
G.Sahbeni and B.Székely Eurasian Journal of Soil Science 2022, 11(2), 102 - 112 

 

102 

 

Eurasian Journal of Soil Science 
 

Journal homepage : http://ejss.fesss.org 

 
 
 

Spatial modeling of soil salinity using kriging interpolation 
techniques: A study case in the Great Hungarian Plain 

Ghada Sahbeni *, Balázs Székely 
Department of Geophysics and Space Science, Eötvös Loránd University, Budapest, Hungary 

 Abstract 

Article Info The world’s current task is to ensure food security for an ever-growing population of 
7.674 billion in 2019. Soil degradation threatens sustainable agriculture in arid and 
semi-arid climates, where evaporation rates outweigh precipitation. Soluble salts 
concentrated in the subsoil under certain climatic conditions influence soil 
physicochemical properties, leading to soil fertility and biodiversity losses. Hence, 
understanding salinity behavior and its spatial variation are crucial for natural 
resources management to achieve and maintain sustainability. This study aims to 
model soil salinity spatial distribution using four kriging interpolation methods, i.e., 
ordinary kriging (OK), empirical Bayesian kriging (EBK), co-kriging (CK), and 
indicator kriging (IK). Two hundred twenty-two soil samples were collected for this 
purpose during a field campaign conducted in the Hungarian Soil Monitoring System 
framework in 2016. The performance of kriging methods was assessed and 
compared using two cross-validations, i.e., leave-one-out cross-validation (LOOCV) 
and the holdout method. The Pearson correlation analysis has been used to expose a 
significant moderate correlation between salt content and cation exchange capacity 
(CEC) with a correlation coefficient of 0.4 and a p-value of 0.003. Thus, the spatial 
relationship between soil salinity content (SSC) and CEC was integrated into the 
model to enhance predictions in areas where no measurements were accessible. The 
study demonstrated co-kriging efficiency by reducing the mean squared error (MSE) 
of ordinary kriging (OK) from 0.8 g/kg and 0.85 g/kg for LOOCV and the holdout 
cross-validation to 0.3 g/kg. 
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Introduction 
The accumulation of salts in the subsurface and rhizosphere, known as salinization, leads to degraded soil 
composition and reduced crop yield, threatening food security (Shahid et al., 2018). The global surface area 
affected by salinization covers approximately 831 million hectares, with 434 million hectares as sodic soils 
and 397 million hectares as saline soils. There are two forms of salinization based on occurrence causes. 
Primary salinization originates from parent material weathering, while anthropogenic actions induce 
secondary salinization (Uri, 2018). Extensive work using field measurements coupled with remote sensing 
tools, statistical analysis, geostatistics, and machine learning has been conducted to map and monitor salt-
affected lands expansion over time. Many researchers have explored this topic, including Taghadosi et al. 
(2019), El hafyani et al. (2019), Hoa et al. (2019), Abdel-Fattah et al. (2020), and Sahbeni (2021). 
Geostatistical analysis generates an estimated surface from a distributed set of points using various 
methods, e.g., kriging, nearest neighbor, spline, inverse distance weighting (IDW), global polynomial 
interpolation (GPI), and conditional simulations (Emadi and Baghernejad, 2014; Sangani et al., 2019). 
Kriging interpolation was used by Panday et al. (2018) to determine soil chemical properties distribution 
over agricultural floodplain lands of the Bara district in Nepal. The study revealed a moderate spatial 
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variability for pH, organic matter, nitrogen, and phosphorus. Farmers can analyze soil quality and adopt 
appropriate agricultural production methods based on developed maps. Abdennour et al. (2019) applied 
ordinary kriging (OK) and indicator kriging (IK) for salinity levels analysis in the irrigated perimeter of El-
Ghrous in south-eastern Algeria. The research has determined salinity trends based on different classes and 
has created risk maps that decision-makers could employ in the region. Tziachris et al. (2017) compared 
ordinary kriging, universal kriging, and co-kriging to estimate iron content in the Kozani area. An 
outperformance of the co-kriging method was revealed by adding soil pH as an auxiliary variable to enhance 
predictions in unsampled areas. Nie et al. (2021) used kriging interpolation to study secondary salinization 
extent over agricultural areas in the western Jilin irrigation district, northeast China. The results showed an 
improvement in accuracy by 23.2% using geographically weighted regression kriging (GWRK) compared to 
regression kriging (RK). This provides a theoretical perspective for controlling groundwater to regulate soil 
salinity and prevent salinization through quantitative analysis via kriging.  

The Great Hungarian Plain occupies more than 50% of Hungary’s total surface, and it is contaminated by soil 
and wetland salinization (Mádl-Szőnyi et al., 2008). Salt content, hydraulic properties of soil, and the 
watertable depth influence salt-affected soils genesis in Hungary (Schofield et al., 2001), where saline soils 
cover 6% of its territory, making it one of the largest natural areas in Europe affected by primary 
salinization (Tóth et al., 2008). Thus, this expansion has inspired Hungarian scientists to study salinity 
behavior, origins, and restoration programs in the last decades (Tóth, 2009; Csillag et al., 1993; Tóth et al., 
2002; Szatmári et al., 2020). Salinization mapping has become a valuable task for developing appropriate 
reclamation strategies to preserve soil quality and sustain agricultural productivity in the region. This study 
aims to (1) use field measurements to map salinity spatial distribution in the Great Hungarian Plain and (2) 
compare the predictive performance of four kriging methods, namely ordinary kriging (OK), empirical 
Bayesian kriging (EBK), co-kriging (CK), and indicator kriging (IK). 

Material and Methods 
Study area 

The study area covers approximately 26300 km2 (Figure 1), with an average altitude of 89 meters (Figure 2). 
Meadow chernozems and humic sandy soils dominate the landscape with an expanded agricultural land 
cover (Pásztor et al., 2018). The river Tisza crosses the study area, gathering tributaries from the 
surrounding floodplains. (Tóth et al., 2014). A warm-dry climate characterizes the study area, with an 
average yearly precipitation of roughly 500 mm and a mean temperature of 11°C (Hungarian Meteorological 
Service, 2018). May and July are the rainiest months, while January and March are the driest. Three types of 
deposits dominate the landscape: loess and loess-like sediments above the floodplains, silty clay in alluvial 
areas, and wind-blown sand on the slopes (Ronai, 1986). 

 
Figure 1. The study area’s geographical location; (a) Satellite imagery map using ESRI basemap in ArcMap 10.3; (b) 

Location of sampling sites 
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Figure 2. Altitude map of the study area using a 30-m SRTM digital elevation model provided by the OpenTopography 
facility. 

Soil Sampling and Laboratory Analysis 

From mid-September to mid-October 2016, 222 soil samples were collected within the soil upper layer (30 
cm) in the Hungarian Soil Monitoring System framework. The field survey is conducted in the dry season to 
detect the spectral properties of salts during their accumulation (Szabó and Pirkó, 2017). The Hungarian 
standard MSZ-08-0206/2-1978 is used to calculate soil salinity from saturated paste (MSZ 08-0206-2, 
1978). 

Semivariogram Modeling 

The first step in kriging interpolation is to estimate an experimental semivariogram for the parameter to be 
modeled. Equation (1) illustrates the semivariance expression (Deutsch and Journel, 1998). 

γ(h) =  
1

2N(h)
 x ∑ [Z(si)

N(h)
i −  Z(si  +  h)]²      (1) 

Where  

 

si is the location of the ith sample,  
Z(si) is the measurement,  
h is the distance between Z(si) and Z(si + h), and  
N(h) is the number of pairs Z(si) over the distance h. 

A semivariogram depicts the estimated 𝛾(h) against h values plot (Tziachris et al., 2017). Its main 
parameters are range, sill, partial sill, and nugget. The range (A) represents the distance to the 
semivariogram flattening. The sill (C) is the y-value of the model at the range, whereas the partial sill (C1) is 
the difference between the sill and the nugget (C0), which is the random spatial variation (Hartmann et al., 
2018; Guedes et al., 2020). The spatial dependency can be measured by dividing the nugget over the sill ratio 
(C0/(C0 + C1)). A value below 25% implies severe spatial dependence, a value within 25% and 75% range 
represents mild spatial dependence, while a value more than 75% represents weak dependence 
(Cambardella et al., 1994). Figure 3 shows the structure of a semivariogram model. 

 
 

Figure 3. Typical structure of a semivariogram model (Biswas and Si, 2013) 
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Several model functions can be used to estimate experimental semivariograms in applied geostatistics, such 
as circular, spherical, exponential, gaussian, and linear (Smith, 2011). Once a model is fitted, cross-validation 
is conducted to evaluate the performance of the kriging method. In this context, we used samples from a 
random training set representing 70% of the total data to build experimental semivariogram models, while 
30% of the samples were used for validation. 

Kriging Interpolation 

Kriging interpolation, named after Danie Krige, is a geostatistical approach for estimating unknown values 
based on the distance and the degree of variation between data points (Krige, 1985; Zhang, 2011; Thompson 
et al., 2012). A kriged estimate refers to the weighted linear combination of known values near the estimated 
locations. It helps produce weights resulting in optimum and unbiased estimates (Wackernagel, 2013; Xiao 
et al., 2016). We estimate 𝑍̂(s0) at unknown s0 locations after measuring N data values, Z(s1), Z(s2),..., Z(sN) at 
s1, s2,..., sN locations. Z(si) represents the estimated value at the si location, whereas λi represents the 
unknown weight for the measured value at the si location. 𝑍̂(s0) is computed using Equation (2). 

𝑍̂(𝑠0) = ∑ 𝜆𝑖 x 𝑍(𝑠𝑖)𝑁
𝑖=1       (2) 

This step aims to find the weights λi to minimize the variance Var[ 𝑍̂(s0) −  Z(s0)]. 

Given that the estimator is assumed to be unbiased: 

𝐸[ 𝑍̂(𝑠0)  −  𝑍(𝑠0)]  =  0      (3) 

Ẑ(s0) is separated into two parts: a trend component m(s0) and a residual component e(s0), as shown in 
Equation (4). 

𝑍̂ (𝑠0)  =  𝑚(𝑠0)  +  𝑒(𝑠0)      (4) 

We employed ArcMap 10.3 to conduct interpolations and to evaluate the efficiency of ordinary kriging (OK), 
indicator kriging (IK), empirical Bayesian kriging (EBK), and co-kriging (CK) in terms of salt content 
prediction throughout cross-validation. Ordinary kriging is a spatial prediction approach that reduces error 
variance through data configuration and variogram fitting (Wackernagel, 1995). This technique has been 
well presented by many scholars, i.e., Negreiros et al. (2010), Hamzehpour et al. (2013), and Kiš (2016). 
Indicator kriging estimates a conditional cumulative distribution function at unsampled locations using 
spatial interpolation. It uses indicator variables to determine the likelihood of a crucial value being 
overridden or not at each point in the region of interest (Delbari et al., 2011; Pásztor et al., 2015). While 
other methods require a manual configuration to get reliable results, empirical Bayesian kriging (EBK) 
automates the most exigent elements to build a realistic kriging model, making it easier to obtain more 
accurate predictions. These parameters are estimated using a simulation algorithm. It involves little 
interactive modeling but produces better results for small datasets, outperforming other kriging approaches 
in terms of standard errors (Bhunia et al., 2016; Samsonova et al., 2017; Gribov and Krivoruchko, 2020). Co-
kriging is a multivariate form of ordinary kriging that uses a well-sampled variable to estimate a poorly 
sampled one, considering primarily significant associations (Tajgardan et al., 2010; Gräler, 2011; Babiker et 
al., 2018). For this purpose, we downloaded Landsat-8 OLI data acquired in August 2016. The multispectral 
data were atmospherically and radiometrically corrected via ENVI IDL 5.3. We computed the canopy 
response salinity index (CRSI) (Scudiero et al., 2017) and albedo (Silva et al., 2016). Principal component 
analysis (PCA) was applied to reduce the sensor spectral noise, then only the first and the second 
components were extracted as they contain 98% of data variance. Additionally, slope, profile curvature, and 
wetness index were derived from an SRTM digital elevation model (DTM), provided by OpenTopography 
Facility, using ArcMap 10.3. Cation Exchange Capacity (CEC) raster data were retrieved from the European 
Soil Database v2 Raster Library 1 km × 1 km, provided by the European Soil Data Centre (ESDAC) (Panagos 
et al., 2012, ESDAC, 2021). Once remotely sensed data were processed and corresponding values to samples 
were extracted, Pearson correlation was conducted using RStudio 1.4.1106 to outline the potential 
relationship between salt content values and spectral response.  

Cross-validation 

Two cross-validation methods were used to compare the four state-of-the-art methods. The leave-one-out 
cross-validation (LOOCV) method predicts using a single observation from the training set, while the left-out 
observations are used to train the model. Holdout cross-validation divides the data set randomly into 70% 
for training and 30% for validation. We calculated the mean squared error (MSE) and the mean absolute 
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error (MAE) for LOOCV, while the root mean square error (RMSE) and the mean squared error (MSE) for 
holdout cross-validation. Equations (5), (6), and (7) illustrate statistical metrics expressions. 

𝑅𝑀𝑆𝐸 =  √∑ (ŷ𝑖  −  𝑦𝑖)²/𝑛𝑛
1       (5) 

MSE =  
1

n
 x ∑(yi  −  ŷi)²      (6) 

MAE =  
1

n
 x ∑ |yi  − ŷi|

n
1       (7) 

Where n is the total number of observations, ŷ𝑖  is the estimated value for the ith observation, and yi is the 
actual value for the ith observation. 

Results  
Exploratory Data Analysis 

Table 1 shows the key statistical parameters of field data. Salinity distribution is characterized by a mean of 
0.54 g/kg and a standard deviation of 0.85 g/kg. The substantial difference between a minimum of 0 g/kg 
and a maximum of 8.5 g/kg indicates a wide spatial variability of this parameter. 

Table 1. Descriptive statistics of salt content samples 

Salt Content (g/kg) 
Min Max Mean Standard Deviation 

0 8.5 0.54 0.85 

The regression analysis revealed a significant moderate association between salt content and CEC, with a 
correlation coefficient of 0.4 and a p-value of 0.003 (< 5%). This positive correlation was discussed by 
previous studies (Shainberg et al., 1980; Naseem and Bhatti, 2000). Figure 4 shows the correlation 
coefficients between salt content and auxiliary variables. 

 

Figure 4. Correlation between soil salinity content and auxiliary covariates, where ssc16 refers to soil salinity content in 
2016. B5, B6, and B7 are spectral bands retrieved from Landsat-8 OLI data, while PCA1 and PCA2 are the first and the 

second principal components of the same image. CRSI is the Canopy Response Salinity Index. Wetness index (wi), slope, 
and curvature are derived from a 30-m SRTM Digital Elevation Model (DEM). 

Analysis of Semivariograms 

A semivariogram describes spatial autocorrelation between measured salt content values. Features can be 
extracted to define each model once it is fitted across each pair of observations. Table 2 and Figure 5 
summarize the findings. 

Indicator kriging has a high range of 11332.56 m, followed by co-kriging with a range of 88458.18 m, 
respectively. The range is lower for ordinary kriging (= 5893.58 m) with a partial sill close to co-kriging 
(0.686 and 0.691). A high ratio of 32.1 % was found for co-kriging, revealing a moderate spatial dependence. 
The spatial dependence is strong for indicator kriging equals 18.5 %, whereas it is extreme for ordinary 
kriging with a ratio of 6.3 %. 
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Table 2. The semivariogram models and their parameters for kriging methods. The spatial dependence equals C0/(C0+C1). 

 Model Nugget (C0) Partial Sill (C1) Range (A) (m) Dependence (%) 

OK Gaussian 0.046 0.686 5893.58 0.063 

EBK Exponential *** *** *** *** 

CK Gaussian 0.327 0.691 88458.18 0.321 

IK Gaussian 0.018 0.078 11332.56 0.185 

*** For EBK, the semivariance is rather an empirical distribution than a fixed parameter. Therefore, spatial dependence 
cannot be estimated. 

 
Figure 5. Semivariograms of soil salinity content (SSC) distribution and their fitted models 

 

For empirical Bayesian kriging, these parameters are analyzed in empirical distributions. Since several 
semivariograms are measured at each site, these models have neither a range nor a sill. 

Soil Salinity Prediction  

Based on Figure 6, predictions revealed similar patterns with minor differences for kriging methods. Areas 
with higher salt content predictions are condensed in the east and the center of the study area (Orange 
color) on lower altitudes, whereas areas with lower predictions were found west of the river Tisza, on 
slightly higher altitudes.  

Figure 7 shows that areas with higher prediction errors (Red color) are found in the study area center due to 
the sparse density of sampling sites in the river Tisza vicinity. Empirical Bayesian kriging produced the 
lowest prediction errors with a minimal disparity in the east and the center. Yet, co-kriging (CK) yielded 
better results compared to ordinary kriging (OK) in terms of prediction errors distribution. Errors are 
overestimated by empirical Bayesian kriging compared to co-kriging with maximum values equal to 1.07 
and 0.36, respectively. Table 3 illustrates the results of leave-one-out cross-validation and holdout cross-
validation. 

Table 3. The results of cross-validation for soil salinity prediction. The Root Mean Square Error (RMSE), Mean Squared 
Error (MSE), and Mean Absolute Error (MAE), expressed in g/kg, were used to compare the performance of kriging 
models. 

CV Error OK EBK CK IK 

Holdout Cross-Validation 
RMSE 0.53 0.57 0.60 0.24 

MSE 0.85 0.49 0.30 0.30 

LOOCV 
MAE 0.18 0.18 0.22 0.02 

MSE 0.80 0.42 0.30 0.30 
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Figure 6. Prediction maps for salt content (g/kg) spatial distribution using kriging interpolation methods, (a) OK; (b) 

EBK; (c) CK; (d) IK 

 
Figure 7. Prediction error maps of salt content (g/kg) spatial distribution using kriging interpolation methods, (a) OK; 

(b) EBK; (c) CK; (d) IK 
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Co-kriging and indicator kriging produced the lowest MSE (= 0.3 g/kg) for the holdout cross-validation and 
leave-one-out cross-validation. Meanwhile, ordinary kriging has the highest MSE for holdout cross-
validation and LOOCV, equal to 0.53 g/kg and 0.8 g/kg, respectively. For RMSE, indicator kriging has the 
lowest value (= 0.24 g/kg), followed by ordinary kriging (= 0.53 g/kg), empirical Bayesian kriging (= 0.57 
g/kg), and co-kriging (= 0.6 g/kg). For MAE, indicator kriging has the lowest value, equal to 0.02 g/kg, 
followed by ordinary kriging, empirical Bayesian kriging, and co-kriging. Overall, kriging methods have close 
RMSE and MAE values except for indicator kriging as it produces probabilities rather than numeric values.  

Co-kriging performed well in terms of MSE reduction for both cross-validation stages compared to ordinary 
kriging. In contrast, empirical Bayesian kriging and indicator kriging showed better performance in terms of 
MAE, revealing a remarkable potential to produce unbiased predictions. The superiority of co-kriging was 
expected due to its hybrid structure, conditionally with a strong correlation between variables as the spatial 
distribution of one parameter is exploited to estimate the behavior of the second one. Despite the significant 
improvement of predictions using co-kriging, the correlation between salt content and CEC is moderate 
(40%), which limited the model from outperforming other methods in terms of RMSE. This issue can be 
investigated in future studies. 

Discussion 
This study demonstrates geostatistics efficiency in mapping salinity distribution with significant accuracy, 
supported by the studies of Gallichand et al. (1992) and Pulatov et al. (2020). Benslama et al. (2020) 
interpolated the electrical conductivity (EC) using inverse distance weighting (IDW) and ordinary Kriging 
(OK). Interpolation methods performed well in soil salinity mapping, with mean error (ME) and root mean 
square error (RMSE) of -0.003 dS/m and 0.145 dS/m, respectively. In the same context, Nezami and Alipour 
(2012) examined the potential of interpolation methods in salinity mapping across the Qazvin Plain, i.e., 
ordinary kriging (OK), co-kriging (CK), spline, and inverse distance weighted (IDW). The results revealed 
that co-kriging performed well due to the integration of clay content (%), with a root mean square error 
(RMSE) equal to 108 dS/m2. This agrees with our findings regarding the outperformance of co-kriging in 
modeling salinity distribution with a prediction error ranges between 0.04 g/kg and 0.36 g/kg. The co-
kriging model of Abdennour et al. (2020) yielded a root mean square error (RMSE) of 0.92 dS/m and a mean 
error (ME) of 0.004 dS/m, revealing an accuracy enhancement by adding saturation index (SI) of gypsum 
and SO42−, NDVI, and terrain parameters. Using CEC as an auxiliary covariate, our cokriging model produced 
better predictions in terms of soil salinity modeling with a root mean squared error (RMSE) equals 0.6 g/kg 
and a mean squared error (MSE) equals 0.3 g/kg. However, more improvement can be made by including 
variables with stronger associations rather than the cation exchange capacity (CEC). Triantafilis et al. (2001) 
compared four kriging methods, i.e., ordinary kriging, regression kriging (RK), dimensional kriging (DK), and 
co-kriging (CK), using electromagnetic induction data across an irrigated cotton in the Namoi valley 
(Australia). Despite the superiority of regression kriging in precision and estimation bias, co-kriging 
produced more accurate predictions, supporting our findings. The ordinary kriging method performed well 
with an RMSE equal to 0.53 g/kg, agreeing with Nawar et al. (2011) study that revealed ordinary kriging 
potential based on a spherical semivariogram for mapping salinity distribution in El-Tina Plain (Egypt). 
Similarly, Zheng et al. (2009) predicted electrical conductivity (EC) variation in the west margin of 
Taklamakan desert using ordinary kriging (OK). The model produced an efficiency factor (E) of 0.7793 
mS/cm and a prediction ratio to deviation (RPD) of 0.39 mS/cm. The study agrees with our findings 
regarding ordinary kriging efficiency as a promising alternative to spatially map salinity with acceptable 
accuracy. 

An interpretation of prediction maps showed that higher salinity predictions are concentrated around lower 
altitudes around the river Tisza and Hortobágy National Park, whereas lower salinity predictions are 
frequent in slightly higher altitudes. Topography and climate play a crucial role in salt accumulation and 
movement within the subsoil, as discussed by many scholars (Schofield et al., 2001; Ivushkin et al., 2017; 
Sahbeni, 2021). Thus, it is recommended to adopt a practical field sampling approach that preserves the 
continuity and the representativeness principles. To produce more accurate results, distance between sites, 
sampling density, geologic formations, and topographic parameters of the study area must be considered. 

Conclusion 
The current study investigates kriging potential in salinity prediction. Implementing a suitable method that 
minimizes errors and predicts salt content accordingly offers a quick and affordable approach to monitoring 
salinity variation and preventing its expansion. In this context, co-kriging performed well in terms of 
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prediction error distribution that varies between 0.04 g/kg and 0.36 g/kg using cation exchange capacity 
(CEC) as an auxiliary covariate. Stronger associations with soil salinity in the vicinity of unsampled or poorly 
sampled sites can improve co-kriging performance and reduce prediction error. On the other hand, indicator 
kriging outperformed other methods in terms of MSE, MAE, and RMSE, with values of 0.3 g/kg, 0.02 g/kg, 
and 0.24 g/kg for LOOCV and holdout cross-validation, respectively. We have found that more than 10% of 
the study area surpassed the 1g/kg threshold limit, which might require immediate intervention to validate 
this scenario. Overall, salinity distribution maps can assist in boosting awareness of reclamation programs 
for sustainable agriculture and implementing feasible planning strategies. Nevertheless, the sample size and 
the non-uniform distribution of samples affected prediction errors by overestimating or underestimating in 
areas where no or few samples were taken. Further research must be conducted on larger scales 
(agricultural lands/farms scale) to validate the applicability of the proposed approach. 
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