Advances in the Theory of Nonlinear Analysis and its Applications 1 (2022) No. 1, 143-[147.](#page-4-0) https://doi.org/10.31197/atnaa.1013690 Available online at www.atnaa.org Research Article

Lower semi-continuity in a generalized metric space

Mehdi Asadi^a, Alireza Khalesi^a

^a Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran.

Abstract

In this paper, we verify the lower semi-continuity and Ekeland's variational principle for very recent results in a generalized metric space which introduced by Mohamed Jleli and Bessem Samet [\[2\]](#page-4-1). And in the sequel we obtain certain fixed point theorems and related topics.

Keywords: Generalized metric Fixed point Partial metric space. 2010 MSC: 47H10, 54H25.

1. Preliminaries

Mohamed Jleli and Bessem Samet introduced very recent in [\[2\]](#page-4-1) a new concept of generalized metric spaces for which they extended some well-known fixed point results including Banach contraction principle, Cirić's fixed point theorem and so on; and new concept of generalized metric spaces recover various topological spaces including standard metric spaces, b-metric spaces, dislocated metric spaces, and modular spaces. For more detail refer to [\[4,](#page-4-2) [5,](#page-4-3) [6,](#page-4-4) [7,](#page-4-5) [3\]](#page-4-6).

Let X be a nonempty set and $D: X \times X \to [0, +\infty]$ be a given mapping. For every $x \in X$, let us define the set

$$
C(D, X, x) = \{ \{x_n\} \subseteq X : \lim_{n \to \infty} D(x_n, x) = 0 \}.
$$

Definition 1.1 ([\[2\]](#page-4-1)). We say that D is a generalized metric on X if it satisfies the following conditions:

- (D1) for every $(x, y) \in X \times X$, we have $D(x, y) = 0 \Rightarrow x = y$;
- (D2) for every $(x, y) \in X \times X$, we have $D(x, y) = D(y, x)$;
- (D3) there exists $C > 0$ such that if $(x, y) \in X \times X$ and $\{x_n\} \in C(D, X, x)$, then $D(x, y) \le C \limsup_{n \to \infty} D(x_n, y)$.

Received October 22, 2021, Accepted January 8, 2021, Online January 11, 2022

Email addresses: masadi.azu@gmail.com (Mehdi Asadi), alirezakhalesi@gmail.com (Alireza Khalesi)

In this case, we say the pair (X, D) is a generalized metric space.

Definition 1.2 ([\[2\]](#page-4-1)). Let (X, D) be a generalized metric space. Let $\{x_n\}$ be a sequence in X and $x \in X$.

- 1. We say that $\{x_n\}$ D-converges to x if $\{x_n\} \in C(D, X, x)$.
- 2. We say that $\{x_n\}$ is a D-Cauchy sequence if $\lim_{m,n\to\infty} D(x_n,x_{n+m})=0$.
- 3. It is said to be D-complete if every Cauchy sequence in X is convergent to some element in X.

Proposition 1.3. Let (X, D) be a generalized metric space. Let $\{x_n\}$ be a sequence in X and $(x, y) \in X \times X$. If $\{x_n\}$ D-converges to x and $\{x_n\}$ D-converges to y, then $x = y$.

2. Main result and fixed point theorems

Definition 2.1. Let (X, D) be a complete generalized metric space and $\varphi : X \to \mathbb{R}^+$ be a given function. Then, φ is said to be a lower semi-continuous (l.s.c) function on X if

$$
\{x_n\} \in C(D, X, x) \Rightarrow \varphi(x) \le \liminf_{n \to \infty} \varphi(x_n),
$$

for every $x \in X$.

Theorem 2.2. Let (X,D) be a complete generalized metric space and $\varphi:X\to \mathbb{R}^+$ be a lower semi-continuous (l.s.c) function on X. Let $\varepsilon > 0$ and $x \in X$ be such that

$$
\varphi(x) \le \inf_{t \in X} \varphi(t) + \varepsilon \quad \text{and} \quad \inf_{t \in X} D(x, t) < c', \tag{1}
$$

where $c' = \min\left\{C, \frac{1}{C}\right\} \leq 1$. Then there exists some point $y \in X$ such that

$$
\varphi(y) \le \varphi(x), \quad D(x, y) \le 1,
$$

\n
$$
\forall z \in X, \quad z \ne y \quad \varphi(y) - \varphi(z) < \varepsilon \le D(y, z).
$$
\n
$$
(2)
$$

Proof. Let $x_1 := x$. Pick $\{x_n\}$ as follows $\varphi(x_n) \leq \varphi(x)$ and $D(x_n, x) \leq c'$. So we have two cases:

1. $\forall z \neq x_n$ $\varphi(x_n) - \varphi(z) < \varepsilon c'D(x_n, z).$ 2. $\exists z \neq x_n \quad \varphi(x_n) - \varphi(z) \geq \varepsilon c'D(x_n, z).$

We shall verify that the case (2) since by the case (1), assertion of theorem obtained by $y := x_n$. Put

$$
S_n := \{ z \in X : z \neq x_n \quad \varepsilon c'D(x_n, z) \le \varphi(x_n) - \varphi(z) \}.
$$

Choose $x_{n+1} \in S_n$, such that

$$
\varphi(x_{n+1}) - \inf_{t \in S_n} \varphi(t) < \frac{1}{2} (\varphi(x_n) - \inf_{t \in S_n} \varphi(t)),\tag{3}
$$

hence we have

$$
\varepsilon c'D(x_n, x_{n+1}) \leq \varphi(x_n) - \varphi(x_{n+1}).
$$

 $\{\varphi(x_n)\}\$ is bounded bellow and non-increasing, so $\varphi(x_n) \to l$ for some l. Therefore

$$
\varepsilon c'D(x_n, x_{n+1}) \le \varphi(x_n) - \varphi(x_{n+1}) \to 0,
$$

also

$$
\varepsilon c'D(x_n, x_m) \le \varphi(x_n) - \varphi(x_m) \to 0, \quad \text{as} \quad m, n \to \infty \tag{4}
$$

so $\{x_n\}$ is Cauchy sequence and by completeness od X $x_n \to x^*$ in D for some $x^* \in X$. Thus

$$
\varphi(x^*) \le \liminf_{n \to \infty} \varphi(x_n) \le \varphi(x),
$$

and

$$
D(x, x^*) \le C \limsup_{n \to \infty} D(x, x_n) \le Cc' \le 1.
$$

Now to prove [\(2\)](#page-1-0) let it does not hold. So

$$
\exists z \in X, \quad z \neq x^* \quad \varphi(x^*) - \varphi(z) \ge \varepsilon c'D(x^*, z). \tag{5}
$$

So

$$
\varphi(x^*) \leq \liminf_{m \to \infty} \varphi(x_m)
$$

\n
$$
\leq \liminf_{m \to \infty} (\varphi(x_n) - \varepsilon c' D(x_n, x_m)) \text{ by (4)}
$$

\n
$$
\leq \varphi(x_n) - \varepsilon c' \limsup_{m \to \infty} D(x_n, x_m)
$$

\n
$$
\leq \varphi(x_n) - \varepsilon \frac{c'}{C} D(x_n, x^*).
$$
 (6)

On the other hand by [\(6\)](#page-2-0) and [\(5\)](#page-2-1)

$$
\varphi(z) \leq \varphi(x^*) - \varepsilon c'D(x^*, z) \n\leq \varphi(x_n) - \varepsilon \frac{c'}{C} D(x_n, x^*) - \varepsilon c'D(x^*, z) \n\leq \varphi(x_n) - \varepsilon c'D(x_n, z),
$$
\n(7)

since we have

$$
D(x_n, z) \le \frac{1}{C} D(x_n, x^*) + D(x^*, z). \tag{8}
$$

Because

$$
\forall \varepsilon > 0 \ \exists N \ \forall n \ (n \geq N \Rightarrow D(x_n, z) \leq \limsup_{n \to \infty} D(x_n, z) + \varepsilon).
$$

Thus

$$
D(x_n, z) \leq \limsup_{n \to \infty} D(x_n, z) + \varepsilon
$$

\n
$$
\leq \limsup_{n \to \infty} (\frac{1}{C}D(x_n, x^*) + D(x^*, z)) + \varepsilon,
$$

\n
$$
\leq D(x^*, z) + \varepsilon
$$

\n
$$
\leq \frac{1}{C}D(x_n, x^*) + D(x^*, z) + \varepsilon
$$

and since $\varepsilon > 0$ and arbitrary therefore

$$
D(x_n, z) \leq \frac{1}{C}D(x_n, x^*) + D(x^*, z).
$$

The [\(7\)](#page-2-2) implies that $z \in S_n$. Now by [\(3\)](#page-1-2)

$$
2\varphi(x_{n+1}) - \varphi(x_n) \le \inf_{t \in S_n} \varphi(t) < \varphi(z),
$$

so when $\varphi(x_n) \to l$ hence $l \leq \varphi(z)$. By l.s.c. of φ we get $\varphi(x^*) \leq \liminf_{m \to \infty} \varphi(x_m) = l$. Thus $\varphi(x^*) \leq l \leq \varphi(z)$. But $z \neq x^*$ so from $D(x^*, z) > 0$ we have $\varphi(z) < \varphi(x^*)$, that is a contradiction.

Theorem 2.3. Let (X, D) be a complete generalized metric space and $\varphi : X \to \mathbb{R}^+$ be a lower semicontinuous (l.s.c) function on X. Let $\varepsilon > 0$ and $x \in X$ be such that Given $\varepsilon > 0$, then there exists $y \in X$ such that

$$
\varphi(y) \le \inf_{t \in X} \varphi(t) + \varepsilon,
$$

$$
\forall z \in X, \quad \varphi(y) - \varphi(z) \le \varepsilon D(y, z).
$$

Theorem 2.4. Let (X,D) be a complete generalized metric space and $\varphi:X\to \mathbb{R}^+$ be a lower semi-continuous (l.s.c) function on X. Then any mapping $T: X \rightarrow X$ satisfying

$$
D(x,Tx) \le \varphi(x) - \varphi(Tx),\tag{9}
$$

for each $x \in X$ has a fixed point in X.

T, verifying (9) , is called a Caristi mapping on (X, m) .

Proof. Put $\varepsilon := \frac{1}{2}$ in the Theorem [2.3](#page-3-1) for φ in [\(9\)](#page-3-0).

$$
\exists y \in X
$$
 such that $\varphi(y) - \varphi(z) \leq \frac{1}{2}D(y, z)$ $\forall z \in X$.

So for $z = Ty$, we get

$$
\varphi(y) - \varphi(Ty) \le \frac{1}{2}D(y, Ty).
$$

Therefore by (9) , one can find

$$
D(y,Ty) \le \varphi(y) - \varphi(Ty).
$$

Thus

$$
D(y,Ty) \le \frac{1}{2}D(y,Ty),
$$

which implies that $D(y,Ty) = 0$, so $Ty = y$, that is, T has a fixed point.

The following Corollaries hold for every p-metric by [\[2,](#page-4-1) Proposition 2.8].

Corollary 2.5 ([\[1\]](#page-4-7)). Let (X, p) be a complete p-metric space and $\varphi : X \to \mathbb{R}^+$ be a l.s.c. function on X. Let $\varepsilon > 0$ and $x \in X$ be such that

$$
\varphi(x) \le \inf_{t \in X} \varphi(t) + \varepsilon \quad \text{and} \quad \inf_{t \in X} p(x, t) < 1.
$$

Then there exists some point $y \in X$ such that

$$
\varphi(y) \le \varphi(x), \quad p(x, y) \le 1,
$$

$$
\forall z \in X, \quad z \ne y \quad \varphi(y) - \varphi(z) < \varepsilon p(y, z).
$$

Corollary 2.6 ([\[1\]](#page-4-7)). Let (X, p) be a complete p-metric space and $\varphi : X \to \mathbb{R}^+$ be a l.s.c. function on X. Given $\varepsilon > 0$, then there exists $y \in X$ such that

$$
\varphi(y) \le \inf_{t \in X} \varphi(t) + \varepsilon,
$$

$$
\forall z \in X, \quad \varphi(y) - \varphi(z) \le \varepsilon p(y, z).
$$

Corollary 2.7 ([\[1\]](#page-4-7)). Let (X, p) be a complete p-metric space and $\varphi : X \to \mathbb{R}^+$ be a l.s.c. function on X. Then any mapping $T : X \rightarrow X$ satisfying:

$$
p(x,Tx) \le \varphi(x) - \varphi(Tx),
$$

for each $x \in X$ has a fixed point in X.

 \Box

References

- [1] M. Asadi, On Ekeland's Variational Principle in M-metric spaces, Journal of Convex Analysis, 17(6) (2016) 1151-1158.
- [2] M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory and Applications (2015) 2015:61, DOI 10.1186/s13663-015-0312-7
- [3] D. Khantwal, S. Aneja, U.C. Gairola, A fixed point theorem for (ϕ, φ) -convex contraction in metric spaces, 5(2) (2021) 240245, Article Id: 2021:21.
- [4] F. Khojasteh, E. Karapınar, H. Khandani, Some applications of Caristi's fixed point theorem in metric spaces, Fixed Point Theory and Applications, 2016:16.
- [5] F. Khojasteh, A. Razani, S. Moradi, A fixed point of generalized TF-contraction mappings in cone metric spaces, Fixed Point Theory and Applications 2011:14.
- [6] M. Omidvari, S.M. Vaezpour, R. Saadati and S.J. Lee, Best proximity point theorems with Suzuki distances, Journal of Inequalities and Applications volume 2015:27.
- [7] A. Tas, On Double Controlled Metric-Like Spaces and Related Fixed Point Theorems, 5(2) (2021) 167-172, Article Id: 2021:13.