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Abstract

Many studies have been done on superposition operators and non-Newtonian calculus from past to present. Sagir and Erdogan defined
Non-Newtonian superposition operators and characterized them on some sequence spaces. Also they examined *- boundedness and *-
locally boundedness of Non-Newtonian superposition operators ¢, and ¢, to I, g. In this study, we define *-continuity and *-uniform
continuity of operator. We have proved that the necessary and sufficient conditions for the *-continuity of the non-Newtonian
superposition operator ¢y, to 1, 5. Then we examined the relationship between the *-uniform continuity and the *-boundedness of the
non-Newtonian superposition operator. Also, the similar results have been researched for the Non-Newtonian superposition operator
Cyto g

Keywords: *-Continuity, *-uniform continuity, *-boundedness, non-Newtonian superposition operators, non-Newtonian sequence
spaces.

Bazi Newtonyen Olmayan Superposition Operatorlerin *-Surekliligi
ve *-Diizgiin Siirekliligi Uzerine

Oz

Gegmisten giinlimiize superposition operatorler ve Newtonyen olmayan analiz iizerine birgok ¢alisma yapilmistir. Sagir ve Erdogan
Newtonyen olmayan superposition operatorleri tanimlamis ve bazi dizi uzaylart iizerinde karakterize etmislerdir. Ayrica ¢y, Ve C,
uzaylarindan | g uzayma tanimli Newtonyen olmayan superposition operatorlerin *- siirliligim ve *-yerel smirliligim incelemislerdir.
Bu ¢alismada operatoriin *-siireklilik ve *-diizgiin siirekliligini tanimliyoruz. Co, uzayindan ;3 uzayma tammli Newtonyen olmayan
superposition operatoriin  *-siirekliligi i¢in gerekli ve yeterli kosullar1 ispathiyoruz. Sonra Newtonyen olmayan superposition
operatoriin *-diizgiin siirekliligi ile *-smirlilig1 arasindaki iliskiyi inceliyoruz. Ayrica ¢, uzayindan |, g uzayma tanimli Newtonyen
olmayan superposition operator igin de benzer sonuglar arastirilmustir.

Anahtar Kelimeler: *-Siireklilik, *-diizgiin siireklilik, *-sinirlilik, Newtonyen olmayan superposition operatorler, Newtonyen
olmayan dizi uzaylart.
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1. Introduction

Non-Newtonian calculus was firstly introduced by Michael
Grossman and Robert Katz between years 1967 and 1970 and
they published the book about fundamentals of non-Newtonian
calculus which includes some special calculus such as
geometric, harmonic, quadratic. At the recent times, Cakmak
and Basar (2012) obtained some results on sequence spaces with
respect to non-Newtonian calculus. Also, Duyar and
Erdogan (2016) worked on non-Newtonian real number series
and there are many works about non-Newtonian calculus as
(Sagir and Erdogan, 2019b; Sager and Sagir, 2021).

Many studies are done until today on superposition operator
which is one of the non-linear operators. Dedagich and
Zabreiko (1987) studied on the superposition operators in the

space { p - After, some properties of superposition operator, such

as boundedness, continuity, were studied by Thuangoon (1998),
Sagir and Giingor (2015a) and many others (Sagir and Giingor,
2015b; Giingor and Sagir, 2017). Non-Newtonian superposition
operator was defined and characterized in some non-Newtonian
sequence spaces by Sagir and Erdogan (2019a) . Also Erdogan
and Sagir (2021) worked on *- boundedness and *-locally
boundedness of some non-Newtonian superposition operators.

A generator is defined as an injective function with
domain R and the range of generator is a subset of R . Let take
any « generator with range A=R_ . Let define a -

addition, « - subtraction, ¢ -multiplication, ¢ -division and &
-order as follows respectively;

y+z=a(a(y)+a'(2))
y=z=a(a(y)-a(2))

yxz= a(afl(y)xa’l(z))
ylz= a(a‘l(y)/a‘l(z)), z#0,a7(z) %0

y<z(y<2)eal(y)<a (@) (at(y) <a’(2))
for X,y e Ra (Grossman and Katz, 1972).

(Ra,-i-,k,é) is totally ordered field (Cakmak and Basar,
2012).

o -absolute value of a number X € R is defined by

X , X>a(0)
|X],=<x(0) ,x=a(0) .
a(0)=x ,x< a(0)

Grossman and Katz described the *-calculus with the help
of two arbitrary selected generators. In this study, we studied

according to *-calculus. Let take any generators & and £ and
let * (“star") is shown the ordered pair of arithmetics (o -
arithmetic, £ -arithmetic). The following notations will be used.

e-ISSN: 2148-2683

a-arithmetic pS-arithmetic
Realm A=R B = Rﬂ
Addition 3 X
Subtraction -~ =
Multiplication X %
Division / /
Order < Z

In the *-calculus, o -arithmetic
and / -arithmetic is used on values.

is used on arguments

The isomorphism from « -arithmetic to /3 -arithmetic is

the unique function ¢ (iota) that possesses the following three
properties.

1. 1 is one-to-one.
2.7 ison A andonto B.

3. For any numbers U and V in A,

It turns out that z(x) = B(a *(x)) for every number X
in A and that 1(n) =7 for every integer N (Grossman and
Katz, 1972).

spaces S _,(__.C

a’! w,a'a

The non-Newtonian sequence

and C,, over the non-Newtonian real field R, are defined as
following:

S, ={x=(x):VkeN; x eR,}
l.s :{x:(xk)esa: “sup|x,| <oo}
keN

ca:{x:(xk)esa:HIeRaa “Iim\xk;l\a:()}

k—a0

Cy :{x:(xk)esa: “lim x| :0}

a
! k—00

The sequence spaces {_,,C, , C,, are non-Newtonian

a !

which is

Cno‘a

normed spaces with the non-Newtonian norm ||

defined as ||X|| :”‘sup|xk |a (Cakmak and Basar, 2012).
fo.a keN

) i o w_ |5 k=n

The o -sequence €, isdefinedas €,"" =+ . .

0, k=#n
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Let S, be

sequences, X, be a sequence space on R and Y, be a

space of non-Newtonian real number

sequence space on Rﬁ. A non-Newtonian superposition
operator  P; on X_is a mapping from X _ into S, defined
by P (X) =(f(k, %)), where f:NxR, —R, satisfies
condition (NA)) as follows;

(NA) f(k,0)=0 forall keN

If (P €Y, foral x=(x)eX,, we say that P

a 1
acts from X into Y and write (P :X, =Y, (Sagir and
Erdogan, 2019a).

Also, we shall assume the following conditions:

(NA,) f(k,.) is*-continuous forall k e N .

(NA,) f(k,.) is B-bounded on every a -bounded

subsetof R forall keN.

Sagir and Erdogan (2019a) have characterized the non-
Newtonian superposition operators  P; on C,, and C, as the
following.

Theorem 1

Let fiNxR, >R, satisfies the condition (NA,) .
Then P, ic,, = (, ,if and only if there exist an @ -
number £3>0  and such

that |f(k,t)|ﬁ < g when [t < forall keN.

a [ -sequence (Ck ) €ly,

Theorem 2

Let f:NxR, >R, satisfies the condition (NA,) .
Then P, :c, —)flﬁ if and only if there exist an « -
number >0 and a /3 -sequence (Ck)eﬂlﬁ such
that |f(k,t)|ﬂ <c, when |t42|a <u forall zeR, and
forall KeN.

Theorem 3

Let f:NxR, >R,. The non-Newtonian
superposition operator Py :1C, , — {, , is *-bounded if and
u>0  there

only if for all exists a f-

sequence C(1) =(c, (1)) e (y, such that | f (k,t)|ﬂ <c,
when |t|a < u foreach keN.

Theorem 4

Let f:NxR, >R,. Then (P ic, —>( , is *

bounded if and only if for every u 30 there exists a p-
e-ISSN: 2148-2683

sequence C(u) = (Ck (,u)) €l,, such that | f (k,t)|ﬁ <c,
when [t| < g forall k &N (Erdogan and Sagrr, 2021).

Our aim in this study is to extend some topological
properties of superposition operators in classical calculus to non-
Newtonian calculus. We prove that the necessary and sufficient
conditions for the *-continuity and *-uniform continuity of the

non-Newtonian superposition operator \ P; :C, , — {, ;. Also

the similar results have been obtained for P, :c, — ﬁlﬁ )

2. Main Results
Definition 1

Let X <R, and let f:X — R, be a function. If for

every [ -number £ >0, there exists an a-

number O = 5(5) 3 0'such that

(%)= f (xz)‘ﬂ Ze when |X =X, <5

forall X,,X, € X , then it is said that the function f is *-

uniformly continuous on X . The function f : X — Rﬁ is *-
continuous if it is *-unifomly continuous.

Definition 2

Let (X,||.||X’a)and (Y,||.||Y’ﬂ) be

normed spaces and let F: X —Y be an operator. If for
every [ -number & > 0,

number & = 5(8) 3 0 such that

non-Newtonian

there exists an a -

HF(xl):F(xz)HYﬁ Zg when [ =x|, <65

for all X, X, € X , then it is said that the operator F is *-
uniformly continuous on X .

Theorem 5

Every function which is *-continuous on ¢ -closed and ¢ -
bounded subset of R, is also *-uniformly continuous on this
set.

Proof
Assume that function f : X — Rﬂ which is *-continuous

on an « -closed and & -bounded set X <R is not *-

uniformly continuous. Then, there are at least a [ -
number & 5 0and X, Y, € X such that
‘f(xn):f(yn)ﬁég 1)

when
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|Xn = yn|a <= (2.2)

for all N e N. The sequence (Xn) is an & -bounded sequence

since set X is & -bounded and X, € X forall ne N. By

a -Bolzano Weierstrass Theorem (Duyar et al., 2015), (Xn)
has an & -convergent subsequence ( ) Let “Ilm X, =Xo-

Since X is a -closed, X, € X
we get

. If we use the inequality 2.2,

Yo = %o X =%

<Y X

nk;X

N, a
This means that “lim Yo =X, - Since function f is *-
—0

continuous at point X,

Zlim £ (x, )="1im £ (y, )= (x)

k—w

is written. Therefore

2lim £ (x, )=

k—o0

’lim f (ynk)ﬂ

k—o0

=|f(x)=f (x0)|ﬂ =0

but this situaiton contradicts with the inequality 2.1 for
all KeN. So the function f is *-uniformly continuous on

X.
Corollary 1

All functions which are *-continuous on [a,b] cR, are
*-uniformly continuous on this interval.
Proposition 1

Let X be one of the non-Newtonian sequence
spaces Cy,, C,and (_ .. If the non-Newtonian superposition

WPiX >0, X
then f (K,.) is *-continuouson R, forall ke N.

operator *-continuous on

Proof
v Py is *-continuous on X . Let keN,

n Ps s

Assume that
t,eR,
at t0>'<e(k) e X,
| WP (2)= Py (t5e® )||,M Zg When 7. ¢ xe®| 25 (23)

and ¢ >0. Since *_continuous

there exists an & -number & >0 such that

for each 2=(z,)e X . LetteR, with |t4t0|a <o and

{t,n:k
let Yy, =1. .

0 n-k Then y=(yn)eXand

e-ISSN: 2148-2683

Hy;t0 >'<e(k)HX 3 =|t;t0|a <0 . By23, it is obtained that

H N Pt (y) =P (to x et )H/LM <& .Then

[T (k)= (k)] =] WP (¥)= P (L xe®)| 22

Thus f (k,.) is *-continuous on R, forall k e N

Theorem 6
t N Pf :CO,a

operator  P; is

- fl,ﬂ- The non-Newtonian superposition
*-continuous on C,, if and only if
function f (k,.) is *-continuous on R, forall K e N,

Proof

First part of theorem (necessity condition) is seen from

Proposition 1 . Conversely, assume that function f (k,.) be *-

all keN.

and & 5 0. The function f satisfies condition (NA,) since it

continuous on R _ for Let X=(X, ) €Cy,

satisfies condition (NA,). By Theorem 1, there exist an & -
number 4 > Oand a [ -sequence (Ck ) € El’ﬁ such that
‘f (k,t)‘ﬂ < C, whenever |t|a <u

(2.4)

forall keN since (P, :¢,, =1, ,

52 C :ﬁ'2|ck|ﬂ < oo
k=1 k=1

. Then, there exists a N eN

. We get

“lim|x,| =0 and

k—0

since X € C,, and (C, ) € oy
such that

a and

ch< B

for all K>N. Thus |Xk|0, < is written for all K>N.

%], <

By 2.4, ‘f (k, X, )‘ﬂ <c, is obtained for all k> N . Then
ﬂk:ZN“ (ki ), éﬁk:ZNCk Z%ﬂ 2.5)
is found. Since the function f (k,.) is *-continuous at X,
there exists an @ -number & >0 with & < “min{i,%a}
such that

|f(k,t);f(k’xk)|ﬂ2 ﬁwhen |t Xk| <o (2.6)
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for all ke{l,Z,...,N—l} andteR,. Let we
take 2 =(Z,) €C,, suchthat |z= X||C0 <0 .Then
|z, =% ] < sup|z xn|a=||z+xco <6
forall KeN.By 2.6
B &
f(k,z )= f(k, —
‘ ( Zk) ( Xk)‘ﬂ<3x(N 1)ﬁ
is found for k 6{1,2,..., N —1}. So
< . &
S| F (kg )= (kx| <58 @.7)
P £ 3
is written. Since
|zk|a§|zk;xk|a+|xk|a&54%%05&%0(4}%05:#

for all K> N, by virtue of 2.4, ‘f (k,z, )‘ﬂ < C, is obtained
forall K> N . Then

s 2|t (k’zk)|ﬂ <52 G 2%13
Py Py

is written. Therefore

(2.8)

P P (x) , ;‘f(kz) f(k,xk)\ﬂ
N-1
=ﬂ;\f kxk‘ ,,Z\ (k,z,)= kxk‘
N-1
f%\f( kxk\ ﬂZ‘ kz,) “ﬂk;‘f(k’xk)‘ﬁ
<§ﬁ¥%ﬂ$%ﬁ
=¢
is obtained by using inequalities 2.5,2.7,2.8. So, the

operator  P; is *-continuouson C, .
Example 1

Let function f:NxR, —R, be defined as

‘z(t)se(z(t):é)‘

f(kt)= =

(NA,) since f (k
andteR . If |t|a Sl then

£ B. f satisfies the condition

,.) *-continuous for all K e N . Let x =1

‘z(t)ié‘a i‘z(t)‘a 13<4

is obtained. So

e-ISSN: 2148-2683

f(O((0)=3) ()], %[((0)=3)

. 4
|f(k,t)|ﬂ = % [y = ﬁﬁg%ﬁ
, 4
is found for all KeN. Ika=7Tﬁﬁ for all keN,

(Ck)eflﬁ is obtained. By Theorem 1, we get

that Py :C,, = (, 5. In view of Theorem 6, \ P is *-

continuous on ¢, , since function f (k,.) is *-continuous for

al keN.
Theorem 7
et  PsiCy, —)flﬁ. The non-Newtonian superposition
operator  P; is *-uniformly continuous on every « -bounded
subset of C, , if and only if function f satisfies the condition

(NA,) and the non-Newtonian superposition operator , P; is
*-pbounded.
Proof
Assume that P :1C,, — (, ; is *-uniformly continuous on
every & -bounded subset of C,,,. By Theorem 6, f (k,.) *-

all kKeN. Namely, it satisfies the
condition (NA,). Let we take p >0 and X=(X)€C,,

continuous  for

such that ||X||C ép. The function f satisfies the
0,a

condition (NA,) since it satisfies the condition (NA,). By
Theorem 1, there exist an & -number ,u§0 and a f-

sequence (Ck ) € (, , such that

‘f (k,t)‘ﬂ <C, whenever |t|a <u (2.9)

For all keN sinceNPf:COa—>ﬁ1ﬂ.“|im|Xk| =0
! ! k—o a

since X€Cy,. Then,  there  exists N €N such

that |Xk|a é,u for all K>N. By using2.9, it is obtained

that ‘f (K, X, )‘ﬁ <c, for all kK> N. Therefore it is written
that

0

ﬂZ| kxk| —pZCk ﬁZ|Ck| _” () ” :

k=N

(2.10)

Let m, —'Hsup|f (k,t) | for all KeN. Since f satisfies
I, <

(NA,), keN.
<p, |Xk|aép for all KeN. Hence we get

the condition m, <¥oo  for all
Since ||X||CO
that

[f (k% )], 2m, (2.11)

963
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forall KeN.By2.10and 2.11

. N-1 . 2
X)H( 2,200 f (k% )‘ﬂ T |f(kix, )‘ﬁ
1.5 k=1 k=N
N-1
2, S+,

Then the non-Newtonian superposition operator P, is *
bounded.

[P (

Conversely, assume that f satisfies the condition (NA,)

and P, is *-bounded. To show that non-Newtonian

superposition operator  P; is *-uniformly continuous on
every « -bounded subset of C; ,, it must be shown that the

operator  P; is  *-uniformly  continuous on  « -ball

B, [O,p]. Let p>0 and £30. Since P, is *-bounded,

by Theorem 3 there exists a S-sequence C, (p) Ef:l,ﬁ such
that

|f (k,t)], 2c, (p) when [t], <p (2.12)

for all KeN. Since C, (p)eflﬁ, there exists a N eN

such that ﬂkz: ¢ (p) 2%,8 . Since f(k,.) is *-uniformly
=N

continuous on [0= p, p] for all K e{l, 2,...,N —l}, there

existsa & € R, with 0< & <1 such that

_ /3 when |t;s|a <o

[F(kt)=F (ks)], 2 3 (1)

(2.13)

fort,se[0=p,p]. Let x=(x), y=(¥)e Ba[('),p}
with [x=y] <8.Then [x[, <p, |y|, <p and [x =y, <0
forall K e N . By inequality 2.13

&

f(k,x )= f(Kk, <ok
‘ ( Xk) ( yk)‘ﬂ<3X(N—1)ﬁ
is obtained for all k €{1,2,...,N =1} . Then
< . E
s 2] f(kox) = (kv 58 (2.14)
k=1
is found. By 2.12, ‘f (K, X, )‘ﬂ <c(p)
and ‘f(k,yk)‘ﬂéck(p) are obtained for all KeN.
Therefore
s 2| (k%) éﬁzck(p)zgﬂ (2.15)
k=N k=N

e-ISSN: 2148-2683

and

p2|f k Yk| —ﬂzck(p)< B

are written. In view of 2.14, 2.15 and 2.16,

(2.16)

||NPf(X) P " ﬂZ|ka kyk|
:ﬂkZ|f(k'Xk) kyk| ﬁ2|f ka kyk|
=1
N-1
éﬁéh(k,xk) (ky,)|, ﬂZ|f (ko) ;ﬂk:zN|f(k,yk)|ﬂ
WE L WE L8
<§ﬁ+§ﬂ+§ﬁ
=¢
is obtained. Thus the non-Newtonian superposition

operator  P; is *-uniformly continuous on every « -bounded

subset of C, , .

Example2
Let function f :NxR, >R, be defined
s f(k t):‘l(t)‘ﬂﬂ for al keNand telR
! 7kﬁ a”
Then f(k,.) is *-continuous for all keN. Let =1 and
1
let C, :7Tﬁﬂ for all keN. It is obtained
h fkt—‘l(t)‘ﬂ <c, for all keN and for te R
that f(k,t)= =% B=c foralkeN and forteR,
with |t|a <. Hence we get that (P, :C,, — Ly 5 by

Theorem 1. Let @ > 0 and teR, .If |t|a égp forall ke N,

= ()
ki (k,t)\ﬂ < i Vi

is found. We get (¢ ()€l , if (¢ ()= (1.7(.?;) ,Bj be

taken. Then ‘f (k,t)‘ﬂ <(c (¢)) is written for all k e N . By

Theorem 3, the non-Newtonian superposition operator  P; is

*-pounded.  Thus the  non-Newtonian  superposition
operator  P; is *-uniformly continuous on every « -bounded

subset of C, , by Theorem 7.

Theorem 8

Let non-Newtonian superposition operator
n Pr i€, = {5 be given. The non-Newtonian superposition
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operator  P; is  *-continuous on C_ if and only if

function f (k,.) is *-continuous on R _ forall K e N.

Proof

The necessity condition of theorem is obvious from
Proposition 1. Conversely assume that f (k,.) is *-continuous

keN.

number £330 be given.
condition (NA,). Since P, :c, — ¢

on R for all Let x=(X)ec, and f-

The function f  satisfies the

15 there exist an o -

number u 30 and a [ -sequence (Ck ) S Clﬁ corresponding

toeach Z € R, such that
‘ f (k,t)‘ﬂ <c, whenever |t = Z|a <u (2.17)
for all KeN by Theorem 2. Since XeC,, there

exists ae€ R such that “Eim|Xk ~a|, =0 . Then there exist
—>0

an o -number 4 >0 anda /3 -sequence (c)e Ly g

‘f (k,t)‘ﬂ <c,  when |t;a|a <u (2.18)

for  all keN by2.17.  Since “lim|x,~a| =
k—ao0 a

and (¢, ) € (, 4, there exists N € N such that

| —a| 205 and ﬂZC <= ,B

for all K> N . By2.18, it is obtained that ‘f (k, X, )‘ﬂ <c,
forall K> N . Then

o0

ﬂZ|f(k’xk)|ﬂ <52 G Z%ﬁ
k=N

k=N

(2.19)

is written. Since the function f (k,.) is *-continuous at X, for

all k e {1,2,..., N —l}, there exists an ¢ -number & >0

with 5<“min{i,%a} such that

(k)= (kx| < B when [t=X| <& (220

_ &
3% (N =1)
N-1} and teR,
<. Then |z, =X | <&.By220,

for all k e {1,2,...,

such that ||Z - X||C'a

. Let ZeC, be given

. &
f(k,z )= f(k, —_—
‘ ( Zk) ( Xk)‘ﬂ<3X(N 1)5
for k € {1, 2,...N —1}. From here,
e-ISSN: 2148-2683

s (kz)=f (kx| <58 (2.21)
k=1
is written. Then
|4;ﬂaﬂq;&t+hﬁﬁhké+§a<§a+§a=y

for all k>N and by virtue of2.18 ‘f(k,zk)‘ﬁ <C, is

obtained for all kK > N . Hence

-~ . &
Zk)|ﬂ <5268 §ﬁ
k=N
is written. By inequalities 2.19, 2.21 and 2.22,

LRI

=%\f(klzk)' &), ﬁZ\ (ka)=1(kx),

< Sfeale el Skl ]
2%ﬂ4§ﬂ¥%ﬁ

=&

0

p 2| (K

k=N

(2.22)

o,

is obtained. This completes the proof.
Theorem 9

et W P;:cC, —>€1ﬁ. The non-Newtonian superposition

operator  P; is *-uniformly continuous on every « -bounded

subset of C_ if and only if the function f satisfies the

condition (NA,) and the

operator  P; is *-bounded.

non-Newtonian  superposition
Proof

Assume that \ P; :c, — (, ; is *-uniformly continuous
on every & -bounded subset of C, . By virtue of Proposition 1,
f(k,.) is *-continuous for all KeN. The function f
satisfies the condition (NAZ) since it satisfies the condition

(NA,) .

such that ||X||W <

Let @ -number >0 and X = (%) €c, be given

By Theorem 2, there exist & -

number u >0 and [ -sequence (Ck)e ﬂl’ﬂ corresponding to

each Z€ R such that
‘f (k,t)‘ﬂ <c, when |t* Z|a <u (2.23)
for  all keN since (P :c, > 1, , There  exists

an ae€ R such that
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“lim|x ~a| =0

k—>o0

(2.24)

since XeC,. By223, there exista-number u§0 and f3 -

sequence (C, ) € (, ; such that

‘f (k,t)‘ﬁ <c, when |t;a|a <u. (2.25)
In view of 2.24, there existsa N € N such that

X ~a|, <u (2.26)
for all Kk>N. By225and2.26, it is said

that ‘f (k,Xk)‘ﬂ <c, forall k>N . Then

(x50 230l =l

o0

(2.27)
k=N

is obtained. Let m, ="sup f(k,t)‘ﬂ for all keN.
I, <~
Since f satisfies the condition (NA,), it is found

that m, < oo for all k € N . Since ||X||C]a <y, |Xk|a <y for

all kK e N. Hence we get that

\ f (K, X )\ﬁ <m, (2.28)

forall K e N . By 2.27 and 2.28,

N-1 ©
X)H[ = /?Z‘ f (k% )‘ﬁ + ﬂZ‘ f (k. %, )‘ﬁ
18 k=1 k=N
N-1
< ﬂz m, _T_H(Ck )H(
k=1 L8

is obtained. Then the
operator  P; is *-bounded.

[P (

non-Newtonian  superposition

Conversely, assume that function f satisfies  the

condition (NA,) and  the

operator  P; is *-bounded. To show that the non-Newtonian

non-Newtonian  superposition

superposition operator  P; is *-uniformly continuous on

every o -bounded subset of C_, it must be shown that  P; is
*-uniformly continuous on « -ball B, I:O,(p:l for all ¢ 30.
Let ¢ > 0and &350 be given. Since  P; is *-bounded, by

Theorem 4 there existsa f -sequence C, € {, , such that
‘f (k,t)‘ﬂ <c, when |t|a <o (2.29)
for all keN . Since ¢, €(, ,, there exists N €N such

— . &
that ﬂkzh;ck < Eﬂ since f (k,.) is *-uniformly continuous

e-ISSN: 2148-2683

on [O;go, go] for al ke {1,2,..., N —1}, there  exists
adeR, with 0< 5 <1 such that
[ (kt)=f (ks)], 2 *__p when|t=s| <5 (230

85%(N=1)
for s,t [0~ g, ¢]. Let we  take

y=(%)eB,[0p] with  [x=y| <&
| <o |y | <o and |x =y,| <& are written for
all kK e N. By using inequality 2.30,

‘f (k’xk); f (k’yk)‘ﬂ <

x=(%),

Then

&

is obtained for all k {l, 2,..N —l} . Hence
N-1

2 ()= 1 ey, 25

k=1

(2.31)

is found. By virtue of 2.31 ‘f(k,xk)‘ﬁick and

‘ f (K, Y, )‘ﬂ < ¢, are obtained for all kK € N . Therefore

ﬁ2|f(k’xk)|ﬂéﬂzck Z%ﬂ (2.32)
k=N k=N

and
ﬂZ|f (k, yk| —,;ZC <= ﬁ (2.33)

are found. In view of inequalities 2.31, 2.32 and 2.33,

LIERI TR
:ﬁZ|f(k1Xk

k=1

. N-1
sl,gf(k,xk)

kYk|
kyk|+ﬁZ|f kx )= kyk)|

(), ,,Z|f o), "ﬂk:ZN|f(k,yk)|ﬂ

W€ b €
<zpr=pi=p
33 3
=¢
is obtained. Thus the non-Newtonian  superposition

operator  P; is *-uniformly continuous on every « -bounded

subset of C, .
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3. Results and Discussion

In this paper we defined *-continuity and *-uniform
continuity of operator. We proved that \ P; i¢,, — (, ; is *-

continuous on C,, if and only if function f(k,.) is *-
continuous on R, for all KeN. Also we obtained that
v P ic, —)flﬁ is *-uniformly continuous on every « -
bounded subset of C_ if and only if the function f satisfies
the condition (NAZ) and the non-Newtonian superposition

operator  P; is *-bounded.
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