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Abstract 

This paper presents a benchmarking study on the steepest descent (SD) method considering three different line search conditions 

including Backtracking (BC), Armijo-Backtracking (ABC) and Goldstein (GC) in nonlinear least squares fitting of measured data 

obtained from coordinate measuring machine (CMM). Within this scope, five primitive geometries such as circle, square, rectangle, 

triangle and ellipse were built via 3D printer. Those geometries were then scanned with CMM to acquire their 2D profiles to be fitted. 

To find best fitting parameters for each geometry, the nonlinear least squares approach along with the above-mentioned optimization 

method-line search condition combinations were employed. During the fitting process, the total number of function evaluations, when 

the combination converges to required tolerance, were used as a performance metric of the combination in question. With those data, 

the performance and data profiles for each combination were created to be able to carry out a reliable performance evaluation. Based 

on those profiles, it has been seen that the SD-ABC combination is the fastest one. In addition, it is successful on all the geometries 

while the others are not. For the second fastest combination, the SD-BC combination stands out. However, its successful rate is only 

80%, which means it fails on a geometry. On the other hand, the SD-GC combination takes the last place in this study. All those results 

have shown that the line search conditions have a great contribution to the success and performance of the optimization algorithm being 

used. Besides, their performance may differ from problem-to-problem. The end-users should consider these facts to find best 

optimization method-line search condition combination for their problems. 

Keywords: steepest descent method, line search condition, performance profiles, data profiles, nonlinear least squares fitting, 

optimization.   
 

Koordinat Ölçme Makinesi Verilerinin Doğrusal Olmayan En Küçük 

Kareler Uydurulmasında En Dik İniş-Doğru Boyunca Arama Şartı 

Kombinasyonlarının Performans Analizi 
Öz 

Bu makale koordinat ölçme makinesinden (KÖM) elde edilen verilerin doğrusal olmayan en küçük kareler uydurulmasında 

Backtracking (BC), Armijo-Backtracking (ABC) ve Goldstein (GC) içeren üç farklı doğru boyunca arama şartlarını dikkate alarak en 

dik iniş (EDİ) yöntemi üzerine bir kıyaslama çalışması sunmaktadır. Bu kapsamda, daire, kare, dikdörtgen, üçgen ve elips şekillerindeki 

beş temel geometri 3B yazıcı ile imal edildi. Daha sonra bu geometrilerin uydurulacak 2B profillerini elde etmek için adı geçen 

geometriler KÖM ile tarandı. Her bir geometriye en iyi uydurma parametresini bulmak için, doğrusal olmayan en küçük kareler 

yaklaşımı yukarıda bahsedilen optimizasyon yöntemi-doğru boyunca arama şartı kombinasyonları ile birlikte kullanıldı. Uydurma süreci 

boyunca ilgili kombinasyon istenilen tolerans değerine yakınsadığında ortaya çıkan toplam fonksiyon değerlendirme sayısı kullanılan 

kombinasyonun bir performans metriği olarak dikkate alındı. Güvenilir bir performans analizi yapabilmek amacıyla bu veriler ile, her 

bir kombinasyon için performans ve veri profilleri oluşturuldu. Adı geçen profillere dayanarak EDİ-ABC kombinasyonun en hızlı 

olduğu görüldü. Ek olarak bu kombinasyon diğer kombinasyonların aksine tüm geometrilerde başarılıdır. İkinci en hızlı kombinasyon 

için EDİ-BC kombinasyonu ortaya çıkmaktadır. Fakat, adı geçen kombinasyonun başarı oranı sadece %80’dir, yani bir geometride 

başarısız olmaktadır. Öte yandan, EDİ-GC kombinasyonu bu çalışmada son sırayı almaktadır. Tüm bu sonuçlar gösteriyor ki, doğru 

boyunca arama şartlarının kullanılan optimizasyon yönteminin başarısına ve performansını büyük bir katkısı vardır. Ayrıca bu şartların 

performansı problemden probleme farklılık gösterebilir. Son kullanıcılar kendi problemleri için en iyi optimizasyon yöntemi-doğru 

boyunca arama şartı kombinasyonunu bulmak için bu bulguları dikkate almalıdır. 
 
Anahtar Kelimeler: En dik iniş metodu, Doğru boyunca arama, Performans profilleri, Veri profilleri, Doğrusal olmayan en küçük 

kareler uydurma, Optimizasyon 
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1 Introduction 

The steepest descent method, developed by Cauchy [1], along 

with a line search has been widely implemented in many fields for 

optimization purpose. As such, in [2], a steepest descent 

optimization procedure was proposed to evaluate the circularity 

of a mechanical part. The authors used the geometrical methods 

for computing the steepest descent direction and step length and 

they reported that the proposed algorithm is more computationally 

efficient than the traditional optimization-based and 

computational geometry-based methods. Xiao et al. [3] employed 

the SD method for maximum power point tracking and the results 

showed that it is superior to hill climbing method. An algorithm 

based on the SD method for blind signal separation was presented 

by Dam et al. [4]. For optimal step length, they used a 

combination of Golden search technique and parabolic 

interpolation and it was determined from the computational 

experiments that the proposed algorithm provides faster converge 

than the one which uses constant step length. In addition to this 

study, regarding as the step length, Kalousek [5] released a 

random step length selection procedure for the SD method. On the 

other hand, the crystal lattice parameters were found by 

implementing the SD method in [6]. Another application of the 

SD method on the sensor placement problem was completed by 

Akbarzadeh et al. [7]. Furthermore, an energy minimization 

approach using the SD method for micromagnetics was presented 

by Exl et al. [8]. Besides those practical studies, various methods 

and algorithms, such as these of Refs. [9-11], have been proposed 

to improve the SD method performance in the literature.  

It is concluded from the literature studies summarized above 

that the SD method is a useful and a practical tool for many 

applications and its performance may vary depending on the 

problem dealing with and the step length computations techniques 

being used. By keeping those facts in mind, in this paper, it is 

concentrated on performance evaluation of the SD method 

considering three well-known line search conditions including 

BC, ABC and GC in the nonlinear least squares geometry fitting. 

For this purpose, the five test geometries were built with 3D 

printer and then, their 2D profiles were acquired via the CMM. 

With implementing an iterative nonlinear least squares geometry 

fitting procedure, the best parameters, which enable to represent 

the measured data, for the test geometries have been identified. 

During the fitting process, the number of function evaluations at 

each iteration are monitored and the total number of function 

evaluations when the best parameters are found are set as the 

performance criteria of the SD-line search condition combination 

in question. Henceforth, the paper is organized as follows: Section 

II accommodates the nonlinear fitting procedure, as well as 

includes test geometries. Section III covers the experimental 

studies. The obtained results with discussion are provided in 

Section IV. Finally, Section V summarizes and concludes the 

paper. 

2. Nonlinear Least Squares Fitting 

Procedure of CMM Data 

To obtain the CMM data for nonlinear least squares fitting, 

the five test geometries containing circle, square, triangle, ellipse 

and rectangle have been selected. Their parametric mathematical 

models [12] are given as follows: 

 

 

Circle: 

 
𝑥 = 𝑟𝑐 cos(𝑢) + 𝑥𝑐 

𝑦 = 𝑟𝑐 sin(𝑢) + 𝑦𝑐 
(1) 

Square and rectangle: 

 

𝑥𝑢 =
𝑤

2
(|cos⁡(𝑢)| cos(𝑢) + |sin⁡(𝑢)| sin(𝑢)) 

𝑦𝑢 =
ℎ

2
(|cos⁡(𝑢)| cos(𝑢) − |sin⁡(𝑢)| sin(𝑢)) 

𝑥 = 𝑥𝑢 cos(𝜃) − 𝑦𝑢 sin(𝜃) + 𝑥𝑐 

𝑦 = 𝑥𝑢 sin(𝜃) + 𝑦𝑢 cos(𝜃) + 𝑦𝑐 

(2) 

Triangle: 

 

𝑟 =
ℎ

𝑐𝑜𝑠⁡(
2

𝑛𝑠
𝑎𝑟𝑐𝑠𝑖𝑛 (𝑠𝑖𝑛 (

𝑛𝑠

2
𝑢)))

 

𝑥𝑢 = 𝑟 𝑐𝑜𝑠(𝑢) 

𝑦𝑢 = 𝑟 𝑠𝑖𝑛(𝑢) 

𝑥 = 𝑥𝑢 𝑐𝑜𝑠(𝜃) − 𝑦𝑢 𝑠𝑖𝑛(𝜃) + 𝑥𝑐 

𝑦 = 𝑥𝑢 𝑠𝑖𝑛(𝜃) + 𝑦𝑢 𝑐𝑜𝑠(𝜃) + 𝑦𝑐  

(3) 

Ellipse: 

 

𝑥𝑢 = 𝑎 cos(𝑢) 

𝑦𝑢 = 𝑏 sin(𝑢) 

𝑥 = 𝑥𝑢 cos(𝜃) − 𝑦𝑢 sin(𝜃) + 𝑥𝑐 

𝑦 = 𝑥𝑢 sin(𝜃) + 𝑦𝑢 cos(𝜃) + 𝑦𝑐 

(4) 

In these equations,  𝑥  and 𝑦 are the geometry final coordinates, 

𝑥𝑢  and 𝑦𝑢 are the geometry coordinates without rotation, 𝑥𝑐  and 

𝑦𝑐 are the center coordinates of the geometry, 𝑢 is the parameter 

ranging from 0 to 2𝜋 radians, 𝑟𝑐  is the radius of circle, 𝑤 is the 

width of square and rectangle, ℎ is the height of square, rectangle 

and triangle, 𝜃 is the rotation angle, 𝑟 is the radius of triangle, 𝑛𝑠 
is the number of edges (i.e., 𝑛𝑠 = 3 for triangle), 𝑎 is the radius 

of ellipse along the 𝑥 axis and 𝑏 is the radius of ellipse along the 

𝑦 axis. 

It is well-established in the literature that the nonlinear least 

squares fitting method aims to minimize the sum of squared error 

between measured and computed data. To adapt this approach for 

geometry fitting, the following parameter dependent sum of the 

squared error [13], 𝜖2(𝑝), is defined. 

 

 

𝜖2(𝑝) = ∑[𝑥𝑗 − 𝑥𝑗
𝑚𝑜𝑑𝑒𝑙(𝑝)]

2
𝑛

𝑗=1

+∑[𝑦𝑗 − 𝑦𝑗
𝑚𝑜𝑑𝑒𝑙(𝑝)]

2
𝑛

𝑗=1

 

(5) 

In Eq. (5),  𝑝 is the parameter vector of the geometry (i.e., 𝑝 =
[𝑟𝑐 ⁡𝑥𝑐 ⁡𝑦𝑐 ⁡𝑢] for circle,  𝑝 = [𝑤⁡ℎ⁡𝑥𝑐 ⁡𝑦𝑐 ⁡𝜃⁡𝑢] for square and 

rectangle, 𝑝 = [ℎ⁡𝑥𝑐 ⁡𝑦𝑐 ⁡𝜃⁡𝑢] for triangle and 𝑝 = [𝑎⁡𝑏⁡𝑥𝑐 ⁡𝑦𝑐 ⁡𝜃⁡𝑢] 
for ellipse), 𝑛 is the number of data points, 𝑥𝑗 and 𝑦𝑗 are the 
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coordinates acquired via CMM, 𝑥𝑗
𝑚𝑜𝑑𝑒𝑙  and 𝑦𝑗

𝑚𝑜𝑑𝑒𝑙  are the 

coordinated computed via mathematical model. To find the best 

parameter vector, which minimizes the 𝜖2(𝑝), a line search 

procedure is used as follows: 

 𝑝𝑖+1 = 𝑝𝑖 + 𝛼ℎ (6) 

where ℎ = −⁡𝐽𝑇𝐷 is the search direction which is the steepest 

descent direction in this study, 𝐽 is the Jacobian matrix of the 

objective function and 𝐷 = [
𝐷𝑥

𝐷𝑦
]⁡, 𝐷𝑥 = 𝑥𝑖 − 𝑥𝑖

𝑚𝑜𝑑𝑒𝑙(𝑝)⁡ 𝐷𝑦 =

𝑦𝑖 − 𝑦𝑖
𝑚𝑜𝑑𝑒𝑙(𝑝)⁡. On the other hand, 𝛼 > 0 is the step length that 

defines the amount of the movement along the steepest descent 

direction. There are several computation methods (i.e., line search 

conditions) for this step length in the literature. We use three well-

known line search conditions (i.e., BC, ABC and GC) [14] in this 

study. Their mathematical descriptions are given in Table 1. 

Table 1. Line search conditions 

BC 𝜖(𝑝𝑖 + 𝛼ℎ) ≤ 𝜖(𝑝𝑖) 

ABC 𝜖(𝑝𝑖 + 𝛼ℎ) ≤ 𝜖(𝑝𝑖) + ζ𝛼𝐺𝑇ℎ 

GC 𝜖(𝑝𝑖) + (1 − 𝜈)𝛼𝐺𝑇ℎ ≤ 𝜖(𝑝𝑖 + 𝛼ℎ)
≤ 𝜖(𝑝𝑖) + 𝜂𝛼𝐺𝑇ℎ 

In Table 1 𝐺 = 𝐽𝑇𝐷 is the gradient of the objective function, ζ and 

𝜂 are the scalars. ζ = 0.25 and 𝜂 = 0.35 are used in here. The line 

search procedure with calculated step length at each iteration (i.e., 

Eq. (6)) keeps computing parameter vector until the converge 

condition is met, which is:  

 𝑚𝑎𝑥𝑖𝑚𝑢𝑚|𝐽𝑇𝐷| ≤ 10−3 (7) 

3. Experimental Studies 

The geometries given in the previous section have been first 

built with 3D printer using PLA material. Their 2D profiles have 

been then obtained via the CMM, as shown in Fig. 1. 

 

Fig. 1 Scanning of geometries 

The scanning has been performed with 2 mm touch prob and the 

scanning speed 𝑉𝑠 = 100 mm/min was used. An example CMM 

measurement for a square with this setup are shown in Fig. 2. As 

mentioned before, the collected data (i.e., 𝑥𝑗 and 𝑦𝑗) are employed 

as the input for Eq. (5). 

 

Fig. 2 Example CMM measurement 

4. Results and Discussion 

To test the effect of the line search conditions on the SD 

method performance, the nonlinear least squares geometry fitting 

procedure has been completed for all the geometries using the SD-

line search condition combinations (i.e., SD-BC, SD-ABC and 

SD-GC). While performing this procedure, all the geometry 

parameters are monitored and recorded for every iteration. 

Besides, the sum of least square error, norm of the objective 

function gradient and the number of function evaluations to 

compute the step length are recorded to check the fitting 

procedure health. As an example for those data, Fig. 3 shows 

parameters and step length progresses at each iteration for a 

square fitting using the SD-ABC combination. In addition, the 

sum of least squares error and norm of the objective function 

gradient progresses are illustrated in Fig. 4. 

As can be seen from Fig. 3, all the parameters successfully 

converge after a little bit fluctuation. Notice also that the step 

length 𝛼 varies at each iteration. This is due to line search 

conditions the have to be met for a remarkable progress. 

Otherwise (i.e., using constant step length), it might require much 

more iterations to converge or, the algorithm may fail to complete 

fitting process. It noteworthy that although the use of varying step 

lengths may be beneficial for significant progress in the parameter 

search, they also bring computational cost, which is core of the 

paper. This will be elaborated in later of this section. However, to 

contribute this fact, a plot showing the number of function 

evaluations at each iteration are provided in Fig. 5. As seen, a 

quite amount of work to compute the step length is required to 

consume because the number of parameters to be found are large. 

More specifically, for this example square fitting, the number of 

parameters (i.e., 𝑝 = [𝑤⁡ℎ⁡𝑥𝑐 ⁡𝑦𝑐 ⁡𝜃⁡𝑢]) to be found is 72. This large 

parameter value is emerged from the 𝑢 which should be 

correspond to the number of measured points (i.e., 67 points in 

this fitting). 

2 mm 

probe  
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Fig. 3 Fitting parameters and step lengths 

 

Fig. 4 Sum of least square error and norm of objective function gradient progresses 

 

Fig. 5 Number of function evaluations at each iteration during the fitting process 

The reason behind defining the 𝑢 as a parameter is the irregular 

spacing between the measured points (see Fig. 2). Otherwise, 

from personal experience, the algorithm fails to complete 

geometry fitting process. This fact makes the geometry fitting 

more attractive to work on.  

As a result of the progresses shown in Figs. 3 to 5, we 

achieved a successful square fit, as shown in Fig. 6. This figure 

also provides a comparison of actual, fit and measured squares. 

As seen, the square fit is satisfyingly able to represent the 

measured data. From the practical application of view, this fit, 

for instance, enables us to identify the part tolerances, 

manufacturing accuracy (e.g., both additive and traditional 

manufacturing processes), quality inspection, tool path 

compensation amount etc. In Fig. 6, one can notice that there 

is a slight difference between the actual, fit and measured 

squares. The actual square dimensions are defined as  𝑤 = ℎ =
10 mm in the design step. However, the fit performed on 

measured data gives the dimensions to be 𝑤 = 9.7580 mm, 

ℎ = 9.7812 mm. 
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The difference between the actual and fit dimensions shows the 

manufacturing tolerance that might vary depending on the 

geometry to be built and the material to be used in the 3D printing.  

 

Fig. 6 A comparison between actual, fitted and measured 

squares 

In other respect, the same parameter monitoring and fit quality 

checking procedures reported so far are also carried out in all the 

geometry fittings with the SD-line search condition combinations. 

When the combination in question meets converge requirement 

(i.e., Eq. 7), the line search stops and the total number of function 

evaluations performed thus far is recorded to be a performance 

criterion of the combination. By doing so, Figs. 7 is obtained.  

 

Fig. 7 Total number of function evaluations 

This figure shows the total number of function evaluations for 

each line search condition, corresponding the geometries, when 

the converge occurs. In the figure, the geometry numbers (i.e., 1, 

2, 3, 4 and 5) represent the circle, square, triangle, ellipse and 

rectangle, respectively. Besides, ∞ denotes that the corresponding 

SD-line search conditions combination is not successful to find 

the geometry parameters. Specifically, the SD-BC and SD-GC 

combinations could not complete the fitting process, thereby their 

total number of function evaluations are set to infinity. By 

focusing on the figure, one can realize that the SD-ABC 

combination performs well-done on all the geometries and it 

requires the lowest number of function evaluations for converging 

compared to others. In addition, the circle geometry seems the 

easiest one to fit because all the combinations are successful on it 

with lower number of function evaluations in comparison with 

other geometries. This is attributed that the circle geometry 

equation is simpler and it does not need any rotation around its 

center while others require (see Eqs. 1 to 5). Similarly, we can 

state that the hardest one to fit is rectangle geometry due to the 

fact that the SD-BC and SD-GC combinations fails. Analogue 

observations can be extended by just looking at the Fig. 7. 

However, for more probabilistic analysis, we move on to the 

performance profiles, as shown in Fig. 8.  

 

Fig. 8 Performance profiles-1 

The idea behind the performance profiles, developed by Dolan 

and More [15], is to give the success probability of the solver on 

the test set within the given factor. By adapting this approach in 

the current study, we achieve the performance profiles of the line 

search conditions. They provide efficient and reliable assessments 

on the line search conditions. For instance, by looking at the 

values of 𝑃𝑐(𝜐 = 1), we can determine the fastest line search 

condition which is the ABC. As seen from Fig. 8, it is the fastest 

one on all the geometries because its success probability at the 

factor 𝜐 = 1 is 𝑃𝑐(𝜐 = 1) = 100%  while others are 0% . This 

observation confirms the previous one conducted from Fig.7. As 

increasing 𝜐, the success probability of BC and GC start rising. 

Within the factor 𝜐 = 1.11 of the fastest condition, for instance, 

the BC is able to be successful on the 2 geometries (i.e., 

𝑃𝑐(𝜐 = 1.11) = 40%). The BC success rate remains same at the 

factor range 1.11 ≤ 𝜐 ≤ 3.43. This range for the GC is  1.56 ≤
𝜐 ≤ 3.22. At the factor 𝜐 = 9.13 of the fastest condition, the GC 

reaches maximum success rate (i.e., 𝑃𝑐(𝜐 = 9.13) = 80%) 

whereas the BC requires 𝜐 = 16.55 for maximum performance. 

For clarity, 𝑃𝑐(𝜐) = 80% means that the conditions in question 

are able to be successful on the 4 geometries out of 5. Fig. 7 

verifies this fact as mentioned before. On the other hand, for 

identifying the second fastest condition, we need to exclude the 

first one because the performance profiles are dependent each 

other. By excluding the ABC and generating the performance 

profiles with rest of them, we obtain Fig. 9. As have been done 

before, it is possible to determine the second fastest one based on 

the 𝑃𝑐(𝜐 = 1) values. It is obvious from Fig.9 that the second 

fastest one is the BC with the probability 𝑃𝑐(𝜐 = 1) = 60%. 
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Fig. 9 Performance profiles-2 

In other words, the BC has higher number of wins compared to 

GC (i.e., 𝑃𝑐(𝜐 = 1) = 20%). Based on Fig.7, we can confirm this 

observation, which the BC has lower number of function 

evaluations on the geometries 1, 3 and 4 (i.e., circle, triangle and 

ellipse, respectively) than the GC. This property of the 

performance profiles is quite useful for speed ranking of the line 

search conditions. However, it is sometimes given a 

computational budget in terms of algorithm running time, 

memory usage, number of function evaluations, etc.  and it is 

required to solve the certain number of problems within this 

budget. In this case, the performance profiles cannot be employed 

due to their dependency to each other. For an independent 

evaluation from a computational budget (i.e., total number of 

function evaluations in this study) perspective, we use the method 

of data profiles [16]. As such, the data profiles for all the line 

search conditions are indicated in Fig. 10 within the total number 

of function evaluations range 103 ≤ 𝜓 ≤ 107. In this figure, 

𝐷(𝜓) denotes the percentage of the geometries, which are fitted, 

within the given computational budget 𝜓. To illustrate, for 𝜓 =
104 all the line search conditions are able to complete fitting of 

only one geometry that is the circle (i.e., 𝐷(𝜓) = 20%). If we 

increase the 𝜓 to 105 the ABC fits one more geometry, which is 

the triangle (i.e., geometry number 3, see Fig. 7), while others 

remain same. The speed of the SD-ABC combination also appears 

in data profiles as expected. 

 

Fig. 10 Data profiles 

By combining the knowledges obtained from performance and 

data profiles on the line search conditions, it is obvious that the 

ABC is the fastest and most robustness (i.e., fits all the 

geometries).  

5. Conclusions 

This paper has been concentered on the performance assessment 

of the SD-line search condition combinations in nonlinear least 

squares geometry fitting. The three combinations, containing the 

SD-BC, SD-ABC and SD-GC, performances have been evaluated 

on the five geometries. Their 2D profiles were obtained using the 

CMM. In geometry fitting process, all the geometry parameters 

were kept track and the total number of function evaluations when 

the converge occurs were used as the performance measure of the 

combination in question. Using this measure, the performance and 

data profiles were generated for efficient performance 

assessments. It was seen that the geometry fitting is not a 

straightforward task because the 𝑢 parameter for each measured 

point must be defined as a search parameter. It means that all the 

𝑢 parameters of measured points have to be included to be 

variables in addition to the number of dimension and rotation 

variables. This makes search parameter vector 𝑝 large enough and 

difficult to fit. On the other hand, it was observed that the line 

search conditions play a crucial role for the SD method 

performance and success. For a remarkable performance, the end-

users should consider this fact and it may be recommended to use 

the SD-ABC combination, which was found to be fastest and most 

robustness in this study, for geometry fitting. Moreover, the line 

search condition parameters (i.e., ζ and 𝜂 for the ABC and GC, 

respectively) might have an effect on the performance of the SD 

method, which deserves further explorations. 
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