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Abstract

This paper presents a benchmarking study on the steepest descent (SD) method considering three different line search conditions
including Backtracking (BC), Armijo-Backtracking (ABC) and Goldstein (GC) in nonlinear least squares fitting of measured data
obtained from coordinate measuring machine (CMM). Within this scope, five primitive geometries such as circle, square, rectangle,
triangle and ellipse were built via 3D printer. Those geometries were then scanned with CMM to acquire their 2D profiles to be fitted.
To find best fitting parameters for each geometry, the nonlinear least squares approach along with the above-mentioned optimization
method-line search condition combinations were employed. During the fitting process, the total number of function evaluations, when
the combination converges to required tolerance, were used as a performance metric of the combination in question. With those data,
the performance and data profiles for each combination were created to be able to carry out a reliable performance evaluation. Based
on those profiles, it has been seen that the SD-ABC combination is the fastest one. In addition, it is successful on all the geometries
while the others are not. For the second fastest combination, the SD-BC combination stands out. However, its successful rate is only
80%, which means it fails on a geometry. On the other hand, the SD-GC combination takes the last place in this study. All those results
have shown that the line search conditions have a great contribution to the success and performance of the optimization algorithm being
used. Besides, their performance may differ from problem-to-problem. The end-users should consider these facts to find best
optimization method-line search condition combination for their problems.

Keywords: steepest descent method, line search condition, performance profiles, data profiles, nonlinear least squares fitting,
optimization.

Koordinat Olgme Makinesi Verilerinin Dogrusal Olmayan En Kiiciik
Kareler Uydurulmasinda En Dik inis-Dogru Boyunca Arama Sarti

Kombinasyonlarimin Performans Analizi

Oz

Bu makale koordinat dlgme makinesinden (KOM) elde edilen verilerin dogrusal olmayan en kiiciik kareler uydurulmasinda
Backtracking (BC), Armijo-Backtracking (ABC) ve Goldstein (GC) igeren ii¢ farkli dogru boyunca arama sartlarin1 dikkate alarak en
dik inis (EDI) yontemi iizerine bir kiyaslama ¢alismasi sunmaktadir. Bu kapsamda, daire, kare, dikdortgen, iicgen ve elips sekillerindeki
bes temel geometri 3B yazici ile imal edildi. Daha sonra bu geometrilerin uydurulacak 2B profillerini elde etmek igin adi gegen
geometriler KOM ile tarandi. Her bir geometriye en iyi uydurma parametresini bulmak icin, dogrusal olmayan en kiiciik kareler
yaklagimi yukarida bahsedilen optimizasyon yontemi-dogru boyunca arama sarti kombinasyonlart ile birlikte kullanildi. Uydurma siireci
boyunca ilgili kombinasyon istenilen tolerans degerine yakinsadiginda ortaya ¢ikan toplam fonksiyon degerlendirme sayis1 kullanilan
kombinasyonun bir performans metrigi olarak dikkate alindi. Giivenilir bir performans analizi yapabilmek amaciyla bu veriler ile, her
bir kombinasyon igin performans ve veri profilleri olusturuldu. Adi gegen profillere dayanarak EDI-ABC kombinasyonun en hizli
oldugu gériildii. Ek olarak bu kombinasyon diger kombinasyonlarin aksine tiim geometrilerde bagarilidir. Ikinci en hizli kombinasyon
i¢in EDI-BC kombinasyonu ortaya ¢ikmaktadir. Fakat, ad1 gegen kombinasyonun basari oran1 sadece %80’dir, yani bir geometride
basarisiz olmaktadir. Ote yandan, EDI-GC kombinasyonu bu galismada son siray1 almaktadir. Tiim bu sonuglar gdsteriyor ki, dogru
boyunca arama sartlarinin kullanilan optimizasyon yonteminin basarisina ve performansini bilyiik bir katkis1 vardir. Ayrica bu sartlarin
performansi problemden probleme farklilik gosterebilir. Son kullanicilar kendi problemleri igin en iyi optimizasyon yontemi-dogru
boyunca arama sarti kombinasyonunu bulmak i¢in bu bulgular1 dikkate almalidir.

Anahtar Kelimeler: En dik inis metodu, Dogru boyunca arama, Performans profilleri, Veri profilleri, Dogrusal olmayan en kii¢lik
kareler uydurma, Optimizasyon
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1 Introduction

The steepest descent method, developed by Cauchy [1], along
with a line search has been widely implemented in many fields for
optimization purpose. As such, in [2], a steepest descent
optimization procedure was proposed to evaluate the circularity
of a mechanical part. The authors used the geometrical methods
for computing the steepest descent direction and step length and
they reported that the proposed algorithm is more computationally
efficient than the traditional optimization-based and
computational geometry-based methods. Xiao et al. [3] employed
the SD method for maximum power point tracking and the results
showed that it is superior to hill climbing method. An algorithm
based on the SD method for blind signal separation was presented
by Dam et al. [4]. For optimal step length, they used a
combination of Golden search technique and parabolic
interpolation and it was determined from the computational
experiments that the proposed algorithm provides faster converge
than the one which uses constant step length. In addition to this
study, regarding as the step length, Kalousek [5] released a
random step length selection procedure for the SD method. On the
other hand, the crystal lattice parameters were found by
implementing the SD method in [6]. Another application of the
SD method on the sensor placement problem was completed by
Akbarzadeh et al. [7]. Furthermore, an energy minimization
approach using the SD method for micromagnetics was presented
by Exl et al. [8]. Besides those practical studies, various methods
and algorithms, such as these of Refs. [9-11], have been proposed
to improve the SD method performance in the literature.

It is concluded from the literature studies summarized above
that the SD method is a useful and a practical tool for many
applications and its performance may vary depending on the
problem dealing with and the step length computations techniques
being used. By keeping those facts in mind, in this paper, it is
concentrated on performance evaluation of the SD method
considering three well-known line search conditions including
BC, ABC and GC in the nonlinear least squares geometry fitting.
For this purpose, the five test geometries were built with 3D
printer and then, their 2D profiles were acquired via the CMM.
With implementing an iterative nonlinear least squares geometry
fitting procedure, the best parameters, which enable to represent
the measured data, for the test geometries have been identified.
During the fitting process, the number of function evaluations at
each iteration are monitored and the total number of function
evaluations when the best parameters are found are set as the
performance criteria of the SD-line search condition combination
in question. Henceforth, the paper is organized as follows: Section
I accommodates the nonlinear fitting procedure, as well as
includes test geometries. Section III covers the experimental
studies. The obtained results with discussion are provided in
Section IV. Finally, Section V summarizes and concludes the

paper.

2. Nonlinear Least
Procedure of CMM Data

To obtain the CMM data for nonlinear least squares fitting,
the five test geometries containing circle, square, triangle, ellipse
and rectangle have been selected. Their parametric mathematical
models [12] are given as follows:

Squares  Fitting
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Circle:
x =1, cos(u) + x,
, (1)
y =1, sin(u) + y,

Square and rectangle:
w
Xy = §(|cos(u)| cos(w) + [sin(u)| sin(w))

h

yu = 5 (Icos(w)| cos(w) — Isin@)|sin@) (3
X = x, cos(0) — y, sin(6) + x,
y = x,, sin(8) + y, cos(8) + y,

Triangle:
h
T =
2 , . (ns
cos (— arcsin (sm (— u)>>
Ng 2
x, = rcos(u) 3)
v, = rsin(u)
x = x, cos(0) — y, sin(0) + x,
y = x, sin(6) + y, cos(8) + .
Ellipse:

X, = acos(u)

= b sin(u)
Yu - @
x = x, cos(6) — y, sin(0) + x,

y = x,, sin(@) + y, cos(0) + y,

In these equations, x and y are the geometry final coordinates,
x, and y, are the geometry coordinates without rotation, x, and
Y. are the center coordinates of the geometry, u is the parameter
ranging from O to 2m radians, 7, is the radius of circle, w is the
width of square and rectangle, h is the height of square, rectangle
and triangle, 8 is the rotation angle, r is the radius of triangle, n,
is the number of edges (i.e., ny = 3 for triangle), a is the radius
of ellipse along the x axis and b is the radius of ellipse along the
Y axis.

It is well-established in the literature that the nonlinear least
squares fitting method aims to minimize the sum of squared error
between measured and computed data. To adapt this approach for
geometry fitting, the following parameter dependent sum of the
squared error [13], €2(p), is defined.

n

62(p) — Z[Xj _ xjmodel(p)]Z
= )

n
+ Z[yj — yrodel(p)]®
=1

In Eq. (5), p is the parameter vector of the geometry (i.e., p =
[r. x, y, u] for circle, p=][whx,y,0u] for square and
rectangle, p = [h x, y, 0 u] for triangle and p = [a b x, y, 6 u]
for ellipse), n is the number of data points, x; and y; are the
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coordinates acquired via CMM, x™°%" and y/™°*' are the

coordinated computed via mathematical model. To find the best
parameter vector, which minimizes the €?(p), a line search
procedure is used as follows:

Di+1 = D; + ah (6)

where h = — JTD is the search direction which is the steepest
descent direction in this study, J is the Jacobian matrix of the

D
objective function and D = [Dﬂ , Dy = x; — x™%*(p) D, =

y; — yModel(p) . On the other hand, @ > 0 is the step length that
defines the amount of the movement along the steepest descent
direction. There are several computation methods (i.c., line search
conditions) for this step length in the literature. We use three well-
known line search conditions (i.e., BC, ABC and GC) [14] in this
study. Their mathematical descriptions are given in Table 1.

Table 1. Line search conditions

BC e(p; + ah) < e(p;)

ABC e(p; + ah) < e(p;) + LaGTh

GC e(p) + (1 —v)aG™h < e(p; + ah)
< e(p) +naGTh

In Table 1 G = JTD is the gradient of the objective function, { and
7 are the scalars. ¢ = 0.25 and n = 0.35 are used in here. The line
search procedure with calculated step length at each iteration (i.e.,
Eq. (6)) keeps computing parameter vector until the converge
condition is met, which is:

maximum|J"D| < 1073 @)

3. Experimental Studies

The geometries given in the previous section have been first
built with 3D printer using PLA material. Their 2D profiles have
been then obtained via the CMM, as shown in Fig. 1.

Fig. 1 Scanning of geometries
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The scanning has been performed with 2 mm touch prob and the
scanning speed V; = 100 mm/min was used. An example CMM
measurement for a square with this setup are shown in Fig. 2. As
mentioned before, the collected data (i.e., x; and y;) are employed
as the input for Eq. (5).
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Fig. 2 Example CMM measurement

4. Results and Discussion

To test the effect of the line search conditions on the SD
method performance, the nonlinear least squares geometry fitting
procedure has been completed for all the geometries using the SD-
line search condition combinations (i.e., SD-BC, SD-ABC and
SD-GC). While performing this procedure, all the geometry
parameters are monitored and recorded for every iteration.
Besides, the sum of least square error, norm of the objective
function gradient and the number of function evaluations to
compute the step length are recorded to check the fitting
procedure health. As an example for those data, Fig. 3 shows
parameters and step length progresses at each iteration for a
square fitting using the SD-ABC combination. In addition, the
sum of least squares error and norm of the objective function
gradient progresses are illustrated in Fig. 4.

As can be seen from Fig. 3, all the parameters successfully
converge after a little bit fluctuation. Notice also that the step
length a varies at each iteration. This is due to line search
conditions the have to be met for a remarkable progress.
Otherwise (i.e., using constant step length), it might require much
more iterations to converge or, the algorithm may fail to complete
fitting process. It noteworthy that although the use of varying step
lengths may be beneficial for significant progress in the parameter
search, they also bring computational cost, which is core of the
paper. This will be elaborated in later of this section. However, to
contribute this fact, a plot showing the number of function
evaluations at each iteration are provided in Fig. 5. As seen, a
quite amount of work to compute the step length is required to
consume because the number of parameters to be found are large.
More specifically, for this example square fitting, the number of
parameters (i.e.,p = [w h x, Y. 6 u]) to be found is 72. This large
parameter value is emerged from the u which should be
correspond to the number of measured points (i.e., 67 points in
this fitting).
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Fig. 5 Number of function evaluations at each iteration during the fitting process

The reason behind defining the u as a parameter is the irregular
spacing between the measured points (see Fig. 2). Otherwise,
from personal experience, the algorithm fails to complete
geometry fitting process. This fact makes the geometry fitting
more attractive to work on.

As a result of the progresses shown in Figs. 3 to 5, we
achieved a successful square fit, as shown in Fig. 6. This figure
also provides a comparison of actual, fit and measured squares.
As seen, the square fit is satisfyingly able to represent the
measured data. From the practical application of view, this fit,

e-ISSN: 2148-2683

for instance, enables us to identify the part tolerances,
manufacturing accuracy (e.g., both additive and traditional
manufacturing processes), quality inspection, tool path
compensation amount etc. In Fig. 6, one can notice that there
is a slight difference between the actual, fit and measured
squares. The actual square dimensions are definedas w = h =
10 mm in the design step. However, the fit performed on
measured data gives the dimensions to be w = 9.7580 mm,
h =9.7812 mm.

1193



Avrupa Bilim ve Teknoloji Dergisi

The difference between the actual and fit dimensions shows the
manufacturing tolerance that might vary depending on the
geometry to be built and the material to be used in the 3D printing.
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Fig. 6 A comparison between actual, fitted and measured
squares

In other respect, the same parameter monitoring and fit quality
checking procedures reported so far are also carried out in all the
geometry fittings with the SD-line search condition combinations.
When the combination in question meets converge requirement
(i.e., Eq. 7), the line search stops and the total number of function
evaluations performed thus far is recorded to be a performance
criterion of the combination. By doing so, Figs. 7 is obtained.

|-Backtracking [ Armijo-Backtracking [Jll Goldstein |
108 : : . T .

107 | 4

10t E J

Geometry numbers

Fig. 7 Total number of function evaluations

This figure shows the total number of function evaluations for
each line search condition, corresponding the geometries, when
the converge occurs. In the figure, the geometry numbers (i.e., 1,
2, 3, 4 and 5) represent the circle, square, triangle, ellipse and
rectangle, respectively. Besides, co denotes that the corresponding
SD-line search conditions combination is not successful to find
the geometry parameters. Specifically, the SD-BC and SD-GC
combinations could not complete the fitting process, thereby their
total number of function evaluations are set to infinity. By
focusing on the figure, one can realize that the SD-ABC
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combination performs well-done on all the geometries and it
requires the lowest number of function evaluations for converging
compared to others. In addition, the circle geometry seems the
easiest one to fit because all the combinations are successful on it
with lower number of function evaluations in comparison with
other geometries. This is attributed that the circle geometry
equation is simpler and it does not need any rotation around its
center while others require (see Eqs. 1 to 5). Similarly, we can
state that the hardest one to fit is rectangle geometry due to the
fact that the SD-BC and SD-GC combinations fails. Analogue
observations can be extended by just looking at the Fig. 7.
However, for more probabilistic analysis, we move on to the
performance profiles, as shown in Fig. 8.

100
80
XX 60
=
A7 40
20 mm Backtracking |
== Armijo-Backtracking
= Goldstein
0 =l 1
100 10! 102
v

Fig. 8 Performance profiles-1

The idea behind the performance profiles, developed by Dolan
and More [15], is to give the success probability of the solver on
the test set within the given factor. By adapting this approach in
the current study, we achieve the performance profiles of the line
search conditions. They provide efficient and reliable assessments
on the line search conditions. For instance, by looking at the
values of P.(v = 1), we can determine the fastest line search
condition which is the ABC. As seen from Fig. 8, it is the fastest
one on all the geometries because its success probability at the
factor v =11is P.(v = 1) = 100% while others are 0% . This
observation confirms the previous one conducted from Fig.7. As
increasing v, the success probability of BC and GC start rising.
Within the factor v = 1.11 of the fastest condition, for instance,
the BC is able to be successful on the 2 geometries (i.c.,
P.(v = 1.11) = 40%). The BC success rate remains same at the
factor range 1.11 < v < 3.43. This range for the GC is 1.56 <
v < 3.22. At the factor v = 9.13 of the fastest condition, the GC
reaches maximum success rate (i.e., P.(v =9.13) = 80%)
whereas the BC requires v = 16.55 for maximum performance.
For clarity, P.(v) = 80% means that the conditions in question
are able to be successful on the 4 geometries out of 5. Fig. 7
verifies this fact as mentioned before. On the other hand, for
identifying the second fastest condition, we need to exclude the
first one because the performance profiles are dependent each
other. By excluding the ABC and generating the performance
profiles with rest of them, we obtain Fig. 9. As have been done
before, it is possible to determine the second fastest one based on
the P.(v = 1) values. It is obvious from Fig.9 that the second
fastest one is the BC with the probability P.(v = 1) = 60%.
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Fig. 9 Performance profiles-2

In other words, the BC has higher number of wins compared to
GC (i.e., P.(v = 1) = 20%). Based on Fig.7, we can confirm this
observation, which the BC has lower number of function
evaluations on the geometries 1, 3 and 4 (i.e., circle, triangle and
ellipse, respectively) than the GC. This property of the
performance profiles is quite useful for speed ranking of the line
search conditions. However, it is sometimes given a
computational budget in terms of algorithm running time,
memory usage, number of function evaluations, etc. and it is
required to solve the certain number of problems within this
budget. In this case, the performance profiles cannot be employed
due to their dependency to each other. For an independent
evaluation from a computational budget (i.e., total number of
function evaluations in this study) perspective, we use the method
of data profiles [16]. As such, the data profiles for all the line
search conditions are indicated in Fig. 10 within the total number
of function evaluations range 103 <) < 107. In this figure,
D (1) denotes the percentage of the geometries, which are fitted,
within the given computational budget 1. To illustrate, for i =
10* all the line search conditions are able to complete fitting of
only one geometry that is the circle (i.e., D(¥) = 20%). If we
increase the ¥ to 10° the ABC fits one more geometry, which is
the triangle (i.e., geometry number 3, see Fig. 7), while others
remain same. The speed of the SD-ABC combination also appears
in data profiles as expected.

100 | B Backtracking
mm Armijo-Backtracking
m— (Goldstein

80+

60 -

De(y) (%)

40 +

20 +

10 10* 10° 10° 107

Fig. 10 Data profiles
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By combining the knowledges obtained from performance and
data profiles on the line search conditions, it is obvious that the
ABC is the fastest and most robustness (i.e., fits all the
geometries).

5. Conclusions

This paper has been concentered on the performance assessment
of the SD-line search condition combinations in nonlinear least
squares geometry fitting. The three combinations, containing the
SD-BC, SD-ABC and SD-GC, performances have been evaluated
on the five geometries. Their 2D profiles were obtained using the
CMM. In geometry fitting process, all the geometry parameters
were kept track and the total number of function evaluations when
the converge occurs were used as the performance measure of the
combination in question. Using this measure, the performance and
data profiles were generated for efficient performance
assessments. It was seen that the geometry fitting is not a
straightforward task because the u parameter for each measured
point must be defined as a search parameter. It means that all the
u parameters of measured points have to be included to be
variables in addition to the number of dimension and rotation
variables. This makes search parameter vector p large enough and
difficult to fit. On the other hand, it was observed that the line
search conditions play a crucial role for the SD method
performance and success. For a remarkable performance, the end-
users should consider this fact and it may be recommended to use
the SD-ABC combination, which was found to be fastest and most
robustness in this study, for geometry fitting. Moreover, the line
search condition parameters (i.e., ¢ and 1 for the ABC and GC,
respectively) might have an effect on the performance of the SD
method, which deserves further explorations.
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