using Minitab 17 software. 
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Table 5. ANOVA table for PR&WIP 
 

Source DF Adj SS Adj MS F-Value P-Value 

Model 15 20,926 1,395 184,51 0,000 

  Linear 4 9,996 2,499 330,51 0,000 

    A 1 2,592 2,592 342,83 0,000 

    B 1 4,984 4,984 659,20 0,000 

    C 1 1,989 1,989 263,06 0,000 

    D 1 0,431 0,431 56,97 0,000 

  2-Way Interactions 6 3,193 0,532 70,39 0,000 

    A*B 1 0,306 0,306 40,48 0,000 

    A*C 1 0,127 0,127 16,82 0,000 

    A*D 1 0,217 0,217 28,69 0,000 

    B*C 1 0,185 0,185 24,40 0,000 

    B*D 1 0,549 0,549 72,59 0,000 

    C*D 1 1,810 1,810 239,35 0,000 

  3-Way Interactions 4 6,225 1,556 205,85 0,000 

    A*B*C 1 0,596 0,596 78,85 0,000 

    A*B*D 1 2,545 2,545 336,66 0,000 

    A*C*D 1 2,840 2,840 375,57 0,000 

    B*C*D 1 0,244 0,244 32,30 0,000 

  4-Way Interactions 1 1,511 1,511 199,90 0,000 

    A*B*C*D 1 1,511 1,511 199,90 0,000 

Error 64 0,484 0,008   

Total 79 21,409     

 

According to the values in Table 5, the main factors A, B, C and D are significant at 0.05 

significance level. Furthermore, all two-way interactions (AB, AC, AD, BC, BD and CD) are 

significant at 0.05 significance level. Also three-way interactions (ABC, ABD and ACD) and 

four-way interaction (ABCD) are significant at 0.05 significance level. The adjusted R2 (variation 

in the dependent variable) is 97.21% and this is a highly enough level.  

In Figure 3 main effects plot for PR&WIP is given. According to the figure increase in level 

of factors cause decrease in mean values of PR&WIP. 

 

 
 

Figure 3. Main effects plot for PR&WIP 

 

After the statistical analysis, the relevant model for PR&WIP in uncoded units is as follows: 
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BCADACABDCBAWIPPR 211.1335.1523.1594.1285.3766.3615.3216.4589.8& −−−−++++−=

ABCDBCDACDABDABCCDBD 138.0330.0463.0453.0499.0188.1100.1 −++++−−  (16) 

 

3.5. Mathematical Model and Optimum Results 

 

To optimize factor levels mathematical programming is utilized. This model has a nonlinear 

objective function and other constraints are added subject to the objective function. The 

mathematical model is given below: 
 

BCADACABDCBAMax 211.1335.1523.1594.1285.3766.3615.3216.4589.8 −−−−++++−=

ABCDBCDACDABDABCCDBD 138.0330.0463.0453.0499.0188.1100.1 −++++−−  (17) 
 

Subject to 
 

31  A                                                                          (18) 
 

31  B                                                                          (19) 
 

31  C                                                                          (20) 
 

42  D                                                                          (21) 
 

8++ CBA                                                                         (22) 
 

02 =−CA                                                                                (23) 
 

,0,,, DCBA
 and integer                                                     (24) 

 

In this formulation objective function (17) maximizes the PR&WIP value. Constraints (18) to 

(21) are lower and upper bounds of number of workers in each station. Constraint (22) gives an 

upper bound for total workers in all work stations A, B, C and this value is 8. Constraint (23) 

ensures the number of workers in work station C is doubles the number of workers in work station 

A. This constraint is needed for the synchronization of the production rate. Finally, Constraint 

(24) is the integrality constraint. 

The mathematical model is solved using LINGO 17.0 and the optimal combination of the 

workers in the workstations is 1=A , 1=B , 2=C  and 4=D respectively. Objective 

function value is 1,658 for PR&WIP. In addition to this, the simulation model is run again with 

this factor levels and according to the results of these runs PR value for the new system is 1,862 

and WIP value is 7,921. As a result, in the new system an improvement of 3,9% in PR and 3,2% 

in WIP is obtained. The comparison of the current system and new system is given in Table 6. 

 

Table 6. Comparison of current system and proposed system 
 

Factors 

Current System Proposed System 

Factor 

Levels 
PR WIP 

Factor 

Levels 
PR WIP 

No. of workers in repairing station 1 (A) 1 

1,792 8,183 

1 

1,862 7,921 
No. of workers in repairing station 2 (B) 1 1 

No. of workers in repairing station 3 (C) 1 2 

No. of workers in packaging station  (D) 2 4 
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4. CONCLUSIONS 

 

In this study, DEA based metamodeling is used to solve a multi-objective simulation 

optimization problem encountered in a production line. Using proposed methodology in the study 

number of workers in repairing station 1 (A), number of workers in repairing station 2 (B), 

number of workers in repairing station 3 (C) and number of workers in packaging station (D) are 

aimed to be optimized subject to relevant constraints. For metamodeling stage 24 factorial design 

is used and metamodel is obtained for workforce productivity (PR) and work-in-process in 

production line (WIP) responses. To obtain responses for the factorial design simulation model is 

used. Since the considered problem has a multi-objective characteristic and metamodel needs only 

one response to run. PR and WIP objectives are unified into one value using input oriented CCR 

super-efficiency DEA model. 24 factorial design is run using super-efficiency DEA values and a 

model is obtained which has interactions up to four-ways. After validating statistically the model 

is used as an objective function subject to relevant constraints for the production system. 

According to the results of the mathematical formulation the optimum combination of the main 

variables are found to be 1=A , 1=B , 2=C  and 4=D . In the proposed system an 

improvement of 3,9% in PR and 3,2% in WIP is obtained. 

By means of this approach firm management can easily decide the optimum combination of 

workers and the firm management can quickly adapt the corresponding system to new market 

conditions more economically. For future directions, different DEA models (such as slack-based-

measure DEA or fuzzy DEA) can be used for unifying the objectives. Furthermore, multi-criteria 

decision making methods can be employed for unifying stage.   
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