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Synthesis and Characterization of Azobenzene Derived from 8-
aminoquinoline in Aqueous Media
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Abstract: A series of novel 8-(aryldiazenyl)quinolones have been synthesized effectively with excellent
yields by using 8-amimoquinoline and a variety of aryldiazonium salts containing electron donating and
withdrawing moieties in aqueous media. The structure of the synthesized azo dyes has been characterized
by NMR, FTIR, mass spectroscopy, and UV–Vis techniques. The compounds’ absorption maxima values are
in the range of 427 nm and 445 nm due to π-π* charge transfer transition. It can be evaluated that
azobenzenes have more absorbance ability in the strong donor systems. 
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INTRODUCTION

Azobenzenes  are  an  important  class  of  organic
compounds that are widely used as organic dyes (1,
2),  protein  probes  (3,  4),  chemosensors  (5,  6),
cosmetics (7-9), nanotubes (10, 11) and polymers
(12-14). Due to the presence of N-N linkages, they
have  been  used  for  pharmacological  applications
such as  antiviral,  anti-inflammatory,  antimicrobial,
antitumor,  antidiabetics,  and  antituberculotic  (15-
25).  Beyond  their  potential  in  these  application
areas,  azo-compounds  are  mostly  used  as  dyes.
Until  the late 1800s,  all  dyes were obtained from
natural sources. However, limitation of the natural
dye sources led scientists to synthesize dyes with a
wide variety of new colors. Azo dyes can be easily
prepared by using diazo and coupling components
that are generally low-cost materials (26). Due to
remarkable  stability,  light  resistance  and  easy
diversification of donor and acceptor groups in the
organic compounds, azo dyes are one-step ahead of
other  dyes  (27,  28).  Currently,  the  dyes  and
pigments market are valued for approximately USD
$33  billion  (29)  and  keeping  the  number  and
production volume about 70% in mind, azo dyes are

the largest class of organic dye around the world
(30). Having such a large market share, as a matter
of course increases the tendency towards azo dyes.

Quinoline backbones are considered as one of the
main  classes  of  heterocyclic  chemistry  and  are
found  in  many  natural  products,  alkaloids,  and
synthetic  molecules  (31-33).  Quinoline  forms  the
main  framework  of  drugs  used  clinically  in  the
treatment  of  many  diseases  (34).  After  first
discovering chloroquine as an antimalarial  drug in
1934, many other analogues were explored such as
mefloquine,  piperquine,  primaquine  and
amodiaquine  (35-39).  Also,  they  are  used  as
antibiotics  such  as  gatifloxacin,  moxifloxacin,
ciprofloxacin,  sparfloxacin,  levofloxacin,  and
norfloxacin  (40-42).  In  addition,  due  to  the
formation  of  stable  complexes  with  many metals,
quinolines are known as the best chelating agents
(43-48).

In this regard, herein the author reports the simple,
efficient  synthesis  and  characterization  of  8-
(aryldiazenyl)quinolines  (6a-g)  by  using  8-
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aminoquinoline (3a) and aryldiazonium salts (5a-g)
in aqueous media.

EXPERIMENTAL SECTION 

General considerations
All  the  chemicals  used  were  used  as  received
without  further  purification.  IR  spectra  were
recorded  on  a  PerkinElmer  Spectrum  100  FT-IR
spectrometer.   The  UV–Visible  absorption  spectra
were carried out with a Shimadzu UV-3600 UV-Vis
NIR spectrophotometer in the wavelength range of
200–800  nm.  Melting  points  were  determined  by
using a Stuart melting point apparatus. NMR spectra
were  recorded  on  a  500  MHz  Varian  or  Bruker
spectrometer.  Mass  spectra  were  recorded  on  a
Bruker  microflex  LT  MALDI  spectrometer.  The
spectra are presented in the Supplementary Section
at the end of this article. 

Synthesis of 8-aminoquinoline (3a)
Under an ice bath, sulfuric acid (2.0 mL) was added
onto quinoline (5 mmol, 1.0 equiv) then 65% nitric
acid (3.0 equiv) were added dropwise and stirred for
4h at rt. The mixture was poured into the ice water
and neutralized with NaOH; and then extracted with
dichloromethane.  After  dried  over  Na2SO4 and
evaporated  in  vacuo,  used  next  step  without
purification(49).

Mixture of nitroquinolines (2a-b) and 5% Pd/C was
solved in ethanol and suspension was saturated with
hydrogen gas under atmospheric pressure at 40 C°
until the starting material was consumed. 2 h later,
the mixture was filtered and evaporated. The crude
product  was  purified  by  silica  gel  column
chromatography, eluting with EtOAc in hexanes to
yield the desired 8-aminoquinoline 3a is isolated as
a brown solid in a yield of 32% (50).

Obtained as a brown solid (231 mg, 32%); 1H NMR
(500 MHz, CDCl3) δ 8.71 – 8.60 (m, 1H), 7.93 (d, J
= 8.2 Hz, 1H), 7.29 – 7.16 (m, 2H), 7.02 (d,  J =
8.1 Hz, 1H), 6.80 (d, J = 7.4 Hz, 1H), 4.89 (s, 2H).

General  Procedure  for  Synthesis  of  Aryl
Diazonium Salts (5a-g)
The  appropriate  aniline  (2.0  mmol)  and  0.68  mL
50% HBF4 aq. in 2.0 mL distilled water was placed
in an ice bath and the temperature was set to 0 °C
then sodium nitrite (2.0 mmol) solution in 1.5 mL
distilled  water  was  added  dropwise.  The  reaction
was  stirred  30  min.,  precipitate  was  filtered  and
washed with water (15 mL) and diethyl ether (15
mL). After final filtration, the compound was dried
under low pressure and yielded the desired product
(51).

4-tert-butylbenzenediazonium  tetrafluoroborate
(5a)

Obtained as a white solid (416 mg, 84%); 1H NMR
(500 MHz, DMSO-d6) δ 8.58 (d,  J = 7.3 Hz, 1H),
8.03 (d, J = 7.3 Hz, 1H), 1.35 (s, 9H).

4-Trifluoromethylbenzenediazonium
tetrafluoroborate (5b)
Obtained as a white solid (462 mg, 89%); 1H NMR
(500 MHz, DMSO-d6) δ 8.90 (d,  J = 8.0 Hz, 2H),
8.42 (d, J = 8.0 Hz, 2H).

2-Chlorobenzenediazonium tetrafluoroborate (5c)
Obtained as a white solid (294 mg, 65%); 1H NMR
(500 MHz, DMSO-d6) δ 8.85 (d,  J = 8.1 Hz, 1H),
8.28 (d, J = 8.2 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H),
7.96 (t, J = 6.2 Hz, 1H).

2-Trifluoromethylbenzenediazonium 
tetrafluoroborate (5d)
Obtained as a white solid (369 mg, 71%); 1H NMR
(500 MHz, DMSO-d6) δ 9.08 (d,  J = 6.6 Hz, 1H),
8.49 (s, 2H), 8.39 – 8.30 (m, 1H).

3-Fluorobenzenediazonium tetrafluoroborate (5e)
Obtained as a white solid (231 mg, 55%); 1H NMR
(500 MHz, DMSO-d6) δ 8.67 (d,  J = 6.0 Hz, 1H),
8.59 (d, J = 7.8 Hz, 1H), 8.22 (t, J = 7.4 Hz, 1H),
8.09 – 8.01 (m, 1H).

4-Ethynylbenzenediazonium tetrafluoroborate (5f)
Obtained as a pale brown solid (344 mg, 73%); 1H
NMR (500 MHz, DMSO-d6) δ 8.67 (d,  J = 7.9 Hz,
2H), 8.06 (d, J = 7.8 Hz, 2H), 5.15 (s, 1H).

4-Fluorobenzenediazonium tetrafluoroborate (5g)
Obtained as a white solid (243 mg, 58%); 1H NMR
(500 MHz, DMSO-d6) δ 8.83 – 8.73 (m, 2H), 7.88
(t, J = 8.7 Hz, 2H).

General  Procedure  for  Synthesis  of  8-
(aryldiazenyl)quinoline (6a-g)
8-aminoquinoline  (0.1  mmol,  1.0  equiv)  and  aryl
diazonium  salt  (0.11  mmol,  1.1  equiv.)  was
dissolved in 2.0 mL distilled water and stirred 30
min at RT. Extracted with ethyl acetate, dried over
Na2SO4 and evaporated in vacuo. The crude product
was purified by silica gel column chromatography,
eluting with EtOAc in hexanes to yield the desired
product.

(E)-5-((4-(tert-butyl)phenyl)diazenyl)  quinolin-8-
amine (6a)
Obtained as a reddish-orange solid (28 mg, 92%);
mp: 149-151 °C, 1H NMR (500 MHz, CDCl3) δ 9.31
(d, J = 8.5 Hz, 1H), 8.85 (s, 1H), 8.01 (d, J = 7.5
Hz, 1H), 7.91 (d, J = 7.5 Hz, 2H), 7.56 (d, J = 7.3
Hz, 3H),  6.97 (d,  J = 7.5 Hz,  1H), 5.50 (s, 2H),
1.41 (d, J = 0.9 Hz, 9H); 13C NMR (126 MHz, CDCl3)
δ 153.28, 151.39, 147.82, 147.79, 147.42, 138.43,
137.18,  132.32,  127.98,  125.96,  125.91,  122.22,
122.18,  115.10,  109.02,  34.92,  31.31;  IR  (neat,
cm-1) 3478, 3353, 2952, 2919, 2855, 1615, 1587,
1565,  1508,  1473,  1428,  1174,  1126,  846,  785;
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MALDI-TOF  m/z calcd  for C19H21N4 ([M + H]+)
305,177, found 305.336.

(E)-5-((4-(trifluoromethyl)phenyl)diazenyl)
quinolin-8-amine (6b)
Obtained  as  a  maroon  solid  (31  mg,  98%);  mp:
137-139 °C; 1H NMR (500 MHz, CDCl3) δ 9.28 (d, J
= 6.5 Hz, 1H), 8.85 (s, 1H), 8.14 – 7.95 (m, 3H),
7.78 (d, J = 7.0 Hz, 2H), 7.58 (d, J = 2.2 Hz, 1H),
7.02 – 6.84 (m, 1H), 5.69 (s, 2H);  13C NMR (126
MHz, CDCl3) δ 155.33, 148.73, 147.94 (d,  J = 3.8
Hz), 138.02, 136.89, 132.14, 130.79 (q,  J = 32.4
Hz), 128.37, 126.62 – 125.81 (m), 125.22, 123.05,
122.86 (d, J = 5.4 Hz), 122.54, 116.22, 108.87; IR
(neat, cm-1) 3433, 3317, 2951, 2918, 2851, 1609,
1553, 1504, 1475, 1440, 1382, 1154, 1104, 1065,
843; MALDI-TOF m/z calcd for C16H12F3N4 ([M + H]+)
317,101, found 317.139.

(E)-5-((2-chlorophenyl)diazenyl)quinolin-8-amine
(6c)
Obtained as  an orange solid  (25 mg,  89%); mp:
156-158 °C; 1H NMR (500 MHz, CDCl3) 9.37 (d, J =
8.1 Hz, 1H), 8.85 (s, 1H), 8.13 (d, J = 7.5 Hz, 1H),
7.83 (d, J = 7.0 Hz, 1H), 7.57 (d, J = 4.6 Hz, 2H),
7.35 (t, J = 13.9 Hz, 2H), 6.98 (d, J = 7.0 Hz, 1H),
5.63 (s, 2H); 13C NMR (126 MHz, CDCl3) δ 149.49,
148.42,  147.88,  138.55,  137.00,  134.40,  132.47,
130.60, 130.27, 127.79, 127.21 , 122.95, 118.16,
117.67, 108.96; IR (neat, cm-1) 3457, 3301, 2949,
2917, 2845, 1610, 1587, 1508, 1370, 1340, 1244,
1175, 1120, 824, 785, 754; MALDI-TOF  m/z calcd
for C15H12ClN4 ([M + H]+) 283,075, found 282.933.

(E)-5-((2-(trifluoromethyl)phenyl)diazenyl)
quinolin-8-amine (6d)
Obtained as a rust solid (30 mg, 95%); mp: 145-
147 °C; 1H NMR (500 MHz, CDCl3) δ 9.37 (dd, J =
8.6, 1.7 Hz, 1H), 8.85 (dd,  J = 4.1, 1.7 Hz, 1H),
8.12 (d, J = 8.5 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H),
7.84 (d, J = 7.8 Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H),
7.59 (dd, J = 8.6, 4.1 Hz, 1H), 7.50 (t, J = 7.6 Hz,
1H), 6.98 (d, J = 8.5 Hz, 1H), 5.72 (s, 2H); 13C NMR
(126  MHz,  CDCl3)  δ  175.95,  150.49,  148.69,
147.87,  138.42,  136.85,  132.40 (d,  J = 4.5 Hz),
128.90,  128.06,  126.71  –  126.25  (m),  125.40,
122.96,  118.26,  116.35,  109.12;  IR  (neat,  cm-1)
3458, 3318, 2952, 2915, 2851, 1621, 1600, 1506,
1424, 1387, 1310, 1238, 1130, 1048, 1032, 815,
791, 751; MALDI-TOF  m/z calcd for C16H12F3N4 ([M 
+ H]+) 317,101, found 317.072.

(E)-5-((3-fluorophenyl)diazenyl)quinolin-8-amine
(6e)
Obtained as a rust solid (24 mg, 91%); mp: 136-
138 °C; 1H NMR (500 MHz, CDCl3) δ 9.19 (dd, J =
8.5, 1.7 Hz, 1H), 8.75 (dd,  J = 4.1, 1.7 Hz, 1H),
7.95 (d, J = 8.5 Hz, 1H), 7.69 (dd, J = 7.9, 0.6 Hz,
1H), 7.62 – 7.52 (m, 1H), 7.48 (dd, J = 8.5, 4.1 Hz,
1H), 7.40 (td, J = 8.0, 6.1 Hz, 1H), 7.08 – 6.99 (m,
1H), 6.89 – 6.83 (m, 1H), 5.52 (s, 2H);  13C NMR
(126 MHz, CDCl3) δ 164.41, 162.45, 155.06 (d, J =

7.1 Hz), 148.35, 147.95, 137.91, 137.02, 132.22,
130.15 (d, J = 8.5 Hz), 128.28, 122.75, 120.23 (d,
J =  2.7  Hz),  116.47,  116.30,  115.87,  108.94,
107.56, 107.38; IR (neat, cm-1) 3430, 3309, 3165,
2951, 2920, 2851, 1729, 1619, 1566, 1508, 1475,
1379, 1335, 1246, 1205, 1100, 965, 866, 780, 682;
MALDI-TOF  m/z calcd  for C15H12FN4 ([M + H]+)
267,1046, found 266.992.

(E)-5-((4-ethynylphenyl)diazenyl)quinolin-8-amine
(6f)
Obtained as a rust solid (23 mg, 84%); mp: 186-
188 °C;  1H NMR (500 MHz, CDCl3) δ 9.30 (d,  J =
8.2 Hz, 1H), 8.85 (s, 1H), 8.05 (d, J = 8.3 Hz, 1H),
7.92 (d, J = 8.2 Hz, 2H), 7.71 – 7.51 (m, 3H), 6.97
(d, J = 8.2 Hz, 1H), 5.60 (s, 2H), 3.23 (s, 1H); 13C
NMR (126 MHz, CDCl3) δ 153.09, 148.23, 147.88,
138.23,  137.02,  132.96,  132.22,  128.23,  123.17,
122.65, 122.41, 115.73, 108.96, 83.62, 78.92; IR
(neat, cm-1) 3429, 3305, 3177, 2923, 2847, 1719,
1611,  1508,  1378,  1328,  1246,  1192,  839,  790;
MALDI-TOF  m/z calcd  for C17H13N4 ([M + H]+)
273,114, found 272.861.

(E)-5-((4-fluorophenyl)diazenyl)quinolin-8-amine
(6g)
Obtained as  an orange solid  (26 mg,  96%); mp:
162-164 °C; 1H NMR (500 MHz, CDCl3) δ 9.28 (d, J
= 6.7 Hz, 1H), 8.85 (s, 1H), 8.00 (d, J = 21.5 Hz,
3H), 7.57 (d, J = 4.3 Hz, 1H), 7.22 (s, 2H), 7.03 –
6.92  (m,  1H),  5.55  (s,  2H);  13C NMR (126 MHz,
CDCl3) δ 164.61, 162.61, 149.98, 147.86 (d, J =
5.0 Hz), 147.78, 138.04, 137.09, 132.18, 128.03,
125.03 – 123.91 (m), 122.50 (dd, J = 7.9, 5.7 Hz),
115.91 (dd,  J = 23.3, 6.2 Hz), 115.38 (d,  J = 5.0
Hz),  108.95;  IR  (neat,  cm-1)  3446,  3321,  2925,
2851, 1615, 1591, 1567, 1510, 1492, 1385, 1334,
1248, 1223, 1184, 847, 788; MALDI-TOF m/z calcd
for C15H12FN4 ([M + H]+) 267,105, found 266.961.

RESULTS AND DISCUSSION 

In this work, novel azobenzenes (6a-g) have been
synthesized  with  excellent  yields.  The  synthetic
route  has  been  illustrated  in  Scheme  1.  At  first,
quinoline was nitrated in the presence of nitric acid
and sulfuric acid, and a mixture of 5-nitroqoinoline
and 8-nitroquinoline (2a-b) was obtained. Without
any  purification,  this  mixture  was  subjected  for
hydrogenolysis in the presence of H2/Pd and amino
quinoline  forms  (3a-b)  were  attained  by  full
conversion. On the other hand, aniline derivatives
were  converted  to  the  corresponding  diazonium
salts (5a-g) in single step with good and acceptable
yields. Finally, azobenzenes as target products were
synthesized by reacting with 8-aminoquinoline (3a)
and aryl diazonium salts (5a-g) in aqueous media
at  room temperature  in  facile  manner.  Diazonium
salts with electron donating or withdrawing groups
substituted  at  different  positions  of  benzene gave
the target product 8-(aryldiazenyl)quinolines (6a-g)
quite successfully with exceptional yields. Structural
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features  of  the  8-(aryldiazenyl)quinolines  (6a-g) were  fully  elucidated  using  NMR,  UV–Visible
absorption spectra and mass spectrometry. 
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Figure 1: Synthetic route for the preparation of azobenzenes.

UV-Vis spectra of the compounds were collected in
acetonitrile solvent with Shimadzu UV-3600 UV-Vis
NIR spectrophotometer and they were presented in
Figure  2.  Their  maximal  values  and  molar
absorption coefficients were also recorded in Table
1.  As  seen  in  Table  1,  the  absorption  maximal
values of the compounds are between 427 nm and
445 nm due to π-π* charge transfer transition (52).

The absorption bands are slightly shifted to longer
wavelengths (redshifted) in the order of 6a, 6g, 6c,
6e,  6b,  6d,  and  6f.  Generally,  as  the  electron
donor  strength  increases,  the  absorption  band
maximum  shifts  to  longer  wavelengths  (53);
however, here the opposite effects were observed,
similar  to  the  literature  (54).  When  their  molar
absorption  coefficient  was  compared,  6a had  the
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biggest molar absorption coefficient and 6f had the
lowest  molar  absorption  coefficient  among  the
compounds presented. It can be concluded that the

compounds  have  more  absorbance  ability  in  the
strong donor systems.

Figure 2: UV-Vis spectrum of the compounds (50 µM) in ACN.

Table 1: Absorption maximal values of the compounds.

Compounds Absorption Maxima
Molar Absorption

Coefficient (ε) (cm-1M-1)
6a 427 27,180
6b 442 23,500
6c 430 12,640
6d 442 16,560
6e 435 20,740
6f 445 8,260
6g 428 24,220

CONCLUSION 

As  a  summary,  the  author  hereby  discloses  the
simple, easy and operational synthesis of novel 8-
(aryldiazenyl)quinolones  and  their  structural
characterization was carried out by varied analytical
techniques  as  NMR,  IR,  UV-Visible,  and  mass
spectroscopy.  The  compounds  were  provided  with
excellent yields ranging from 89% to 98%. UV-Vis
spectrum  of  the  azobenzenes  was  collected  in
acetonitrile  solvent  and  maximal  values  were
measured between 427 nm and 445 nm. The molar
absorptivity  of  compounds  showed  that  their
electronic transition is by virtue of π–π*. It can be
assumed  that  the  compounds  have  greater
absorbance  ability  in  strong  donor  systems.  New
azobenzenes  with  potentially  dye  and
pharmaceutical  agents  due  to  the  aminoquinoline
backbone  and  diazo  unit  were  brought  to  the
literature.
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1H NMR (CDCl3, 500 MHz) spectrum of 4-tert-butylbenzenediazonium tetrafluoroborate (5a)

 



1H NMR (CDCl3, 500 MHz) spectrum of 4-trifluoromethylbenzenediazonium tetrafluoroborate (5b) 

 



1H NMR (CDCl3, 500 MHz) spectrum of 2-chlorobenzenediazonium tetrafluoroborate (5c) 

 



1H NMR (CDCl3, 500 MHz) spectrum of 2-trifluoromethylbenzenediazonium tetrafluoroborate (5d) 

 



1H NMR (CDCl3, 500 MHz) spectrum of 3-fluorobenzenediazonium tetrafluoroborate (5e) 

 



1H NMR (CDCl3, 500 MHz) spectrum of 4-ethynylbenzenediazonium tetrafluoroborate (5f) 

 



1H NMR (CDCl3, 500 MHz) spectrum of 4-fluorobenzenediazonium tetrafluoroborate (5g) 

 



1H NMR (CDCl3, 500 MHz) spectrum of 8-aminoquinoline (3a) 

 



1H NMR (CDCl3, 500 MHz) spectrum of (E)-5-((4-(tert-butyl)phenyl)diazenyl)quinolin-8-amine (6a) 

 



13C NMR (CDCl3, 126 MHz) spectrum of (E)-5-((4-(tert-butyl)phenyl)diazenyl)quinolin-8-amine (6a) 

 



1H NMR (CDCl3, 500 MHz) spectrum of (E)-5-((4-(trifluoromethyl)phenyl)diazenyl)quinolin-8-amine (6b) 

 



13C NMR (CDCl3, 126 MHz) spectrum of (E)-5-((4-(trifluoromethyl)phenyl)diazenyl)quinolin-8-amine (6b) 

 



1H NMR (CDCl3, 500 MHz) spectrum of (E)-5-((2-chlorophenyl)diazenyl)quinolin-8-amine (6c)  

 



13C NMR (CDCl3, 126 MHz) spectrum of (E)-5-((2-chlorophenyl)diazenyl)quinolin-8-amine (6c) 

 



1H NMR (CDCl3, 500 MHz) spectrum of (E)-5-((2-(trifluoromethyl)phenyl)diazenyl)quinolin-8-amine (6d) 

 



13C NMR (CDCl3, 126 MHz) spectrum of (E)-5-((2-(trifluoromethyl)phenyl)diazenyl)quinolin-8-amine (6d) 

 



1H NMR (CDCl3, 500 MHz) spectrum of (E)-5-((3-fluorophenyl)diazenyl)quinolin-8-amine (6e) 

 



13C NMR (CDCl3, 126 MHz) spectrum of (E)-5-((3-fluorophenyl)diazenyl)quinolin-8-amine (6e) 

 



1H NMR (CDCl3, 500 MHz) spectrum of (E)-5-((4-ethynylphenyl)diazenyl)quinolin-8-amine (6f) 

 



13C NMR (CDCl3, 126 MHz) spectrum of (E)-5-((4-ethynylphenyl)diazenyl)quinolin-8-amine (6f) 

 



1H NMR (CDCl3, 500 MHz) spectrum of (E)-5-((4-fluorophenyl)diazenyl)quinolin-8-amine (6g) 

 



13C NMR (CDCl3, 126 MHz) spectrum of (E)-5-((4-fluorophenyl)diazenyl)quinolin-8-amine (6g) 

 


