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Abstract 

We discuss the feedback algorithm for the optogenetic control over the membrane conductance in the frame of Grossman-Nikolic-

Toumazou-Degenaar (GNTD) ordinary differential system modeling the response of channelrhodopsin-2 (ChR2) expressing neurons 

to the light stimulation with the various types of ChR2 mutants. The GNTD population dynamics contains four functional states (two 

open and two closed) with the transitions among them due to photo-excitations with the stimulating light or decays back from the 

open to the closed states. The control signal in the model is defined via the photon flux per one ChR2 in the dimensionless form. The 

control goal is the total conductance of a neural section due to ChR2. We formulate the control algorithm in the form of Fradkov’s 

speed gradient method driving the dynamical system in the phase space such that the target function for the discrepancy between the 

actual total conductance and its desired level is minimized. We derive the explicit equation for the photon flux field stabilizing the 

conductance characteristics and perform the numerical simulation for the controlled GNTD differential system to prove the 

achievability of the control goal. Our approach can be useful for modeling different experimental problems of optogenetics, 

particularly, for driving the collective dynamics of neural cells in epilepsy, depression, and tumors of the central nervous system. 

Keywords: Optogenetics, ChR2 channel, Membrane conductance, Feedback control, Speed gradient algorithm. 

Optogenetik Modelleşme için Hızlı Gradyan Kontrol Algoritması 

Öz 

Channelrhodopsin-2'yi (ChR2) ekspres eden nöronların, ChR2 mutantlarının çeşitli tipleriyle ışık uyarımına cevabını modelleyen 

Grossman-Nikolic-Toumazou-Degenaar (GNTD) sıradan diferansiyel sistemi çerçevesinde zar iletkenliği üzerindeki optogenetik 

kontrol için geri besleme algoritmasını tartışıyoruz. GNTD popülasyon dinamiği, aralarında geçiş yapabilen ikisi açık ve ikisi kapalı 

olmak üzere dört işlevsel durum içermektedir. Bu geçişler, uyaran ışığın fotoeksitasyonları ya da açık durumlardan kapalı durumlara 

geri bozulmalar nedeniyle gerçekleşmektedir. Model içindeki kontrol sinyali, boyutsuz şekilde, ChR2 başına foton akısı üzerinden 

tanımlanmaktadır. Kontrolün amacı ChR2 nedeniyle bir nöral kısmın toplam iletkenliğidir. Var olan toplam iletkenlik ve bu 

iletkenliğin istenen seviyesi arasındaki uyuşmazlığı temsil eden hedef fonksiyonunun en aza indirilmesi sağlanacak şekilde, faz uzayı 

içindeki dinamik sistemi yönlendiren Fradkov'un hızlı gradyan yöntemi biçimindeki kontrol algoritmasını formülleştirmekteyiz. 

İletkenlik özelliklerini kararlı hale getiren foton akı alanı için açık denklemi türetmekte ve kontrol amacına ulaşabilirliğin kanıtı 

olarak kontrol altındaki GNTD diferansiyel sistemi için sayısal benzetim gerçekleştirmekteyiz. Yaklaşımımız optogenetiğin farklı 

deneysel problemlerini modellemede, özellikle, epilepsi, depresyon ve merkezi sinir sistemi tümörlerindeki sinir hücrelerinin toplu 

dinamiğini yönlendirmede faydalı olabilmektedir. 

 

Anahtar Kelimeler: Optogenetik, ChR2 kanalı, Membran iletkenliği, Geribesleme kontrolü, Hızlıgradyan algoritması. 
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1. Introduction 

Last decade the genetic engineering methods have been 

applied to excite or inhibit single neurons and their populations 

via light-sensitive channels with different optical devices.  

Optogenetics serves as an alternative to electrical 

stimulation for the control over the membrane voltage, and for 

the modification of action potentials in excitable cells (Williams 

and Entcheva, 2015). It is superior to classical activation by 

microelectrodes. The reason for this is its high temporal and 

spatial resolution. Optical stimulation can be achieved by using 

caged compounds, e.g. caged ATP, caged Glutamate, whereby 

the substrates for depolarizing ion channels are delivered to 

membranes and activated by pulses of UV-light to the chemical 

photolabile cage in the micro- and millisecond time scale. 

Optogenetics allows neurons to be controlled with 

millisecond pulses through the light-driven activation or 

inactivation of the light-gated ion channels such as 

Channelrhodopsin-2 (ChR2) or pumps such as Halorhodopsin. 

Optogenetics has many applications, for instance, it allows 

controlling functions of neural cells in epilepsy, depression, and 

tumors of the central nervous system (Camporeze et al., 2018). 

Optogenetic data can be very useful for reconstructing 

dynamical models of brain dynamics (Oprisan et al., 2015) and 

for imaging and manipulating brain networks (Forli et al., 2021). 

Together with electrophysiological data, it provides the self-

assembled multifunctional neural probes as a powerful tool for 

investigating causal relationships between neural circuit activity 

and function (Zou et al., 2021). 

Here we discuss the feedback speed gradient algorithm-

based model for control over the membrane conductance in the 

frame of the Grossman-Nikolic-Toumazou-Degenaar ordinary 

differential system. 

2. Control Model for Optogenetics 

As a basic approach for control algorithms for optogenetics, 

we chose here the Grossman-Nikolic-Toumazou-Degenaar 

(GNTD) model (Grossman et al., 2011) for the response of 

channelrhodopsin-2 (ChR2) expressing neurons to the light 

stimulation using various types of ChR2 mutants which follows 

the research (Nagel et al., 2003; Hegemann et al., 2005).  

2.1. Grossman-Nikolic-Toumazou-DegenaarModel 

The GNTD model describes two open (O1 and O2) and two 

closed (C1 and C2) functional states, which do not necessarily 

represent the actual energy states of ChR2 (Grossman et al., 

2011), see Fig.1.  

 

Figure 1.The scheme for the interaction of ChR2 expressing 

neuron with the stimulating light (Grossman et al., 2011). 

ChR2 neuron can be photo-excited from its C1 dark-adapted 

closed state to any open state. From an excited state O1, ChR2 

either decays back to the closed state C1 or converts into a 

different open state O2. The state O2 is supposed to be less 

conductive but more stable in comparison to O1. The transition 

from O1 to O2 can be both thermal and pulsed light stimuli into 

ChR2 current. Then from the open state O2, ChR2 either decays 

to another close state C2 or converts back to the open state O1, 

again by thermal or light excitation. From the state C2, ChR2 

can be photo-excited back to O2 or slowly converted (only 

thermally) to C1. 

The total number Nof ChR2s in a cell section is constant: 
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The population dynamics of these states can be described as 

the system of the following three differential equations: 
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Here the parameters Kd1 and Kd2 are the closing rates 

O1→C1 and O2→C2, respectively; Kr is the thermal recovery 

rate C2→C1. The values e12 and e21 are the rates of transition 

between O1 to O2 and vice versa. The parameters Ka1 and Ka2 

are the activation rates C1→O1 and C2→O2, respectively. 

The set of control parameters in the model (2) is defined via 

the photon flux φ(t) per one ChR2 as (Grossman et al., 2011): 
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where εi is the quantum efficiency in the state Ci (where i = 1, 2). 

The total conductance GChR of a neural section due to ChR2 

is given by: 
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where gO1 and gO2 are the conductance of the open states O1 and 

O2, respectively. Eq.(4) considers the dependence of ChR2 

conductance on the absolute trans-membrane potential U, while 

U0 and U1 are empirical constants. 

The response of the n-th section of a cell to the change in 

membrane conductance can be then described by the following 

partial differential equation: 
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Here, Iionic denotes the current through the native ion channels, C 

is the cell section capacitance, and V is the membrane potential 

relative to rest potential Vrest (U = V −Vrest; Vrest = −70 mV). The 

parameters γn and γn−1 are the conductances between the two 

neighboring compartments. 

The model (5) assumes that the extracellular potential that is 

produced by the certain neuron’s own activity is negligible. 
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Thus, the intracellular potential is set equal to the trans-

membrane potential.  

2.2. Speed Gradient Control Algorithm for the 

Membrane Conductance 

To control the response of the n-th section of a cell to the 

change in membrane conductance (5), one needs to handle the 

total conductance GChR (4) of a neural section due to ChR2, 

including the factor 

2211 OOOO NgNgf  .                 (6) 

For the purpose of stabilization of (6) at the certain target 

level: 

*22*11* OOOO NgNgf  ,                 (7) 

we consider here the feedback speed gradient algorithm 

(Fradkov, 2007). Let’s define the target non-negative function: 
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Minimization of function (8) corresponds to the 

achievement of the control goal (7). This goal is provided by the 

gradient 
 in the space of the control parameter (3): 
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Here Γ is a positive constant with the dimension of the inverse 

time. The control signal in (3) is one-dimensional; therefore the 

gradient in (9) is reduced to the partial derivative.  

By the application of (9) to the target function (7)-(8): 
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and, by the substitution (2) into RHS(10), one obtains the control 

signal in the form: 

 
  .)(

)()(

22222111

*222*1101

COCOOO

OOOOO

NgNNNNg

NNgNNg








    (11) 

We considered in (11) property (1) for NC1. 

3. Numerical Simulations 

The set of the GNTD model constant parameters is given in 

Table 1.  

Table 1.Set of the GNTD model constant parameters 

Parameter Value Unit 
ε1 0.5 ms−1 

ε2 0.12 ms−1 
Kd1 0.1 ms−1 

Kd2 0.05 ms−1 
Kr 0.0003 ms−1 

e12 0.011 ms−1 

e21 0.008 ms−1 
gO1 20 nS 

gO2 10 nS 
U0 40 mV 

U1 15 mV 

For our numerical simulations, we followed (Grossman et 

al., 2011) for the following numerical parameter set. The 

conductances of the open states gO1 and gO2 are chosen according 

to (Hegemann et al., 2005). All inverse time scales, including the 

constant Γ, are taken in ms−1, the conductances – in nS, the 

voltages – in mV. 

The results of the numerical simulations for the model 

developed here are represented in Figure 2.The set of initial 

conditions is: N = 10, NC1 = 10, NC2 = 0, NO1 = 0, NO2 = 0; the 

target populations for the open states are: NO1* = 0, NO2* = 10, 

i.e. all population from the initial closed state NC1 should be 

transferred to the open state NO2. The speed gradient control 

constant is chosen as: Γ = 10. 

 

 
Figure 2.Numerical simulations for the speed gradient control 

over the total conductance (4): NC1(t) (red) and NO2(t) 

(green).The time scale for t is given in ms. 

 

As in general, the speed gradient method provides the 

numerical convergence of the set of variables to their target 

values almost exponentially with a certain error.  

The numerical simulations in Fig.2 demonstrate the 

achievability of the control goal (7)-(8). Indeed, with the very 

basic qualitative analysis of the numerical parameters for the 

system (2) based on the Table 1 we can neglect the second and 

third terns in RHS(2) of first two equations and consider NC2 to 

be virtually a constant (the corresponding coefficients in RHS 

have the smaller scales).  

That simplifies our system, and for the first two dynamical 

equations we obtain:  
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By (12), as soon as the control goal is achieved (NO1 = 0 and 

NO2 = 10), the control becomes switched off. 
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We should emphasize here that Fradkov’s speed gradient 

method is robust with respect to relatively small external 

perturbations and noise; it is not very sensitive to the choice of 

the initial conditions for the system (2). 

4. Discussion 

The numerical simulations presented in Fig.2 prove the 

efficiency of the proposed algorithm. The control signal (11) 

does not demand a distinct energy pumping into the system, and 

it is easy to see that it becomes 0, when the goal of control is 

achieved.  

Nevertheless, the speed gradient also has some 

disadvantages: it may lead to a systematic error in the exact level 

of the target stabilization due to the dissipation effects under the 

acting control field. Therefore, for future studies we plan to 

investigate alternative approaches, for instance, Kolesnikov’s 

target attractor feedback (Kolesnikov, 2013) to compare the pros 

and cons of different control algorithms.  

The algorithm for the stabilization goal can be also extended 

for the case of tracking, when the target function (7) is time-

dependent. Thus, our approach allows time-depending changing 

the populations of ChR2. 

5. Conclusions 

The proposed control algorithm covers the luck in 

theoretical non-linear feedback methods to drive the dynamics of 

ChR2 expressing neuron with the stimulating light. It is simple 

for the performance of real-time computations and could be 

easily adapted for different experimental setups. 

Our approach can be useful for modeling different 

experimental problems of optogenetics, particularly, for driving 

the collective dynamics of neural cells in epilepsy, depression, 

and tumors of the central nervous system. 
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