Almost complex structures on coframe bundle with Cheeger-Gromoll metric

Arif Salimov*, Habil Fattayev

Department of Algebra and Geometry, Baku State University, Baku, Azerbaijan

Abstract
In this paper we introduce several almost complex structures compatible with Cheeger-Gromoll metric on the coframe bundle and investigate their integrability conditions.

Mathematics Subject Classification (2020). 53C07, 53C22, 53C25

Keywords. Riemannian manifold, coframe bundle, horizontal lift, Cheeger-Gromoll metric, almost complex structure, Nijenhuis tensor

1. Introduction
The geometric structures of the fiber bundles over Riemannian manifold \((M,g)\) is one of the essential topics in the differential geometry. First Sasaki [13] constructed a Riemannian metric \(Sg\) on the tangent bundle \(T(M)\) which depend only on the base manifold. Kowalski [8] proved that if the Sasaki metric \(Sg\) is locally symmetric, then the base metric \(g\) is flat and hence \(Sg\) is also flat. Musso and Tricerri [10] obtained an explicit expression of the Cheeger-Gromoll metric \(CGg\) introduced by Cheeger and Gromoll in [3] (see also [6]). Sekizawa [14] defined some geometric objects related \(CGg\). Tahara, Vanhecke and Watanabe [15] constructed several almost complex structures compatible with some natural defined Riemannian metrics on the tangent bundle of an almost Hermitian manifold. Bejan and Drută [2] defined harmonic almost complex structures with respect to general natural metrics in the tangent bundle. In [9] Munteanu introduced Cheeger-Gromool type metrics and showed the conditions for which the tangent bundle is almost Kahlerian or Kahlerian (see also [7]). To construct an almost Hermitian structure on the cotangent bundle \(T^*(M)\) of a Riemannian manifold \((M,g)\) Oproiu and Poroşniuc used some natural lifts of geometric objects [11]. (see also [4]).

In this paper, we construct an almost Hermitian structures on the bundle of linear coframes \(F^*(M)\) over a Riemannian manifold \((M,g)\) with the Cheeger-Gromoll metric \(CGg\). In 2 we briefly describe the definitions and results that are needed later, after which the adapted frame on coframe bundle \(F^*(M)\) introduced in 3. The Cheeger-Gromoll metric \(CGg\) on \(F^*(M)\) and its Levi-Civita connection \(CG\nabla\) are determined in 4. In 5 we define an almost Hermitian structures \((CG, J_\beta), \beta = 1, 2, \ldots, n\) on the linear coframe bundle \(F^*(M)\). The integrability conditions for almost complex structures \(J_\beta, \beta = 1, 2, \ldots, n\), are studied in 6.

Corresponding Author.
Email addresses: asalimov@hotmail.com (A. Salimov), h-fattayev@mail.ru (H. Fattayev)
Received: 20.10.2021; Accepted: 20.02.2022
2. Preliminaries

In this section we shall summarize briefly the main definitions and results which be used later. Let \((M, g)\) be an \(n\)-dimensional Riemannian manifold. Then the linear coframe bundle \(F^*(M)\) over \(M\) consists of all pairs \((x, u^*)\), where \(x\) is a point of \(M\) and \(u^*\) is a basis (coframe) for the cotangent space \(T_x^* M\) of \(M\) at \(x\) [5]. We denote by \(\pi\) the natural projection of \(F^*(M)\) to \(M\) defined by \(\pi(x, u^*) = x\). If \((U; x^1, x^2, \ldots, x^n)\) is a system of local coordinates in \(M\), then a coframe \(u^* = (X^\alpha) = (X^1, X^2, \ldots, X^n)\) for \(T_x^* M\) can be expressed uniquely in the form \(X^\alpha = X^\alpha (dx^i)_x\). From mentioned above it follows that

\[
\left(\pi^{-1}(U); x^1, x^2, \ldots, x^n, X_1^1, X_1^2, \ldots, X_n^n \right)
\]

is a system of local coordinates in \(F^*(M)\) (see, [5]), that is \(F^*(M)\) is a \(C^\infty\) manifold of dimension \(n + n^2\). We note that indices \(i, j, k, \ldots, \alpha, \beta, \gamma, \ldots\) have range in \(\{1, 2, \ldots, n\}\), while indices \(A, B, C, \ldots\) have range in \(\{1, 2, \ldots, n + 1, \ldots, n + n^2\}\). We put \(i_\alpha = \alpha \cdot n + i\). Obviously that indices \(i_\alpha, j_\beta, k_\gamma, \ldots\) have range in \(\{n + 1, n + 2, \ldots, n + n^2\}\). Summation over repeated indices is always implied. Let \(\nabla\) be a symmetric linear connection on \(M\) with components \(\Gamma^k_{ij}\). Then the tangent space \(T_{(x,u^*)}(F^*(M))\) of \(F^*(M)\) at \((x, u^*) \in F^*(M)\) splits into the horizontal and vertical subspaces with respect to \(\nabla\):

\[
T_{(x,u^*)}(F^*(M)) = H_{(x,u^*)}(F^*(M)) \oplus V_{(x,u^*)}(F^*(M)).
\] (2.1)

We denote by \(\mathfrak{S}^r_s(M)\) the set of all differentiable tensor fields of type \((r, s)\) on \(M\). From (2.1) it follows that for every \(X \in \mathfrak{S}^0_0(F^*(M))\) is obtained unique decomposing \(X = hX + vX\), where \(hX \in H(F^*(M))\), \(vX \in V(F^*(M))\). \(H(F^*(M))\) and \(V(F^*(M))\) the horizontal and vertical distributions for \(F^*(M)\), respectively. Now we define naturally \(n\) different vertical lifts of \(1\)-form \(\omega \in \mathfrak{S}^0_1(M)\). If \(Y\) be a vector field on \(M\), i.e. \(Y \in \mathfrak{S}^1_0(M)\), then \(i^\mu Y\) are functions on \(F^*(M)\) defined by \((i^\mu Y)(x, u^*) = X^\mu (Y)\) for all \((x, u^*) = (x, X^1, X^2, \ldots, X^n) \in F^*(M)\), where \(\mu = 1, 2, \ldots, n\). The vertical lifts \(V^\lambda \omega\) of \(\omega\) to \(F^*(M)\) are the \(n\) vector fields such that

\[
V^\lambda \omega(i^\mu Y) = \omega(Y) \delta^\lambda_\mu
\]

hold for all vector fields \(Y\) on \(M\), where \(\lambda, \mu = 1, 2, \ldots, n\) and \(\delta^\lambda_\mu\) denote the Kronecker’s delta. The vertical lifts \(V^\lambda \omega\) of \(\omega\) to \(F^*(M)\) have the components

\[
\begin{pmatrix}
V^\lambda \omega_k \\
V^\lambda \omega^k_\mu
\end{pmatrix} = \begin{pmatrix}
0 \\
\omega^k_\mu \delta^\lambda_\mu
\end{pmatrix}
\] (2.2)

with respect to the induced coordinates \((x^i, X^\alpha_i)\) in \(F^*(M)\) (see, [12]).

Let \(V \in \mathfrak{S}^1_0(M)\). The complete lift \(C^V \in \mathfrak{S}^1_0(F^*(M))\) of \(V\) to the linear coframe bundle \(F^*(M)\) is defined by

\[
C^V(i^\mu Y) = i^\mu (LV_Y) = X^\mu_m (LV_Y)^m
\]

for all vector fields \(Y \in \mathfrak{S}^1_0(M)\), where \(LV\) be the Lie derivation with respect to \(V\). The complete lift \(C^V\) has the components

\[
C^V = \begin{pmatrix}
C^V_k \\
C^V^k_\mu
\end{pmatrix} = \begin{pmatrix}
V^k \\
-X^\mu_m \partial_k V^m
\end{pmatrix}
\]

with respect to the induced coordinates \((x^i, X^\alpha_i)\) in \(F^*(M)\).

The horizontal lift \(H^V \in \mathfrak{S}^1_0(F^*(M))\) of \(V\) to the linear coframe bundle \(F^*(M)\) is defined by

\[
H^V(i^\mu Y) = i^\mu (\nabla_V Y) = X^\mu_m (\nabla_V Y)^m
\]
for all vector fields $Y \in \mathfrak{X}_0^1(M)$, where ∇_Y be the covariant derivative with respect to V. The horizontal lift HV has the components

$$HV = \left(\frac{HV^k}{HV^{\kappa \mu}} \right) = \left(\frac{V^k}{X^\mu_{\kappa \mu} \Gamma^\mu_{\kappa \mu}} \right)$$

(2.3)

with respect to the induced coordinates (x^i, X^μ_i) in $F^*(M)$, where Γ^k_{ij} are the components of Levi-Civita connection on M.

The bracket operation of vertical and horizontal vector fields is given by the formulas

$$[V^\beta \omega, V^\gamma \theta] = 0,$$

$$[H X, V^i \theta] = V^i (\nabla_X \theta),$$

$$[H X, H Y] = H [X, Y] + \sum_{\sigma=1}^n V^\sigma (X^\sigma \circ R(X, Y))$$

(2.4)

for all $X, Y \in \mathfrak{X}_0^1(M)$ and $\omega, \theta \in \mathfrak{X}_0^1(M)$, where R is the Riemannian curvature of g. If f is a differentiable function on M, $Vf = f \circ \pi$ denotes its canonical vertical lift to the $F^*(M)$.

3. **Adapted frames on** $F^*(M)$

Suppose (U, x^i) be a local coordinate system in M. In $U \subset M$, we put

$$X_{(i)} = \partial f/\partial x^i, \quad \theta_{(i)} = dx^i, i = 1, 2, ..., n.$$

Taking into account of (2.2) and (2.3), we see that

$$HV_{(i)} = D_i = \left(\frac{\delta^j_i}{X^\mu_{\kappa \mu} \Gamma^\mu_{\kappa \mu}} \right),$$

(3.1)

$$V^\nu_\alpha \theta_{(i)} = D_{\nu a} = \left(\frac{0}{\delta^0_\beta \delta^0_j} \right)$$

(3.2)

with respect to the natural frame $\{\partial_j, \partial_{\beta j}\}$. It follows that this $n + n^2$ vector fields are linearly independent and generate, respectively the horizontal distribution of linear connection ∇ and the vertical distribution of linear coframe bundle $F^*(M)$. The set $\{D_I\} = \{D_i, D_{\nu a}\}$ is called the frame adapted to linear connection ∇ on $\pi^{-1}(U) \subset F^*(M)$. From (2.2), (2.3), (3.1) and (3.2), we deduce that the horizontal lift HV of $V \in \mathfrak{X}_0^1(M)$ and vertical lift $V^\nu_\alpha \omega$ for each $\alpha = 1, 2, ..., n$, of $\omega \in \mathfrak{X}_0^1(M)$ have respectively, components:

$$HV = V^i D_i = \left(\frac{V^i}{0} \right),$$

(3.3)

$$V^\beta_\omega = \sum_i \omega_i \delta^\beta_\omega D_{\nu a} = \left(\frac{0}{\delta^0_\beta \omega_i} \right)$$

(3.4)

with respect to the adapted frame $\{D_I\}$. The non-holonomic objects Ω_{IJ}^K of the adapted frame $\{D_I\}$ are defined by

$$[D_I, D_J] = \Omega_{IJ}^K D_K$$

and have the following non-zero components:

$$\Omega_{j\beta}^k \gamma = -\Omega_{j\beta}^k \gamma = -\delta_\beta^j \Gamma^k_{\beta \gamma},$$

$$\Omega_{ij}^k \gamma = X^\mu_m R_{ijkm},$$

where R_{ijkm} local components of the Riemannian curvature R.

1262

A. Salimov, H. Fattayev
4. The Cheeger-Gromoll metric on the linear coframe bundle

Definition 4.1. Let \((M, g)\) be an \(n\)-dimensional Riemannian manifold. A Riemannian metric \(\tilde{g}\) on the linear coframe bundle \(F^*(M)\) is said to be natural with respect to \(g\) on \(M\) if

\[
\tilde{g}(H X, H Y) = g(X, Y),
\]

\[
\tilde{g}(H X, V_\alpha \omega) = 0
\]

for all \(X, Y \in \mathcal{I}_\mathbb{R}(M)\) and \(\omega \in \mathcal{I}_\mathbb{R}(M)\).

For any \(x \in M\) the scalar product on the cotangent space \(T^*_x M\) is defined by

\[
g^{-1}(\omega, \theta) = g^{ij} \omega_i \theta_j
\]

for all \(\omega, \theta \in \mathcal{I}_\mathbb{R}(M)\).

The Cheeger-Gromoll metric \(CG\) is a positive definite metric on linear coframe bundle \(F^*(M)\) which is described in terms of lifted vector fields as follows.

Definition 4.2. Let \(g\) be a Riemannian metric on a manifold \(M\). Then the Cheeger-Gromoll metric is a Riemannian metric \(CG\) on the linear coframe bundle \(F^*(M)\) such that

\[
CG g(H X, H Y) = V(g(X, Y)) = g(X, Y) \circ \pi,
\]

\[
CG g(V_\alpha \omega, H Y) = 0,
\]

\[
CG g(V_\alpha \omega, V_\beta \theta) = 0, \quad \alpha \neq \beta,
\]

\[
CG g(V_\alpha \omega, V_\alpha \theta) = \frac{1}{1 + r_\alpha^2}(g^{-1}(\omega, \theta) + g^{-1}(\omega, X^\alpha)g^{-1}(\theta, X^\alpha))
\]

for all \(X, Y \in \mathcal{I}_\mathbb{R}(M)\) and \(\omega, \theta \in \mathcal{I}_\mathbb{R}(M)\), where \(r_\alpha^2 = ||X^\alpha||^2 = g^{-1}(X^\alpha, X^\alpha)\).

We note that the Cheeger-Gromoll metric on the cotangent bundle of Riemannian manifold introduced by Salimov and Ağa and studied in [1].

From (4.1) we determine that metric \(CG\) has components

\[
CG g_{ij} = CG g(D_i, D_j) = V(g(\partial_i, \partial_j)) = g_{ij},
\]

\[
CG g_{i\alpha} = CG g(D_{i\alpha}, D_j) = 0,
\]

\[
CG g_{i\alpha j\beta} = CG g(D_{i\alpha}, D_{j\beta}) = 0, \quad \alpha \neq \beta,
\]

\[
CG g_{i\alpha j\alpha} = CG g(D_{i\alpha}, D_{j\alpha}) = \frac{1}{1 + r_\alpha^2}(g^{-1}(dx^i, dx^j) + g^{-1}(dx^i, X^\alpha)g^{-1}(dx^j, X^\alpha))
\]

with respect to the adapted frame \(\{D_i\}\) of linear coframe bundle \(F^*(M)\).

The Levi-Civita connection \(CG \nabla\) satisfies the following relations

i) \(CG \nabla H X, H Y = H(\nabla X Y) + \frac{1}{2} \sum_{\sigma=1}^n V_\sigma(X^\sigma \circ R(X, Y))\),

ii) \(CG \nabla H X, V_\beta \theta = V_\beta(\nabla X \theta) + \frac{1}{2r_\beta^2} H(X^\beta (g^{-1} \circ R(\ , X) \theta))\),

iii) \(CG \nabla V_\alpha \omega, H Y = \frac{1}{2r_\alpha^2} H(X^\alpha (g^{-1} \circ R(\ , Y) \omega))\),

iv) \(CG \nabla V_\alpha \omega, V_\beta \theta = 0\) for \(\alpha \neq \beta\),

\[
CG \nabla V_\alpha \omega, V_\alpha \omega \theta = -\frac{1}{r_\alpha}(CG g(V_\alpha \omega, \gamma \delta)V_\alpha \theta + CG g(V_\alpha \theta, \gamma \delta)V_\alpha \omega) + \frac{1}{r_\alpha}(CG g(V_\alpha \theta, \gamma \delta)CG g(V_\alpha \omega, \gamma \delta)\gamma \delta
\]
for all $X, Y \in \mathfrak{X}_0^1(M)$, $\omega, \theta \in \mathfrak{X}_1^0(M)$, where $\tilde{\omega} = g^{-1} \circ \omega, R(\cdot, X)\tilde{\omega} \in \mathfrak{X}_1^1(M), h_\alpha = 1 + r_\alpha^2$, R and $\gamma \delta$ denotes respectively the Riemannian curvature of g and the canonical vertical vector field on $F^*(M)$ with local expression $\gamma \delta = X^\alpha D_{\alpha}$.

5. Almost complex structures on $(F^*(M), CG\ g)$

First of all, let us introduce the almost complex structures $J_\beta, \beta = 1, 2, \ldots, n$, which are compatible with $CG\ g$ on the linear coframe bundle $F^*(M)$. Suppose that for each $\beta = 1, 2, \ldots, n$, J_β is defined to be the following form

\begin{align*}
J_\beta^H X &= a_1 V_\beta \tilde{X} + b_1 X^{\beta}(X)V_\beta X^\beta, \\
J_\beta^V \omega &= 0, \quad \beta \neq \gamma, \\
J_\beta^{\tilde{\omega}} &= a_2^H \tilde{\omega} + b_2 g^{-1}(X^\beta, \omega)H \tilde{X}^\beta,
\end{align*}

where $X \in \mathfrak{X}_0^1(M), \omega \in \mathfrak{X}_1^0(M), \tilde{X} = g \circ X \in \mathfrak{X}_0^1(M), \tilde{\omega} = g^{-1} \circ \omega \in \mathfrak{X}_1^0(M)$ and a_1, a_2, b_1 and b_2 are functions on colinear frame bundle $F^*(M)$ determined by conditions

\begin{align*}
J_\beta^2 &= -I, \\
CG\ g(J_\beta^H X, J_\beta^H X) &= CG\ g(H X, H X) = g(X, Y).
\end{align*}

Substituting (5.1) into (5.2), we obtain:

\begin{align*}
J_\beta^{2H} X &= J_\beta(J_\beta^H X) = J_\beta(a_1 V_\beta \tilde{X} + b_1 X^{\beta}(X)V_\beta X^\beta) \\
&= a_1 (J_\beta^{V_\beta} \tilde{X}) + b_1 X^{\beta}(X)(J_\beta^{V_\beta} X^\beta) = a_1 (a_2^H X + b_2 g^{-1}(X^\beta, \tilde{X})H \tilde{X}^\beta) \\
&+ b_1 X^{\beta}(X)(a_2^H \tilde{X} + b_2 g^{-1}(X^\beta, X^\beta)H \tilde{X}^\beta) = a_1 a_2^H X \\
&+ a_1 b_2 g^{-1}(X^\beta, \tilde{X})H \tilde{X}^\beta + b_1 a_2 X^{\beta}(X)H \tilde{X}^\beta \\
&+ b_2 b_1 X^{\beta}(X)(h_\beta - 1)H \tilde{X}^\beta = a_1 a_2^H X + (b_1 a_2 + b_2 b_1) \\
&+ b_2 b_1 (h_\beta - 1)X^{\beta}(X)H \tilde{X}^\beta = -H X,
\end{align*}

from which it follows that

\begin{align*}
a_1 a_2 &= -1, \\
a_1 b_2 + b_1 a_2 + b_2 b_1 (h_\beta - 1) &= 0.
\end{align*}

Direct calculations using (5.1) and (5.3) give

\begin{align*}
CG\ g(J_\beta^H X, J_\beta^H X) &= CG\ g(a_1 V_\beta \tilde{X} + b_1 X^{\beta}(X)V_\beta X^\beta, a_1 V_\beta \tilde{X} \\
&+ b_1 X^{\beta}(X)V_\beta X^\beta) = a_1^2 CG\ g(V_\beta \tilde{X}, V_\beta \tilde{X}) + a_1 b_1 X^{\beta}(X)CG\ g(V_\beta \tilde{X}, V_\beta X^\beta) \\
&+ b_1 a_1 X^{\beta}(X)CG\ g(V_\beta X^\beta, V_\beta \tilde{X}) + b_1^2 X^{\beta}(X)CG\ g(V_\beta X^\beta, V_\beta X^\beta) \\
&= \frac{a_1^2}{h_\beta} (g^{-1}(\tilde{X}, \tilde{X}) + g^{-1}(X^\beta, X^\beta)g^{-1}(X^\beta, X^\beta)) \\
&+ \frac{a_1 b_1 X^{\beta}(X)}{h_\beta} (g^{-1}(\tilde{X}, X^\beta) + g^{-1}(\tilde{X}, X^\beta)g^{-1}(X^\beta, X^\beta)) \\
&+ \frac{b_1 a_1 X^{\beta}(X)}{h_\beta} (g^{-1}(X^\beta, \tilde{X}) + g^{-1}(X^\beta, X^\beta)g^{-1}(\tilde{X}, X^\beta)) \\
&+ \frac{b_1^2 X^{\beta}(X)X^{\beta}(X)}{h_\beta} (g^{-1}(X^\beta, X^\beta) + g^{-1}(X^\beta, X^\beta)g^{-1}(X^\beta, X^\beta)) \\
&= \frac{a_1^2}{h_\beta} g(X, X) + \left(\frac{a_1^2}{h_\beta} + 2a_1 b_1 + b_1^2 (h_\beta - 1)\right)(X^\beta(X))^2 = g(X, X).
\end{align*}
Almost complex structures on coframe bundle

From the last relation we obtain:

\[\frac{a_1^2}{h_{\beta}} = 1, \]
\[(5.6) \]

\[\frac{a_1^2}{h_{\beta}} + 2a_1b_1 + b_2^2(h_{\beta} - 1) = 0. \]
\[(5.7) \]

Using (5.6) and (5.4), we get first

\[a_1 = \pm \sqrt{h_{\beta}} \text{ and } a_2 = \mp \frac{1}{\sqrt{h_{\beta}}}. \]

Without lost of the generality we can take

\[a_1 = \sqrt{h_{\beta}} \text{ and } a_2 = -\frac{1}{\sqrt{h_{\beta}}}. \]

Then for these values from (5.7) we get

\[b_2^2(h_{\beta} - 1) + 2\sqrt{h_{\beta}b_1} + 1 = 0, \]

from which it follows

\[b_1 = \frac{-\sqrt{h_{\beta}} \pm 1}{h_{\beta} - 1}. \]

We can take

\[b_1 = \frac{-\sqrt{h_{\beta}+1}}{h_{\beta}-1} = -\frac{1}{\sqrt{h_{\beta}+1}}. \]

Then by using of (5.5) we obtain:

\[\sqrt{h_{\beta}}b_2 + \frac{1}{\sqrt{h_{\beta}(\sqrt{h_{\beta}} + 1)}} - b_2\frac{1}{\sqrt{h_{\beta}}}(h_{\beta} - 1) = 0, \]

or

\[b_2 = \frac{-1}{\sqrt{h_{\beta}(\sqrt{h_{\beta}} + 1)}}. \]

Therefore, we have the almost complex structures

\[J_\beta, \beta = 1, 2, \ldots, n, \] on linear coframe bundle \(F^\ast (M) \)

\[\left\{ \begin{array}{l}
J_\beta H X = \sqrt{h_{\beta}} \tilde{X} - \frac{1}{\sqrt{h_{\beta}+1}} X^\beta (X)^V_\beta X^\beta, \\
J_\beta V^\gamma \omega = 0, \quad \beta \neq \gamma, \\
J_\beta V^\gamma \omega = -\frac{1}{\sqrt{h_{\beta}}} \left(H \omega + \frac{1}{(\sqrt{h_{\beta}+1})} g^{-1}(X^\beta, \omega)^H \tilde{X} \right),
\end{array} \right. \]
\[(5.8) \]

which are satisfies the compability conditions (5.3) with the Cheeger-Gromoll metric \(CG \).

Remark 5.1. Taking into account that equality \(J_\beta V^\gamma \omega = 0 \) holds for \(\gamma \neq \beta \), of interest is the case when \(\gamma = \beta \).

Now it follows by a direct computations that

\[CG (J_\beta H X, J_\beta V^\rho \omega) = CG (H X, V^\rho \omega), \]
\[CG (J_\beta V^\rho \omega, J_\beta V^\theta \omega) = CG (V^\rho \omega, V^\theta \omega), \]

whenever

\[CG (J_\beta H X, J_\beta H X) = CG (H X, H X). \]
Indeed, using (4.1) and (5.8), we have

\[CG(g(J_\beta^H X, J_\beta^V \omega)) = CG(g(\sqrt{h_\beta} V_\beta \tilde{X}) \]
\[- \frac{1}{\sqrt{h_{\beta+1}}} X_\beta^\beta (X) V_\beta X_\beta^\beta, \quad \frac{1}{\sqrt{h_\beta}} (H_\tilde{\omega} + \frac{1}{\sqrt{h_{\beta+1}}} g^{-1}(X_\beta^\beta, \omega) H_\tilde{X}_\beta^\beta)) \]
\[= -\delta_\beta^CG g(V_\beta \tilde{X}, H_\tilde{\omega}) - \frac{1}{\sqrt{h_{\beta+1}}} g^{-1}(X_\beta^\beta, \omega) CG g(V_\beta \tilde{X}, H_\tilde{X}_\beta^\beta) \]
\[+ \frac{1}{\sqrt{h_\beta(\sqrt{h_{\beta+1}})^2}} X_\beta^\beta(X) g^{-1}(X_\beta^\beta, \omega) CG g(V_\beta X_\beta^\beta, H_\tilde{X}_\beta^\beta) \]
\[= 0 = CG g(H X, V_\beta \omega). \]

Similarly we get

\[CG(g(J_\beta^V \omega, J_\beta^V \theta)) = CG(g(-\frac{1}{\sqrt{h_\beta}} (H_\tilde{\omega} \]
\[+ \frac{1}{\sqrt{h_{\beta+1}}} g^{-1}(X_\beta^\beta, \omega) H_\tilde{X}_\beta^\beta), \quad \frac{1}{\sqrt{h_\beta}} (H_\tilde{\theta} + \frac{1}{\sqrt{h_{\beta+1}}} g^{-1}(X_\beta^\beta, \theta) H_\tilde{X}_\beta^\beta)) \]
\[= \frac{1}{h_\beta} CG g(H_\tilde{\omega}, H_\tilde{\theta}) + \frac{1}{h_\beta(\sqrt{h_{\beta+1}})^2} g^{-1}(X_\beta^\beta, \omega) \]
\[+ \frac{1}{h_\beta(\sqrt{h_{\beta+1}})^2} g^{-1}(X_\beta^\beta, \omega) g^{-1}(X_\beta^\beta, \theta) CG g(H_\tilde{X}_\beta^\beta, H_\tilde{X}_\beta^\beta) \]
\[= \frac{1}{h_\beta} g^{-1}(\omega, \theta) + \frac{2}{h_\beta(\sqrt{h_{\beta+1}})^2} g^{-1}(X_\beta^\beta, \omega) g^{-1}(X_\beta^\beta, \theta) \]
\[+ \frac{1}{h_\beta(\sqrt{h_{\beta+1}})^2} g^{-1}(X_\beta^\beta, \omega) g^{-1}(X_\beta^\beta, \theta)(h_\beta - 1) \]
\[= (\sqrt{h_\beta} + 1) g^{-1}(\omega, \theta) + (\sqrt{h_\beta} + 1) g^{-1}(X_\beta^\beta, \omega) g^{-1}(X_\beta^\beta, \theta) \]
\[h_\beta(\sqrt{h_{\beta+1}})^2 \]
\[= \frac{1}{h_\beta} g^{-1}(\omega, \theta) + g^{-1}(X_\beta^\beta, \omega) g^{-1}(X_\beta^\beta, \theta)) = CG g(V_\beta \omega, V_\beta \theta). \]

Thus the following theorem holds.

Theorem 5.2. The triple \((F^\ast(M), CG, J_\beta)\) is an almost Hermitian manifold for any \(\beta = 1, 2, ..., n\).

6. The integrability of \(J_\beta, \beta = 1, 2, ..., n\)

It is known that the almost complex structure \(J\) of a Riemannian manifold \((M, g)\) is integrable if and only if its Nijenhuis tensor

for all \(X, Y \in \mathfrak{X}_0(M)\) ([16, p. 118]).

The Nijenhuis tensor of an almost complex structure \(J_\beta\) on \(F^\ast(M)\) for any \(\beta = 1, 2, ..., n\), is given by

\[N_{J_\beta}(\tilde{X}, \tilde{Y}) = [\tilde{X}, \tilde{Y}] + J_\beta[J_\beta \tilde{X}, \tilde{Y}] + J_\beta[\tilde{X}, J_\beta \tilde{Y}] - [J_\beta \tilde{X}, J_\beta \tilde{Y}], \quad (6.1) \]
where \(\tilde{X}, \tilde{Y} \in \mathfrak{S}_1^0(F^*(M)) \). It is easy to check that the values \(N_{J_\beta}(H X, V_\theta) \) and \(N_{J_\beta}(V_\alpha, V_\theta) \) of the Nijenhuis tensor \(N_{J_\beta} \) can be expressed in terms of the values \(N_{J_\beta}(H X, H Y) \) of this tensor, where \(X, Y \in \mathfrak{S}_1^0(M) \), \(\omega, \theta \in \mathfrak{S}_1^0(M) \). Indeed, using (5.2) and (6.1), we have

\[
N_{J_\beta}(H X, V_\theta) = [H X, V_\theta] + J_\beta[J_\beta(H X, V_\theta)] + J_\beta[H X, J_\beta V_\theta]
\]

\[
-[J_\beta H X, J_\beta V_\theta] = [H X, \delta_\beta J_\beta H W] + J_\beta[J_\beta H X, \delta_\beta J_\beta H W]
\]

\[
+J_\beta[H X, J_\beta(\delta_\beta J_\beta H W)] - [J_\beta H X, J_\beta(\delta_\beta J_\beta H W)] = \delta_\beta[H X, J_\beta H W]
\]

\[
+\delta_\beta J_\beta[H X, J_\beta H W] - \delta_\beta J_\beta[H X, H W] + \delta_\beta[J_\beta H X, H W]
\]

\[
= -\delta_\beta J_\beta N_{J_\beta}(H X, H W),
\]

where

\[
V_\theta = \delta_\beta J_\beta H W = \delta_\beta(\sqrt{\Omega^\beta} \tilde{W} - \frac{1}{\sqrt{h_{\beta+1}}} X^\beta(W)V_\beta X^\beta)
\]

\[
= \delta_\beta(\sqrt{\Omega^\beta} \tilde{W} - \frac{1}{\sqrt{h_{\beta+1}}} X^\beta(W)X^\beta), W \in \mathfrak{S}_1^0(M).
\]

Similarly, we have

\[
N_{J_\beta}(V_\alpha, V_\theta) = [V_\alpha, V_\theta] + J_\beta[J_\beta(V_\alpha, V_\theta)] + J_\beta[V_\alpha, J_\beta V_\theta]
\]

\[
\]

\[
+J_\beta[\delta_\beta J_\beta H Z, J_\beta(\delta_\beta J_\beta H W)] - [J_\beta(\delta_\beta J_\beta H Z), J_\beta(\delta_\beta J_\beta H W)]
\]

\[
= \delta_\beta[\delta_\beta J_\beta H Z, J_\beta H W] - \delta_\beta J_\beta[H Z, J_\beta H W] - \delta_\beta J_\beta[H Z, H W]
\]

\[
-\delta_\beta J_\beta N_{J_\beta}(H Z, H W),
\]

where \(V_\alpha = \delta_\beta J_\beta H Z, Z \in \mathfrak{S}_1^0(M) \). Therefore, we have

Lemma 6.1. An almost complex structure \(J_\beta \) on \((F^*(M), CG g)\) for each \(\beta = 1, 2, ..., n \), is integrable if and only if \(N_{J_\beta}(H X, H Y) = 0 \) for any \(X, Y \in \mathfrak{S}_1^0(M) \).

Let us calculate

\[
\]

\[
-[J_\beta H X, J_\beta H Y].
\]

Before calculating \(N_{J_\beta}(H X, H Y) \) it is necessary to prove the following.

Lemma 6.2. Let \((M, g)\) be a Riemannian manifold and \(f : R \to R \) a smooth function. Then for all \(X \in \mathfrak{S}_1^0(M) \) and \(\omega, \theta \in \mathfrak{S}_1^0(M) \), we have

\[
1. V_\beta(\omega(f(r_\alpha^2))) = 2\delta_\beta f'(r_\alpha^2)g^{-1}(\omega, X^\alpha),
\]

\[
2. H X(g^{-1}(X^\alpha, \theta)) = g(X^\alpha, \nabla X^\alpha),
\]

where \(r_\alpha^2 = g^{-1}(X^\alpha, X^\alpha) \).

Proof. Direct calculations using (3.3) and (3.4) give

\[
1. V_\beta(\omega(f(r_\alpha^2))) = \omega_\beta f'(r_\alpha^2)\partial_\alpha(g^{rs}X^r_\alpha X^\alpha)
\]
\[2. \quad H(X(g^{-1}(X^\alpha, \theta)) = (X^i D_i)(g^{-1}(X^\alpha, \theta)) = X^i(\partial_i), \]
\[+ X^i \Gamma^i_{ip} \partial_{ip} (g^{-1}(X^\alpha, \theta)) = X^i(\partial_i g^r s) X^\alpha r \theta_s \]
\[+ \Gamma^r g^r m X^\alpha \theta_s + X^i X^r \Gamma^r_{ip} g^r s \delta^s \theta_s = X^i (-\Gamma^r g^m) \]
\[= -X^i \Gamma^r g^m X^\alpha \theta_s - X^i \Gamma^r g^m X^\alpha \theta_s + X^i g^r s X^\alpha \partial_s \theta_s \]
\[+ X^i X^r \Gamma^r_{ir} g^s \theta_s = X^i g^r s X^\alpha \theta_s - X^i \Gamma^r g^r m X^\alpha \theta_s \]
\[= X^r X^i (\partial_s \theta_s - \Gamma^r_{ip} \theta_m) g^r s = X^r (\nabla \chi \theta)_s g^s = g^{-1}(X^\alpha, \nabla \chi \theta). \]

This completes the proof of the lemma.

Direct calculations using (2.4), (3.3), (3.4), (5.8), (6.2) and (6.3) give
\[
[H X, H Y] = H[X, Y] + \sum_{\sigma=1} V_\sigma (X^\sigma \circ R(X, Y)),
\]
\[
J_\beta J_\beta^H [H X, H Y] = J_\beta [\sqrt{h_\beta} V_\beta \hat{X}, \frac{1}{\sqrt{h_\beta}} X^\beta(X)V_\beta X^\beta, H Y]
\]
\[
= J_\beta (\sqrt{h_\beta} V_\beta \hat{X}, \frac{1}{\sqrt{h_\beta}} g(\hat{X}^\beta, X)[V_\beta X^\beta, H Y]
\]
\[
+ \frac{1}{\sqrt{h_\beta}} H Y(g(\hat{X}^\beta, X)) V_\beta X^\beta = J_\beta (-\sqrt{h_\beta} V_\beta (\nabla \chi \hat{X})
\]
\[
+ \frac{1}{\sqrt{h_\beta}} (g^{-1}(X^\beta, \hat{X}^\beta) V_\beta \nabla \chi \hat{X}^\beta + H Y(g^{-1}(X^\beta, \hat{X}^\beta) V_\beta X^\beta)
\]
\[
= J_\beta (-\sqrt{h_\beta} V_\beta (\nabla \chi \hat{X}) + \frac{1}{\sqrt{h_\beta}} g^{-1}(\nabla \chi \hat{X}, X^\beta) V_\beta X^\beta
\]
\[
= J_\beta (-J_\beta H (\nabla \chi X)) = -J_\beta^2 H (\nabla \chi X) = H (\nabla \chi X),
\]
\[
\]
\[
[J_\beta^H X, J_\beta^H Y] = [\sqrt{h_\beta} V_\beta \hat{X} - \frac{1}{\sqrt{h_\beta}} g(\hat{X}^\beta, X) V_\beta X^\beta, \sqrt{h_\beta} V_\beta \hat{Y}
\]
\[- \frac{1}{\sqrt{h_\beta}} g(\hat{X}^\beta, Y) V_\beta X^\beta] = [\sqrt{h_\beta} V_\beta \hat{X}, \sqrt{h_\beta} V_\beta \hat{Y}] \]
Almost complex structures on coframe bundle

\[+ [\sqrt{h_\beta} \tilde{X}, - \frac{1}{\sqrt{\hbar_\beta + 1}} g(\tilde{X}_\beta, Y) V_\beta X_\beta] \]

\[+ [- \frac{1}{\sqrt{h_\beta + 1}} g(\tilde{X}_\beta, X) V_\alpha X_\alpha, \sqrt{h_\beta} V_\beta Y] \]

\[+ [- \frac{1}{\sqrt{h_\beta + 1}} g(\tilde{X}_\beta, X) V_\alpha X_\alpha, - \frac{1}{\sqrt{h_\beta + 1}} g(\tilde{X}_\beta, Y) V_\alpha X_\alpha] \]

\[= \sqrt{h_\beta} V_\beta \tilde{X}(\sqrt{h_\beta}) V_\beta \tilde{Y} - \sqrt{h_\beta} V_\beta \tilde{Y}(\sqrt{h_\beta}) V_\beta \tilde{X} \]

\[+ \frac{1}{\sqrt{h_\beta + 1}} g(\tilde{X}_\beta, Y) V_\beta X_\beta (\sqrt{h_\beta}) V_\beta \tilde{X} + \frac{\sqrt{h_\beta}}{\sqrt{h_\beta + 1}} g(\tilde{X}_\beta, Y)[V_\beta X_\beta, V_\beta \tilde{X}] - \]

\[- \frac{1}{\sqrt{h_\beta + 1}} g(\tilde{X}_\beta, X) V_\beta X_\beta (\sqrt{h_\beta}) V_\beta \tilde{Y} - \frac{\sqrt{h_\beta}}{\sqrt{h_\beta + 1}} g(\tilde{X}_\beta, X)[V_\beta X_\beta, V_\beta \tilde{Y}] \]

\[= g^{-1}(X_\beta, \tilde{X}) V_\beta \tilde{Y} - g^{-1}(X_\beta, \tilde{Y}) V_\beta \tilde{X} \]

\[+ \frac{1}{\sqrt{h_\beta (h_\beta + 1)}} g^{-1}(X_\beta, \tilde{Y}) g^{-1}(X_\beta, X_\beta) V_\beta \tilde{X} - \frac{\sqrt{h_\beta}}{\sqrt{h_\beta + 1}} g^{-1}(X_\beta, \tilde{Y}) V_\beta \tilde{X} \]

\[- \frac{1}{\sqrt{h_\beta (h_\beta + 1)}} g^{-1}(X_\beta, \tilde{X}) g^{-1}(X_\beta, X_\beta) V_\beta \tilde{Y} + \frac{\sqrt{h_\beta}}{\sqrt{h_\beta + 1}} g^{-1}(X_\beta, \tilde{X}) V_\beta \tilde{Y} \]

\[= V_\beta \left(g^{-1}(X_\beta, \tilde{X}) \tilde{Y} - g^{-1}(X_\beta, \tilde{Y}) \tilde{X} \right) \left(1 - \frac{r_\beta^2}{\sqrt{h_\beta (h_\beta + 1)}} + \frac{\sqrt{h_\beta}}{\sqrt{h_\beta + 1}} \right). \]

Therefore,

\[N_{J_\beta} (H(X, H Y)) = H[X, Y] + \sum_{\sigma=1}^{n} (X_\sigma o R(X, Y)) + H((\nabla Y)X) - (\nabla X Y)) \]

\[- V_\beta \left(g^{-1}(X_\beta, \tilde{X}) \tilde{Y} - g^{-1}(X_\beta, Y) \tilde{X} \right) \left(1 - \frac{r_\beta^2}{\sqrt{h_\beta (h_\beta + 1)}} + \frac{\sqrt{h_\beta}}{\sqrt{h_\beta + 1}} \right) \]

\[= \sum_{\sigma=1}^{n} (X_\sigma o R(X, Y)) - V_\beta \left(g^{-1}(X_\beta, \tilde{X}) \tilde{Y} \right. \]

\[- g^{-1}(X_\beta, \tilde{Y}) \tilde{X} \left. \right) \left(1 - \frac{r_\beta^2}{\sqrt{h_\beta (h_\beta + 1)}} + \frac{\sqrt{h_\beta}}{\sqrt{h_\beta + 1}} \right) \]

\[= \sum_{\sigma=1}^{n} (X_\sigma o R(X, Y)) - \frac{1 + \sqrt{h_\beta + h_\beta}}{\sqrt{h_\beta (h_\beta + 1)}} V_\beta \left(g^{-1}(X_\beta, \tilde{X}) \tilde{Y} - g^{-1}(X_\beta, \tilde{Y}) \tilde{X} \right). \]

Thus, the following theorem holds.

Theorem 6.3. An almost complex structure \(J_\beta \) on \((F^*(M), Cg_{g}) \) for each \(\beta = 1, 2, ..., n \), is integrable if and only if

\[\gamma R(X, Y) = \sum_{\sigma=1}^{n} (X_\sigma o R(X, Y)) \]

\[= \frac{1 + \sqrt{h_\beta + h_\beta}}{\sqrt{h_\beta (h_\beta + 1)}} V_\beta \left(g^{-1}(X_\beta, \tilde{X}) \tilde{Y} - g^{-1}(X_\beta, \tilde{Y}) \tilde{X} \right). \]
References