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ABSTRACT 

 
The structural engineering researches have attracted considerable attention by many scientist for several 

decades. Determining the dynamical behaviors of structural elements with some discontinuous is of great 

importance in many engineering applications. The mentioned structures can be modelled two different ways. 
In the first approximation so-called the classical approach, a fourth order differential equation are written for 

each part of beam separated in the distinct discontinuity locations. Therefore, we obtain a system of equation 

containing 1n+  number of the differential equation with boundary and transient conditions.  Secondly, the 

real problem can be reformulated by only one differential equation having discontinuity function. In this 

study, we introduce the method of multiple scales as the solution technique. Since we encountered by the 
differential equation with discontinuity function in the part of order discretization during the perturbative 

solution, we have used a numerical technique for the solution. The mentioned technique is applied on the 
beam model lying on lineer spring foundation called as Winkler type foundation. 

Keywords: Discontinuous structural elements, finite differences method, method of multiple scales, linear 

spring foundation, Winkler type foundation. 
 

 

1. INTRODUCTION 

 

In this study, the beam lying on a elastic Winkler foundation is considered as Euler-Bernoulli 

beam with discontinuity function. Winkler type foundation is one of those having widely 

application among elastic foundations. Winkler type model consists of uncorrelated elastic 

springs added to each node of the structural element. These models has drawn a lot of attention 

many researchers in structural engineering. Winkler assumption reveals reasonable performance 

and it is easily practicable [1]. Wang et. al. [2] obtain the governing equation of the beam lying on 

Winkler foundation thanks to extended Hamilton principle. Hayir [3] presents dynamic behavior 

of an elastic beam on a Winkler foundation under a moving load. 

Generally, the continuous beam models are considered in the literature. However, the strucure 

elements can have the discontinuities arising from springs, concentrated masses and cracks. The 
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significance of this kind of structures is well recognized due to its engineering applications. 

Friswell and Penny [4] introduce the nonlinear model of cracked beam with discontinuous 

stiffness. Failla [5] investigates the behavior of viscoelastic discontinuous beams using the theory 

of generalized functions to treat the discontinuities of the response variables. Failla and Santini 

[6] consider a solution method based on appropriate Green’s functions for stepped Euler-

Bernoulli discontinuous beams with internal translational and rotational springs. Also, the implicit 

solutions based on Green’s functions are developped by them [7] for the bending problem of 

Euler-Bernoulli discontinuous beams. Li [8] proposes an exact approach for free vibration 

analysis of a non-uniform beam with n  cracks and concentrated masses.  

Recently, some authors focus on the various beams model resting elastic foundation. Dinev 

[9] introduce analitical solution of the beam on elastic foundation modeled by singularity 

function. Basu and Kameswara Rao [10] investigate the displacement, bending moment, shear 

force and contact pressure of the infinite beam resting on visco-elastic foundation. Attar et. al. 

[11] consider the free vibration analysis of deformable beam subject to two parameter elastic 

foundation. 

We analyze dynamic behaviors of beams under partly foundation. The foundation is modeled 

by using linear spring element which is called Winkler type foundation. The mathematical model 

of the problem may be presented in two different ways. At the first, we may write two differential 

equations; one of them is model for part of the beam without foundation and the other is for the 

part of the beam with foundation. The perturbative solution of the set of differential equations are 

obtained in conventional ways. The other mathematical model of real problem has the 

discontinuity function which is called Heaviside step function. In the perturbative solution 

technique, the differential equation at the first order has a discontinuity function. Then, the 

analytical solution of this equation is generally difficult. Therefore, we need a numerical method. 

In this study, we prefer the finite differences method as a numerical technique. After application 

of solvability condition in the perturbative solution, we calculate numerically mode shapes. For 

this purpose, Simpson method being one of the numerical integration techniques is used. The 

results obtained by both techniques are compared with each other. 

 

2. GOVERNING EQUATION 

 

We consider the transverse vibrations of the beam lying on the Winkler foundation. We 

supplement the external force and damping term additional to the mathematical model in [12]. 

Then, the governing equation becomes  
 

( ) ( )0
ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆη εμ cosΩivEI y k H x y y m y f x t+ − + + = ,                                         (1) 

 

( ) ( )ˆ ˆ0, 0, 0y t EI y t= =  and ( ) ( )ˆ ˆ, , 0y L t EI y L t= =                                               (2) 
 

where ˆˆ ˆ( , )y x t  represents the transverse displacement, E  is Young’s modulus of the beam 

material, I  is the moment of inertia. 0k̂  denotes Winkler spring constant. H  represents 

Heaviside step function,   is dimensionless small parameter, μ̂  is linear viscose damping 

coefficient, m  is unit mass. η̂  describes location of discontinuity. f̂  and ̂  are the external 

excitation force and frequency, respectively. x̂  and t̂  denote space and time variables, 

respectively. The dot describes differentiation with respect to time t̂ . The prime denotes 

differentiation with respect to space. 

Let us introduce the dimensionless parameters  
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ŷ
y

L
= , 

x̂
x

L
= ,

2

t̂ EI
t

L m
= ,                                                                                         (3.a)  

 

2

ˆμ μ
L

EIm
= , ( ) ( )

4

0 0
ˆ ˆˆη η

L
k H x k H x

EI
− = − , 

4

ˆ ˆ( )ε
L

f f x
EI

= , 
2ˆΩ Ω

m
L

EI
=   (3.b) 

 

where L  is length between two supports. Then, the governing equation becomes  
 

( )
4 2

04 2
εμ η ε ( )cosΩ

y y y
k H x y f x t

x t t

  
+ + − + =

  
,                                     (4) 

 

( ) ( )0, 0, 0y t y t= =  and ( ) ( )1, 1, 0y t y t= = .                                                 (4.a) 
 

The resulting equation and boundary conditions are obtained as nondimensional.  

 

3. THE METHOD OF MULTIPLE SCALES 

 

The method of multiple scales is used for the solution of the equation of motion. This method 

is applied directly to the dimensionless equation. The perturbative series expansion is assumed as 
 

( ) ( ) ( )0 1 0 0 1 1 0 1, , ; , , , , ...y x T T y x T T y x T T  + +                                        (5) 
 

where nT  is various time scales in the form of 
n

n t = . Thus, the derivatives based on 

the new time scales are given by 

0 1

d
D D

dt
= + + ,   

2
2

0 0 12
2

d
D D D

dt
= + +                                        (6) 

 

where /i iD T=   .  

 

4. THE FINITE DIFFERENCES METHOD 

 

After the perturbative technique has been directly applied to Eq. (4), the differential equation 

with a discontinuity function in first order is obtained. For the solution of the resulting equation, 

we need to a numerical technique. Therefore, we prefer the well-known finite differences method 

as a solution procedure. There are three different finite differences schemes: forward differences, 

backward differences and central differences. For small truncation error, the central difference is 

chosen. Then, first four derivatives are given as follows: 
 

1 1

2

i i
i

X X
X

x

+ −−
 


,                                                                      (7.a) 

 

1 1

2

2i i i
i

X X X
X

x

+ −− +



,                                                                                                   (7.b) 

 

2 1 1 2

3

2 2

2

i i i i
i

X X X X
X

x

+ + − −− + −
=


,                                                    (7.c) 
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2 1 1 2

4

4 6 4

Δ

iv i i i i i
i

X X X X X
X

x

+ + − −− + − +
=                                    (7.d) 

 

where Δ 1/x N= . N  is total number of short segments into system. In these discretized 

forms, the subscript indicates spatial node. 

 

5. SOLUTION PROCEDURE 

 

We directly apply the method of multiple scales to the governing equation. Substituting Eqs. 

(5) and (6) into Eq. (4) and seperating to order of   yield    
 

( ) ( ) 2

0 0 0 0 01 : 0ivO y k H x y D y+ − + =                                                        (8) 
 

( ) ( )0 0 1 0 0 10, , 0, 0, , 0y T T y T T= =                                                                      (9.a) 
 

( ) ( )0 0 1 0 0 11, , 0, 1, , 0y T T y T T= =                                                                                   (9.b) 
 

( ) ( ) 2

1 0 1 0 1 0 0 0 1 0 0: 2 ( )cosivO y k H x y D y D y D D y f x T  + − + = − − +   (10) 
 

( ) ( )1 0 1 1 0 10, , 0 , 0, , 0y T T y T T= =                                               (11.a) 
 

( ) ( )1 0 1 1 0 11, , 0 , 1, , 0y T T y T T= =  .                                                                             (11.b) 
 

The general solution in the first order is assumed as  
 

( ) ( ) ( ) ( )0 0

0 0 1 1 1, , ; 1,2,3,n ni i

n n ny x A e A e X x n
  −    =  +  =        (12) 

 

where nA  and 
nA  are the complex amplitude and conjugate, respectively. If the relation 

(12) is the solution of Eq. (8), then it should provide the equation. Thus, the differential equation 

in the following is obtained   
 

( ) 2

0 η ω 0iv

n n nX k H x X + − − =                                                                 (13) 

 

( ) ( )0 0 0n nX X = =  and ( ) ( )1 1 0n nX X = = .                                            (14) 
 

A numerical approach is needed to determine the natural frequency and mode shape. 

Substituting Eq. (7.d) into Eq. (13) yields the discretized equation at i th spatial node as  
 

4, , 2 3, , 1 2, , 1, , 1 0, , 2 0i n i i n i i n i i n i i n ib X b X b X b X b X+ + − −+ + + + =                                       (15) 
 

where 
 

0, 1ib = , 1, 4ib = − , ( ) 42

2, 06i n xb k H x+  = − −  , 3, 4ib = − , 4, 1ib =          (16) 

 

and Heaviside step function H  is defined  
 

0 η
( η)

1 η

x
H x

x


− = 


    .                                                                     (17) 
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The coefficient 
2,ib  can be written as 

 

( )2 4 2 4

2, 2, 06 ω Δ , 6 ω Δi n i nb x b k x= − = + −                                                            (18) 

 

where 2,ib  denotes the part which there is not the soil and 
2,ib  describes the part which 

there is the soil. For pinged-pinged support, the boundary conditions applied finite differences is 

obtained as 
 

,0 0nX = , 
, 1 ,1n nX X− = − , 

, 0n NX = , 
, 1 , 1n N n NX X+ −= −  .                                        (19) 

 

Substituting these conditions into Eq. (15), the obtained algebraic equation system is reduced 

to the matrix form in the following 
 

2, ,1

2, ,2

2, ,3

2,

2,

2, , 3

2, , 2

2, , 1

0 0 0 01 4 1 0

0 0 0 04 4 1
0

1 0 0 01 4 4

4 1 0 00 1 4

4 1 00 0 1 4

4 4 10 0 0 1
0

1 4 40 0 0 0

0 1 4 10 0 0 0

i n

i n

i n

i

i

i n N

i n N

i n N

b X

b X

b X

b

b

b X

b X

b X

−

−

−

 − −  
   − −   
   − −
   

−−   
  
  
  −−
  

− −  
 − −
 
− −    

0

0

0

0

0

0

 
 
 
 
 
 
 

=  
 
 

  
  
  
   

.  (20) 

 

For nontrivial solutions, determinant of the matrix of the coefficients must be equal to zero. 

Thus, the natural frequency of the system can be approximately found and the mode shapes nX  

are numerically obtained. As a result, the solution 0y  is determined. Substituting Eq. (12) into 

right side of Eq. (10) gives 
 

( ) ( ) ( ) ( ) 0

0

2
1 0 1 0 1 1 1 1( ) 2

( )
. .

2

ni Tiv
n n n n

i T

y D y k H x y i A T X x i X x D A T e

f x
e c c


   



 
 + + − = − +

+ +

    (21) 

 

where . .c c  represents the complex conjugates. Then, the solution of Eq. (21) is in the form 

of  
 

( ) ( )0

1 1 1 0 1, , , . .ni T

ny x T e W x T T c c
= + +                                      (22) 

 

where the first and second term are related to secular and nonsecular terms, respectively. 

 

6. CASE STUDIES 

 

In this section, two different cases arise by depending on the numerical values of natural 

frequency. 
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6.1. Case 1: Ω  away from ωn  

 

Assuming that 
n

  , the Eq. (21) becomes    
 

( ) ( ) ( ) ( ) ( ) 02

1 0 1 0 1 1 1 12 . .ni Tiv

n n n ny D y k H x y i A T X x i X x D A T e c c NST
    + + − = − + + + 

(23) 

 

where NST  denotes non-secular terms. Applying the solvability condition [13] to the Eq. 

(23) yields 
 

1 1 0n n nD A A+ =                                                                   (24) 
 

where the coefficient 1n  is 
 

1
2

n


 =                                                                                                                                    (25) 

 

and the normalization is  
 

η

2

0

1nX dx = .                                                                                                                           (26) 

 

(  represents the length of span). Then, the solution of the Eq. (24) is obtained as 
 

1 1nT

nA e
 −

=                                                                                     (27) 
 

where   denotes an arbitrary constant. Since 1n  is real and positive in the solution (27), 

the amplitude of the system exponentially decreases and the solution is stable.  

 

6.2. Case 2: Ω  closed to ωn  

 

In this section, the parametric resonance occuring in case the frequency of external forcing 

force equals or closes to one of natural frequencies of the system is analysed. We assume that 
 

n
  = +                                                                           (28) 

 

where   is detuning parameter. Then, the Eq. (21) is obtained as  
 

( ) ( ) ( ) ( ) ( ) 0

0

2

1 0 1 0 1 1 1 12

( )
. .

2

ni Tiv

n n n n

i T

y D y k H x y i A T X x i X x D A T e

f x
e c c NST

   



 + + − = − + 

+ + +

.  (29) 

 

From the solvability condition [13], the amplitude equation is obtained as follows: 
 

1σ
1 1 2

1
α α

2

i T
n nn nD A A i e+ =                                                    (30) 

 

where   
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( )2

η

1
α

2ω

L

nn

n

f x X dx=                                                                  (31) 

 

(the integral (31) is numerically calculated by Simpson method). We assume the polar form of 

nA  as 
 

( ) ( )1β

1

1

2
ni T

n nA a T e=                                                           (32) 

 

Substituting the Eq. (32) into Eq. (30) and separating real and imaginary parts, the resulting 

equation is found as 
 

Re: 1 2

1

α α sin γn
n n n

da
a

dT
+ = −                                                                    (33) 

 

Im: 2

1

γ
σ α cos γn n n

d
a a

dT
− =                                                       (34) 

 

where 
1

γ σ βT= − . Since 
1n

da dT  and 
1

γd dT  should be equal to zero for steady state 

solutions, we obtain 
 

2 2 2

2 1

1
σ α αn n n

n

a
a

= − .                                                     (35) 

 

7. CLASSICAL TECHNIQUE 

 

We consider well-known classical technique for the problem. Then, the equation is seperately 

written for each span in the classical approximation. Thus, the dimensionless equations of motion 

are obtained as 
 

1 1 1εμ ε ( )cosΩ 0ivy y y f x t+ + − =                                                                        (36.a) 
 

2 2 0 2 2εμ ε ( )cosΩ 0ivy y k y y f x t+ + + − =                                                        (36.b) 
 

where the boundary conditions are 
 

( )1 0, 0y t = , ( )1 0, 0y t =  and ( )2 1, 0y t = , ( )2 1, 0y t =                                     (37) 
 

and the transient conditions are 
 

1 2(η, ) (η, )y t y t=                                                                                               (38.a) 
 

1 2(η, ) (η, )y t y t=                                                                                                 (38.b) 
 

1 2(η, ) (η, )y t y t=                                                                                                (38.c) 
 

( ) ( )1 2(η, ) (η, )EI y t EI y t =                                                                            (38.d) 

 

where η  represents the length of span. We introduce the perturbative series expansion as 
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( ) ( ) ( )1 0 1 10 0 1 11 0 1
, , ; , , , , ...y x T T y x T T y x T T  + + ,                               (39.a) 

 

( ) ( ) ( )2 0 1 20 0 1 21 0 1
, , ; , , , , ...y x T T y x T T y x T T  + +                                     (39.b) 

 

Substituting Eqs. (39) and the expansions of derivative (6) into Eq. (36)-(38) and seperating to 

order of ε  yield 
 

( ) 2

10 0 101 : 0ivO y D y+ = ,                                                                (40.a) 
 

2

20 0 20 0 20 0ivy k y D y+ + =                                                                                                   (40.b) 
 

where the boundary and transient conditions are 
 

( ) ( )10 0 1 10 0 10, , 0, 0, , 0y T T EI y T T= = and ( ) ( )20 0 1 20 0 11, , 0, 1, , 0y T T EI y T T= =  (41) 
 

and 
 

( ) ( )10 0 1 20 0 1
, , , ,y T T y T T =                                                                                   (42.a) 

 

( ) ( )10 0 1 20 0 1
, , , ,y T T y T T  =                                                                                 (42.b) 

 

( ) ( )10 0 1 20 0 1
, , , ,EI y T T EI y T T  =                                                                            (42.c) 

 

( )( ) ( )( )10 0 1 20 0 1
, , , ,EI y T T EI y T T   =  ,                                                             (42.d) 

 

respectively. 
 

( ) 2

11 0 11 0 10 0 1 10 02 ( )cos: ivy D y D y D D y f x TO  + = − − +  ,                        (43.a) 
 

2

21 0 21 0 21 0 20 0 1 20 02 ( )cosivy D y k y D y D D y f x T+ + = − − +                            (43.b) 
 

where the boundary conditions (BC) are 
 

( ) ( )11 0 1 11 0 10, , 0 , 0, , 0y T T EI y T T= =  and ( ) ( )21 0 1 21 0 11, , 0 , 1, , 0y T T EI y T T= =  (44) 
 

and the transient conditions (TC) are 
 

( ) ( )11 0 1 21 0 1
, , , ,y T T y T T =                                                           (45.a) 

 

( ) ( )11 0 1 21 0 1
, , , ,y T T y T T  =                                                               (45.b) 

 

( ) ( )11 0 1 21 0 1
, , , ,EI y T T EI y T T  =                                                    (45.c) 

 

( )( ) ( )( )11 0 1 21 0 1
, , , ,EI y T T EI y T T   = .                                             (45.d) 

 

We assume that the solution in the first order is 
 

( ) ( )( ) ( )0 0

10 1 1 1

n ni T i T

n
y A T e A T e X x

 −
= + ,                                                      (46.a) 

 

( ) ( )( ) ( )0 0

20 1 1 2

n ni T i T

n
y A T e A T e X x

 −
= +                                   (46.b) 
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Substituting the Eq. (46) into the Eq. (40), the resulting equation is 
 

2

1 1ω 0iv

n n nX X− =                                                                      (47) 
 

2

2 0 2( ω ) 0iv

n n nX k X+ − =                                                                        (48) 
 

BC: ( ) ( )1 10 0, 0 0n nX EI X = =  and  ( ) ( )2 21 0, 1 0n nX EI X = =                      (49) 
 

TC:                    ( ) ( )1 2n n
X X =                                                                (50.a) 

 

( ) ( )1 2n n
X X  =                                                                                                 (50.b) 

 

( ) ( )1 2n n
EI X EI X  =                                                                                          (50.c) 

 

( )( ) ( )( )1 2n n
EI X EI X   =                                                                                (50.d) 

 

Then, the solution is obtained as 
 

( )1 1 2 3 4cos( ) sin( ) cosh( ) sinh( )n n n n nX x c x c x c x c x   = + + +     (51) 
 

 ( ) 2 2 2

2 1 0 2 0 3 0

2

4 0

cos( ) sin( ) cosh( )

sinh( )

n n n n

n

X x d k x d k x d k x

d k x

  



= − + − + −

+ −

   (52) 

 

where ic  and id  ( 1, , 4)i =  are the constants. Applying the boundary conditions, the 

critical axial load and natural frequency are calculated by depending on the coefficient of spring 

and its location. Then, the mode shapes are found by determining arbitrary constants. Substituting 

the Eqs. (46) into the Eqs. (43) yields 
 

( ) ( ) ( ) ( ) 0 02
11 0 11 1 1 1 1 1

( )
2 . .

2
ni T i Tiv

n nn n

f x
y D y i A T X x i X x D A T e e c c    

 + = − + + +    (53) 

 

( ) ( ) ( ) ( ) 0 02
21 0 21 0 21 1 2 2 1 1

( )
2 . .

2
ni T i Tiv

n nn n

f x
y D y k y i A T X x i X x D A T e e c c    

 + + = − + + +     (54) 

 

Then, the solution in the order   is    
 

( ) ( )0

11 1 1 1 0 1, , , . .ni T
y x T e W x T T c c

= + +                                                       (55) 
 

( ) ( )0

21 2 1 2 0 1, , , . .ni T
y x T e W x T T c c

= + +                                                      (56) 
 

Proceeding the perturbative solution, two case reveal where   away from n
  and close to 

n
 , respectively. The amplitude for classical solution procedure is obtained as 

 

1 1nT

nA Ce
−

=                                                                                                                            (57) 
 

where the coefficient 1n  in the Case 1 in the Section 4 is 
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1
2

n


 =                                                                                                                                    (58) 

 

and the normalization 
 

( ) ( )2 2

1 2

0

1

L

n nX x dx X x dx





+ =                                                                                            (59) 

 

Then, the detuning parameter is found as 
 

2 2 2

2 1

1
σ α αnI n n

n

a
a

= −                                                                     (60) 

 

where the coefficient 
2n

  in the Case 2 is  
 

( ) ( ) ( )
η

2 1 2

0 η

1
α

2ω

L

n n n

n

f x X dx f x X x dx
 

= + 
 
 
                                                (61) 

 

The perturbation method and the finite differences method is used in the present 

approximation. In the expansion of the finite difference, N denotes total number of short segments 

into system. In the tables in the following, the comparison of the natural frequency and the critical 

load is given for the different values of the coefficient of spring 0k  and the location of spring η .  

 

Table 1. The comparison of the natural frequency and the critical load with the classical method 

and the present method (bold) for 200N =  and ( ) 5f x = . 
 

 

η  
0 50k =  0 100k =  

ωn  2α n  ωn  2α n  

20 12.1279 12.1414 2.6247 2.6215 14.0271 14.0466 2.2694 2.2659 

50 11.9506 11.9589 2.6644 2.6626 13.7160 13.7210 2.3223 2.3209 

100 11.0497 11.0718 2.8804 2.8743 12.0898 12.1198 2.6318 2.6251 

 

Table 2. The comparison of the natural frequency and the critical load with the classical method 

and the present method (bold) for 200N =  and ( )f x x= . 
 

 

η  
0 50k =  0 100k =  

ωn  2α n  ωn  2α n  

20 12.1279 12.1433 52.4824 52.4315 14.0271 14.0429 45.3679 45.3391 

50 11.9506 11.9541 53.1476 53.1306 13.7160 13.7270 46.1972 46.1982 

100 11.0497 11.0664 57.1944 57.1477 12.0898 12.1071 51.8812 51.8427 
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8. CONCLUSIONS 

 

We analyze the dynamical behavior of the Euler-Bernoulli beam having the discontinuity 

lying on a linear spring foundation also called as Winkler-type foundation. We use both 

perturbation method and finite differences method for solving this equation. This approach 

provides an advantage in the numerical solution of the mathematical model of structural element 

containing any discontinuity and also in its dynamical analysis by perturbation method. This 

technique indicates that solving one equation with discontinuity function has an advantage over 

solving the system of equation arising classical approach. The performed comparisons show that 

the results obtained by the classical method are very close to those obtained by the present 

technique. Thus, it is seen that an appreciable reduction of computational effort is achieved as 

compared to alternative the solutions in the literature.  
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