Homological aspects of formal triangular matrix rings

Lixin Mao(D)
School of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China

Abstract

Let $T=\left(\begin{array}{cc}A & 0 \\ U & B\end{array}\right)$ be a formal triangular matrix ring, where A and B are rings and U is a (B, A)-bimodule. We first give some computing formulas of projective, injective, flat and $F P$-injective dimensions of special left T-modules. Then we establish some formulas of (weak) global dimensions of T. It is proven that (1) If U_{A} is flat and ${ }_{B} U$ is projective, $l D(A) \neq l D(B)$, then $l D(T)=\max \{l D(A), l D(B)\} ;(2)$ If U_{A} and ${ }_{B} U$ are flat, $w D(A) \neq$ $w D(B)$, then $w D(T)=\max \{w D(A), w D(B)\}$.

Mathematics Subject Classification (2020). 16D90, 16E10, 16E30
Keywords. formal triangular matrix ring, projective dimension, injective dimension, flat dimension, $F P$-injective dimension

1. Introduction

Formal triangular matrix rings play an important role in ring theory and the representation theory of algebras. This kind of rings are often used to construct examples and counterexamples $[7,13]$. Homological properties on formal triangular matrix rings have also attracted more and more interest. For example, Fossum, Griffith and Reiten gave some estimations of global dimension of a formal triangular matrix ring in [6]. Asadollahi and Salarian studied the vanishing of the extension functor Ext over a formal triangular matrix ring and explicitly described the structure of modules of finite projective (resp. injective) dimension in [1]. Loustaunau and Shapiro obtained some bounds on global dimensions and weak global dimensions in a Morita context under certain assumptions [14] (The notion of Morita context is a generalization of formal triangular matrix rings). More generally, Psaroudakis provided bounds for global dimensions, finitistic dimensions and representation dimensions under recollement of abelian categories and then gave applications to formal triangular matrix rings [19]. Recently, the author also established some formulas of homological dimensions of special modules over a formal triangular matrix ring in [18]. In this note, we will continue to provide other computing formulas of homological dimensions of formal triangular matrix rings and modules over them.

Section 2 is devoted to some formulas of homological dimensions of special modules over a formal triangular matrix ring $T=\left(\begin{array}{cc}A & 0 \\ U & B\end{array}\right)$, where A and B are rings and U is

[^0]a (B, A)-bimodule. Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}} \neq 0$ be a left T-module. We prove that (1) If M_{1} and M_{2} are projective, then $p d(M)=0$ or $p d\left(U \otimes_{A} M_{1}\right)+1$; (2) If M_{1} and M_{2} are injective, then $i d(M)=0$ or $i d\left(\operatorname{Hom}_{B}\left(U, M_{2}\right)\right)+1 ;(3)$ If M_{1} and M_{2} are flat, then $f d(M)=0$ or $f d\left(U \otimes_{A} M_{1}\right)+1$. Moreover, we establish the computing formulas of homological dimensions of simple left T-modules. On the other hand, let T be a left coherent ring and ${ }_{B} U$ be finitely presented, $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}} \neq 0$ be a left T-module such that $\operatorname{Ext}_{B}^{i}\left(U, M_{2}\right)=0$ for any $i \geq 1$, we prove that (1) If $\widetilde{\varphi}^{M}$ is an epimorphism, then $F P-i d(M)=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{ker}\left(\widetilde{\varphi}^{M}\right)\right)\right\} ;$ (2) If $\widetilde{\varphi}^{M}$ is a monomorphism, then $F P-i d(M)=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\}$.

In Section 3, we give some computing formulas of global homological dimensions of a formal triangular matrix ring $T=\left(\begin{array}{cc}A & 0 \\ U & B\end{array}\right)$. For example, we prove that (1) If U_{A} is flat and ${ }_{B} U$ is projective, $l D(A) \neq l D(B)$, then $l D(T)=\max \{l D(A), l D(B)\}$; (2) If U_{A} and ${ }_{B} U$ are flat, $w D(A) \neq w D(B)$, then $w D(T)=\max \{w D(A), w D(B)\}$. In addition, we give some estimations of other "global" dimensions of T such as $\operatorname{lIFD}(T), \operatorname{lIPD}(T), \operatorname{lPID}(T)$ and $l F I D(T)$.

Throughout this paper, all rings are nonzero associative rings with identity and all modules are unitary. For a ring R, we write R-Mod (resp. Mod- R) for the category of left (resp. right) R-modules. ${ }_{R} M$ (resp. M_{R}) denotes a left (resp. right) R-module. For a module $M, p d(M), i d(M)$ and $f d(M)$ denote the projective, injective and flat dimensions of M, respectively, the character module $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q} / \mathbb{Z})$ of M is denoted by $M^{+}, \operatorname{Gen}(M)$ is the class consisting of quotients of direct sums of copies of M and $\operatorname{Cogen}(M)$ is the class consisting of submodules of direct products of copies of $M . l D(R)$ and $w D(R)$ denote the left global dimension and weak global dimension of R, respectively. $T=\left(\begin{array}{cc}A & 0 \\ U & B\end{array}\right)$ always means a formal triangular matrix ring, where A and B are rings and U is a (B, A)-bimodule. By [9, Theorem 1.5], the category T-Mod of left T-modules is equivalent to the category Ω whose objects are triples $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$, where $M_{1} \in A$-Mod, $M_{2} \in B$-Mod and $\varphi^{M}: U \otimes_{A} M_{1} \rightarrow M_{2}$ is a B-morphism, and whose morphisms from $\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ to $\binom{N_{1}}{N_{2}}_{\varphi^{N}}$ are pairs $\binom{f_{1}}{f_{2}}$ such that $f_{1} \in \operatorname{Hom}_{A}\left(M_{1}, N_{1}\right), f_{2} \in \operatorname{Hom}_{B}\left(M_{2}, N_{2}\right)$ and $\varphi^{N}\left(1 \otimes f_{1}\right)=f_{2} \varphi^{M}$. Given a triple $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ in Ω, we will denote by $\widetilde{\varphi^{M}}$ the A-morphism from M_{1} to $\operatorname{Hom}_{B}\left(U, M_{2}\right)$ given by $\widetilde{\varphi^{M}}(x)(u)=\varphi^{M}(u \otimes x)$ for each $u \in U$ and $x \in M_{1}$. Analogously, the category Mod- T of right T-modules is equivalent to the category Γ whose objects are triples $M=\left(M_{1}, M_{2}\right)_{\varphi_{M}}$, where $M_{1} \in \operatorname{Mod}-A$, $M_{2} \in \operatorname{Mod}-B$ and $\varphi_{M}: M_{2} \otimes_{B} U \rightarrow M_{1}$ is an A-morphism, and whose morphisms from $\left(M_{1}, M_{2}\right)_{\varphi_{M}}$ to $\left(X_{1}, X_{2}\right)_{\varphi_{X}}$ are pairs $\left(g_{1}, g_{2}\right)$ such that $g_{1} \in \operatorname{Hom}_{A}\left(M_{1}, X_{1}\right), g_{2} \in$ $\operatorname{Hom}_{B}\left(M_{2}, X_{2}\right)$ and $\varphi_{X}\left(g_{2} \otimes 1\right)=g_{1} \varphi_{M}$. In the paper, we will identify T-Mod (resp. ModT) with this category Ω (resp. Γ). Whenever there is no possible confusion, we will omit the morphism $\varphi^{M}\left(\right.$ resp. $\left.\varphi_{M}\right)$. For example, for the left T-module $\binom{M_{1}}{\left(U \otimes_{A} M_{1}\right) \oplus M_{2}}$, the B-morphism $U \otimes_{A} M_{1} \rightarrow\left(U \otimes_{A} M_{1}\right) \oplus M_{2}$ is just the injection and for the left T module $\binom{M_{1} \oplus \operatorname{Hom}_{B}\left(U, M_{2}\right)}{M_{2}}$, the A-morphism $M_{1} \oplus \operatorname{Hom}_{B}\left(U, M_{2}\right) \rightarrow \operatorname{Hom}_{B}\left(U, M_{2}\right)$ is just the projection.

2. Homological dimensions of special modules over formal triangular matrix rings

Lemma 2.1. Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ be a left T-module.
(1) [11, Theorem 3.1] M is a projective left T-module if and only if φ^{M} is a monomorphism, M_{1} is a projective left A-module and $\operatorname{coker}\left(\varphi^{M}\right)$ is a projective left B module.
(2) [10, Proposition 5.1] and [1, p.956] M is an injective left T-module if and only if $\widetilde{\varphi^{M}}$ is an epimorphism, $\operatorname{ker}\left(\widetilde{\varphi^{M}}\right)$ is an injective left A-module and M_{2} is an injective left B-module.
(3) [6, Proposition 1.14] M is a flat left T-module if and only if φ^{M} is a monomorphism, M_{1} is a flat left A-module and $\operatorname{coker}\left(\varphi^{M}\right)$ is a flat left B-module.
In [18], we establish some computing formulas of projective, injective and flat dimensions for those left T-modules $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ with φ^{M} (resp. $\widetilde{\varphi}^{M}$) a monomorphism or an epimorphism. Now we give some computing formulas of homological dimensions of other special left T-modules.
Proposition 2.2. Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}} \neq 0$ be a left T-module.
(1) If $\operatorname{Tor}_{i}^{A}\left(U, M_{1}\right)=0$ for any $i \geq 1$, $\operatorname{coker}\left(\varphi^{M}\right)$ is a projective left B-module, then $p d(M)=\max \left\{p d\left(M_{1}\right), p d\left(\operatorname{ker}\left(\varphi^{M}\right)\right)+1\right\}$.
(2) If $\operatorname{Ext}_{B}^{i}\left(U, M_{2}\right)=0$ for any $i \geq 1, \operatorname{ker}\left(\widetilde{\varphi}^{M}\right)$ is an injective left A-module, then $i d(M)=\max \left\{i d\left(M_{2}\right), i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\}$.
(3) If $\operatorname{Tor}_{i}^{A}\left(U, M_{1}\right)=0$ for any $i \geq 1$ and $\operatorname{coker}\left(\varphi^{M}\right)$ is a flat left B-module, then

$$
f d(M)=\max \left\{f d\left(M_{1}\right), f d\left(\operatorname{ker}\left(\varphi^{M}\right)\right)+1\right\} .
$$

Proof. (1) There exists an exact sequence in T-Mod

$$
0 \rightarrow\binom{M_{1}}{\operatorname{im}\left(\varphi^{M}\right)} \rightarrow\binom{M_{1}}{M_{2}}_{\varphi^{M}} \rightarrow\binom{0}{\operatorname{coker}\left(\varphi^{M}\right)} \rightarrow 0 .
$$

By Lemma 2.1(1), $\binom{0}{\operatorname{coker}\left(\varphi^{M}\right)}$ is projective. So by [18, Theorem 2.4], we have

$$
p d(M)=\max \left\{p d\binom{M_{1}}{\operatorname{im}\left(\varphi^{M}\right)}, p d\binom{0}{\operatorname{coker}\left(\varphi^{M}\right)}\right\}=\max \left\{p d\left(M_{1}\right), p d\left(\operatorname{ker}\left(\varphi^{M}\right)\right)+1\right\}
$$

(2) There exists an exact sequence in T-Mod

$$
0 \rightarrow\binom{\operatorname{ker}\left(\widetilde{\varphi}^{M}\right)}{0} \rightarrow\binom{M_{1}}{M_{2}}_{\varphi^{M}} \rightarrow\binom{\operatorname{im}\left(\widetilde{\varphi}^{M}\right)}{M_{2}} \rightarrow 0
$$

By Lemma 2.1(2), $\binom{\operatorname{ker}\left(\widetilde{\varphi}^{M}\right)}{0}$ is injective. So by [18, Theorem 2.4], we have $i d(M)=\max \left\{i d\binom{\operatorname{ker}\left(\widetilde{\varphi}^{M}\right)}{0}, i d\binom{\operatorname{im}\left(\widetilde{\varphi}^{M}\right)}{M_{2}}\right\}=\max \left\{i d\left(M_{2}\right), i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\}$.
(3) There exists an exact sequence in T-Mod

$$
0 \rightarrow\binom{M_{1}}{\operatorname{im}\left(\varphi^{M}\right)} \rightarrow\binom{M_{1}}{M_{2}}_{\varphi^{M}} \rightarrow\binom{0}{\operatorname{coker}\left(\varphi^{M}\right)} \rightarrow 0 .
$$

By Lemma 2.1(3), $\binom{0}{\operatorname{coker}\left(\varphi^{M}\right)}$ is flat. Therefore by [18, Theorem 2.4], we have

$$
f d(M)=\max \left\{f d\binom{M_{1}}{\operatorname{im}\left(\varphi^{M}\right)}, f d\binom{0}{\operatorname{coker}\left(\varphi^{M}\right)}\right\}=\max \left\{f d\left(M_{1}\right), f d\left(\operatorname{ker}\left(\varphi^{M}\right)\right)+1\right\}
$$

Theorem 2.3. Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}} \neq 0$ be a left T-module.
(1) If M_{1} and M_{2} are projective, then $p d(M)=0$ or $p d\left(U \otimes_{A} M_{1}\right)+1$.
(2) If M_{1} and M_{2} are injective, then $i d(M)=0$ or $i d\left(\operatorname{Hom}_{B}\left(U, M_{2}\right)\right)+1$.
(3) If M_{1} and M_{2} are flat, then $f d(M)=0$ or $f d\left(U \otimes_{A} M_{1}\right)+1$.

Proof. (1) There exists an exact sequence in T-Mod

$$
0 \rightarrow\binom{0}{U \otimes_{A} M_{1}} \stackrel{\binom{0}{f}}{\rightarrow}\binom{M_{1}}{\left(U \otimes_{A} M_{1}\right) \oplus M_{2}} \xrightarrow{\binom{1}{g}}\binom{M_{1}}{M_{2}}_{\varphi^{M}} \rightarrow 0
$$

where $f: U \otimes_{A} M_{1} \rightarrow\left(U \otimes_{A} M_{1}\right) \oplus M_{2}$ is defined by $f(x)=\left(x, \varphi^{M}(x)\right)$ for any $x \in U \otimes_{A} M_{1}$, $g:\left(U \otimes_{A} M_{1}\right) \oplus M_{2} \rightarrow M_{2}$ is defined by $g(x, y)=\varphi^{M}(x)-y$ for any $x \in U \otimes_{A} M_{1}$ and $y \in M_{2}$. Since M_{1} and M_{2} are projective, $\binom{M_{1}}{\left(U \otimes_{A} M_{1}\right) \oplus M_{2}}$ is projective by Lemma 2.1(1).

For any left T-module $X=\binom{X_{1}}{X_{2}}_{\varphi^{X}}$ and $i \geq 1$, by [15, Lemma 3.2], we have

$$
\operatorname{Ext}_{T}^{i+1}\left(\binom{M_{1}}{M_{2}}_{\varphi^{M}},\binom{X_{1}}{X_{2}}_{\varphi^{X}}\right) \cong \operatorname{Ext}_{T}^{i}\left(\binom{0}{U \otimes_{A} M_{1}},\binom{X_{1}}{X_{2}}_{\varphi^{X}}\right) \cong \operatorname{Ext}_{B}^{i}\left(U \otimes_{A} M_{1}, X_{2}\right)
$$

Thus $p d(M)=p d\left(U \otimes_{A} M_{1}\right)+1$ if $p d(M) \neq 0$.
(2) There exists an exact sequence in T-Mod

$$
0 \rightarrow\binom{M_{1}}{M_{2}}_{\varphi^{M}} \xrightarrow{\binom{\alpha}{1}}\binom{M_{1} \oplus \operatorname{Hom}_{B}\left(U, M_{2}\right)}{M_{2}} \xrightarrow{\binom{\beta}{0}}\binom{\operatorname{Hom}_{B}\left(U, M_{2}\right)}{0} \rightarrow 0
$$

where $\alpha: M_{1} \rightarrow M_{1} \oplus \operatorname{Hom}_{B}\left(U, M_{2}\right)$ is defined by $\alpha(x)=\left(x, \widetilde{\varphi^{M}}(x)\right)$ for any $x \in M_{1}$, $\beta: M_{1} \oplus \operatorname{Hom}_{B}\left(U, M_{2}\right) \rightarrow \operatorname{Hom}_{B}\left(U, M_{2}\right)$ is defined by $\beta(x, y)=\widetilde{\varphi^{M}}(x)-y$ for any $x \in M_{1}$ and $y \in \operatorname{Hom}_{B}\left(U, M_{2}\right)$. By Lemma 2.1(2), $\binom{M_{1} \oplus \operatorname{Hom}_{B}\left(U, M_{2}\right)}{M_{2}}$ is injective since M_{1} and M_{2} are injective.

For any left T-module $X=\binom{X_{1}}{X_{2}}_{\varphi^{X}}$ and $i \geq 1$, by [15, Lemma 3.2], we have

$$
\begin{aligned}
\operatorname{Ext}_{T}^{i+1}\left(\binom{X_{1}}{X_{2}}_{\varphi^{X}}\right. & \left.,\binom{M_{1}}{M_{2}}_{\varphi^{M}}\right) \cong \operatorname{Ext}_{T}^{i}\left(\binom{X_{1}}{X_{2}}_{\varphi^{X}},\binom{\operatorname{Hom}_{B}\left(U, M_{2}\right)}{0}\right) \\
& \cong \operatorname{Ext}_{A}^{i}\left(X_{1}, \operatorname{Hom}_{B}\left(U, M_{2}\right)\right)
\end{aligned}
$$

Hence $i d(M)=i d\left(\operatorname{Hom}_{B}\left(U, M_{2}\right)\right)+1$ if $i d(M) \neq 0$.
(3) There exists an exact sequence in T-Mod

$$
0 \rightarrow\binom{0}{U \otimes_{A} M_{1}} \xrightarrow{\binom{0}{f}}\left(\left(U \otimes_{A} M_{1}\right) \oplus M_{2}\right) \xrightarrow{\binom{1}{g}}\binom{M_{1}}{M_{2}}_{\varphi^{M}} \rightarrow 0
$$

where $f: U \otimes_{A} M_{1} \rightarrow\left(U \otimes_{A} M_{1}\right) \oplus M_{2}$ is defined by $f(x)=\left(x, \varphi^{M}(x)\right)$ for any $x \in U \otimes_{A} M_{1}$, $g:\left(U \otimes_{A} M_{1}\right) \oplus M_{2} \rightarrow M_{2}$ is defined by $g(x, y)=\varphi^{M}(x)-y$ for any $x \in U \otimes_{A} M_{1}$ and
$y \in M_{2}$. Since M_{1} and M_{2} are flat, $\binom{M_{1}}{\left(U \otimes_{A} M_{1}\right) \oplus M_{2}}$ is a flat left T-module by Lemma 2.1(3).

For any right T-module $Y=\left(Y_{1}, Y_{2}\right)_{\varphi_{Y}}$ and $i \geq 1$, by [15, Lemma 3.5], we have

$$
\operatorname{Tor}_{i+1}^{T}\left(\left(Y_{1}, Y_{2}\right)_{\varphi_{Y}},\binom{M_{1}}{M_{2}}_{\varphi^{M}}\right) \cong \operatorname{Tor}_{i}^{T}\left(\left(Y_{1}, Y_{2}\right)_{\varphi_{Y}},\binom{0}{U \otimes_{A} M_{1}}\right) \cong \operatorname{Tor}_{i}^{B}\left(Y_{2}, U \otimes_{A} M_{1}\right)
$$

So $f d(M)=f d\left(U \otimes_{A} M_{1}\right)+1$ if $f d(M) \neq 0$.
Proposition 2.4. Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ be a simple left T-module.
(1) If $\operatorname{Tor}_{i}^{A}\left(U, M_{1}\right)=0$ for any $i \geq 1$, then
$p d(M)=\max \left\{p d\left(M_{1}\right), p d\left(U \otimes_{A} M_{1}\right)+1\right\}$ or $p d\left(M_{2}\right)$, $f d(M)=\max \left\{f d\left(M_{1}\right), f d\left(U \otimes_{A} M_{1}\right)+1\right\}$ or $f d\left(M_{2}\right)$.
(2) If $\operatorname{Ext}_{B}^{i}\left(U, M_{2}\right)=0$ for any $i \geq 1$, then

$$
i d(M)=\max \left\{i d\left(M_{2}\right), i d\left(\operatorname{Hom}_{B}\left(U, M_{2}\right)\right)+1\right\} \text { or } i d\left(M_{1}\right) .
$$

Proof. By [12, Corollary 3.3.2], M_{1} is simple and $M_{2}=0$, or $M_{1}=0$ and M_{2} is simple.
(1) Case (i): If M_{1} is simple and $M_{2}=0$, then $p d(M)=\max \left\{p d\left(M_{1}\right), p d\left(U \otimes_{A} M_{1}\right)+1\right\}$ and $f d(M)=\max \left\{f d\left(M_{1}\right), f d\left(U \otimes_{A} M_{1}\right)+1\right\}$ by Proposition 2.2(1,3).

Case (ii): If $M_{1}=0$ and M_{2} is simple, then $p d(M)=p d\left(M_{2}\right)$ and $f d(M)=f d\left(M_{2}\right)$ by [18, Theorem 2.4].
(2) Case (i): If M_{1} is simple and $M_{2}=0$, then $i d(M)=i d\left(M_{1}\right)$ by [18, Theorem 2.4].

Case (ii): If $M_{1}=0$ and M_{2} is simple, then $i d(M)=\max \left\{i d\left(M_{2}\right), i d\left(\operatorname{Hom}_{B}\left(U, M_{2}\right)\right)+\right.$ 1\} by Proposition 2.2(2).
Recall that R is a left $S F$ ring if every simple left R-module is flat. R is called a left V-ring if every simple left R-module is injective.

As an immediate consequence of Proposition 2.4 and [12, Corollary 3.3.2], we have
Corollary 2.5. The following assertions hold.
(1) T is a left $S F$ ring if and only if A and B are left $S F$ rings, $U \otimes_{A} X=0$ for any simple left A-module X.
(2) T is a left V-ring if and only if A and B are left V-rings, $\operatorname{Hom}_{B}(U, Y)=0$ for any simple left B-module Y.
Given a left A-module X and a left B-module Y, there are two natural homomorphisms $\nu_{Y}: U \otimes_{A} \operatorname{Hom}_{B}(U, Y) \rightarrow Y$ defined by $\nu_{Y}(u \otimes f)=f(u)$ for any $f \in \operatorname{Hom}_{B}(U, Y)$ and $u \in U$, and $\eta_{X}: X \rightarrow \operatorname{Hom}_{B}\left(U, U \otimes_{A} X\right)$ defined by $\eta_{X}(x)(u)=u \otimes x$ for any $x \in X$ and $u \in U$.
Proposition 2.6. Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}} \neq 0$ be a left T-module.
(1) If $\operatorname{Tor}_{i}^{A}\left(U, M_{1}\right)=0$ for any $i \geq 1, M_{2} \in G e n(U), \widetilde{\varphi}^{M}$ is an epimorphism, then

$$
\begin{aligned}
& p d(M)=\max \left\{p d\left(M_{1}\right), p d\left(\operatorname{ker}\left(\varphi^{M}\right)\right)+1\right\}, \\
& f d(M)=\max \left\{f d\left(M_{1}\right), f d\left(\operatorname{ker}\left(\varphi^{M}\right)\right)+1\right\} .
\end{aligned}
$$

(2) If $\operatorname{Ext}_{B}^{i}\left(U, M_{2}\right)=0$ for any $i \geq 1, M_{1} \in \operatorname{Cogen}\left(U^{+}\right), \varphi^{M}$ is a monomorphism, then

$$
i d(M)=\max \left\{i d\left(M_{2}\right), i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\} .
$$

Proof. (1) By [3, Lemma 2.1.2], $\nu_{M_{2}}: U \otimes_{A} \operatorname{Hom}_{B}\left(U, M_{2}\right) \rightarrow M_{2}$ is an epimorphism since $M_{2} \in \operatorname{Gen}(U)$. So $\varphi^{M}=\nu_{M_{2}}\left(1 \otimes \widetilde{\varphi}^{M}\right): U \otimes_{A} M_{1} \rightarrow U \otimes_{A} \operatorname{Hom}_{B}\left(U, M_{2}\right) \rightarrow M_{2}$ is an epimorphism. By Proposition 2.2(1,3), pd $(M)=\max \left\{p d\left(M_{1}\right), p d\left(\operatorname{ker}\left(\varphi^{M}\right)\right)+1\right\}$ and $f d(M)=\max \left\{f d\left(M_{1}\right), f d\left(\operatorname{ker}\left(\varphi^{M}\right)\right)+1\right\}$.
(2) By [3, Lemma 2.1.2], $\eta_{M_{1}}: M_{1} \rightarrow \operatorname{Hom}_{B}\left(U, U \otimes_{A} M_{1}\right)$ is a monomorphism since $M_{1} \in \operatorname{Cogen}\left(U^{+}\right)$. So $\widetilde{\varphi}^{M}=\left(\varphi^{M}\right)_{*} \eta_{M_{1}}: M_{1} \rightarrow \operatorname{Hom}_{B}\left(U, U \otimes_{A} M_{1}\right) \rightarrow \operatorname{Hom}_{B}\left(U, M_{2}\right)$ is a monomorphism. By Proposition 2.2(2), $i d(M)=\max \left\{i d\left(M_{2}\right), i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\}$.
Corollary 2.7. Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}} \neq 0$ be a left T-module.
(1) If $\operatorname{Tor}_{i}^{A}\left(U, M_{1}\right)=0$ for any $i \geq 1, M_{2} \in G e n(U)$ and M is injective, then

$$
\begin{aligned}
& p d(M)=\max \left\{p d\left(M_{1}\right), p d\left(\operatorname{ker}\left(\varphi^{M}\right)\right)+1\right\} \\
& f d(M)=\max \left\{f d\left(M_{1}\right), f d\left(\operatorname{ker}\left(\varphi^{M}\right)\right)+1\right\} .
\end{aligned}
$$

(2) If $\operatorname{Ext}_{B}^{i}\left(U, M_{2}\right)=0$ for any $i \geq 1, M_{1} \in \operatorname{Cogen}\left(U^{+}\right)$and M is flat, then

$$
i d(M)=\max \left\{i d\left(M_{2}\right), i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\} .
$$

Proof. It follows from Lemma 2.1(2,3) and Proposition 2.6.
Following [21], a left R-module X is called $F P$-injective if $\operatorname{Ext}_{R}^{1}(N, X)=0$ for any finitely presented left R-module N. The $F P$-injective dimension of X, denoted by $F P$ $i d(X)$, is defined to be the smallest integer $n \geq 0$ such that $\operatorname{Ext}^{n+1}(N, X)=0$ for every finitely presented left R-module N (if no such n exists, set $F P$-id $(X)=\infty$). If R is a left coherent ring, then $F P-i d(X)=f d\left(X^{+}\right)$by [5, Theorem 2.2].

Let ${ }_{B} U$ be finitely presented, then $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ is an $F P$-injective left T-module if and only if $\widetilde{\varphi^{M}}$ is an epimorphism, $\operatorname{ker}\left(\widetilde{\varphi^{M}}\right)$ is an $F P$-injective left A-module and M_{2} is an $F P$-injective left B-module by [16, Theorem 3.3].

Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ be a left T-module. Then $M^{+}=\left(M_{1}^{+}, M_{2}^{+}\right)_{\varphi_{M^{+}}}$is a character right T-module of M, where $\varphi_{M^{+}}: M_{2}^{+} \otimes_{B} U \rightarrow M_{1}^{+}$is defined by $\varphi_{M^{+}}(f \otimes u)(x)=f\left(\varphi^{M}(u \otimes x)\right)$ for any $f \in M_{2}^{+}, u \in U$ and $x \in M_{1}$ (see [12, p.67]).

Next we give some computing formulas of $F P$-injective dimensions of special left T modules.
Theorem 2.8. Let T be a left coherent ring, ${ }_{B} U$ be finitely presented, $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}} \neq 0$ be a left T-module such that $\operatorname{Ext}_{B}^{i}\left(U, M_{2}\right)=0$ for any $i \geq 1$.
(1) If $\widetilde{\varphi}^{M}$ is an epimorphism, then

$$
F P-i d(M)=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{ker}\left(\widetilde{\varphi}^{M}\right)\right)\right\}
$$

(2) If $\widetilde{\varphi}^{M}$ is a monomorphism, then

$$
F P-i d(M)=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\}
$$

(3) If φ^{M} is a monomorphism and $M_{1} \in \operatorname{Cogen}\left(U^{+}\right)$, then

$$
F P-i d(M)=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\}
$$

(4) If $\operatorname{ker}\left(\widetilde{\varphi}^{M}\right)$ is $F P$-injective, then

$$
F P-i d(M)=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\}
$$

(5) If M_{1} and M_{2} are FP-injective, then

$$
F P-i d(M)=0 \text { or } F P-i d\left(\operatorname{Hom}_{B}\left(U, M_{2}\right)\right)+1 .
$$

Proof. By [17, Theorem 3.2], A and B are left coherent rings.
(1) Since $\widetilde{\varphi}^{M}$ is an epimorphism, we get the exact sequence

$$
0 \rightarrow \operatorname{ker}\left(\widetilde{\varphi^{M}}\right) \rightarrow M_{1} \xrightarrow{\widetilde{\varphi_{M}}} \operatorname{Hom}_{B}\left(U, M_{2}\right) \rightarrow 0,
$$

which induces the exact sequence

$$
0 \rightarrow \operatorname{Hom}_{B}\left(U, M_{2}\right)^{+} \xrightarrow{\left.\widetilde{\varphi_{M}}\right)^{+}} M_{1}^{+} \rightarrow\left(\operatorname{ker}\left(\widetilde{\varphi^{M}}\right)\right)^{+} \rightarrow 0 .
$$

Since ${ }_{B} U$ is finitely presented, $M_{2}^{+} \otimes_{B} U \cong \operatorname{Hom}_{B}\left(U, M_{2}\right)^{+}$by [20, Lemma 3.55]. So we have the following commutative diagram with exact rows:

By $[8$, Lemma $1.2 .11(\mathrm{~d})], \operatorname{Tor}_{i}^{B}\left(M_{2}^{+}, U\right) \cong \operatorname{Ext}_{B}^{i}\left(U, M_{2}\right)^{+}=0$ for any $i \geq 1$. By [18, Theo$\operatorname{rem} 2.4], F P-i d(M)=f d\left(M^{+}\right)=f d\left(M_{1}^{+}, M_{2}^{+}\right)_{\varphi_{M^{+}}}=\max \left\{f d\left(M_{2}^{+}\right), f d\left(\operatorname{coker}\left(\varphi_{M^{+}}\right)\right\}=\right.$ $\max \left\{f d\left(M_{2}^{+}\right), f d\left(\left(\operatorname{ker}\left(\widetilde{\varphi}^{M}\right)\right)^{+}\right)\right\}=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{ker}\left(\widetilde{\varphi}^{M}\right)\right)\right\}$.
(2) Since $\widetilde{\varphi}^{M}$ is a monomorphism, we get the exact sequence

$$
0 \rightarrow M_{1} \xrightarrow{\widetilde{\varphi_{M}}} \operatorname{Hom}_{B}\left(U, M_{2}\right) \rightarrow \operatorname{coker}\left(\widetilde{\varphi^{M}}\right) \rightarrow 0
$$

which induces the exact sequence

$$
0 \rightarrow\left(\operatorname{coker}\left(\widetilde{\varphi^{M}}\right)\right)^{+} \rightarrow \operatorname{Hom}_{B}\left(U, M_{2}\right)^{+} \xrightarrow[\left(\widetilde{\varphi^{M}}\right)^{+}]{ } M_{1}^{+} \rightarrow 0
$$

So we have the following commutative diagram with exact rows:

By [18, Theorem 2.4], $F P-i d(M)=f d\left(M^{+}\right)=\max \left\{f d\left(M_{2}^{+}\right), f d\left(\operatorname{ker}\left(\varphi_{M^{+}}\right)\right)+1\right\}=$ $\max \left\{f d\left(M_{2}^{+}\right), f d\left(\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)^{+}\right)+1\right\}=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\}$.
(3) By [3, Lemma 2.1.2], $\eta_{M_{1}}: M_{1} \rightarrow \operatorname{Hom}_{B}\left(U, U \otimes_{A} M_{1}\right)$ is a monomorphism since $M_{1} \in \operatorname{Cogen}\left(U^{+}\right)$. So $\widetilde{\varphi}^{M}=\left(\varphi^{M}\right)_{*} \eta_{M_{1}}: M_{1} \rightarrow \operatorname{Hom}_{B}\left(U, U \otimes_{A} M_{1}\right) \rightarrow \operatorname{Hom}_{B}\left(U, M_{2}\right)$ is a monomorphism. By $(2), F P-i d(M)=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\}$.
(4) There exists an exact sequence in T-Mod

$$
0 \rightarrow\binom{\operatorname{ker}\left(\widetilde{\varphi}^{M}\right)}{0} \rightarrow\binom{M_{1}}{M_{2}}_{\varphi^{M}} \rightarrow\binom{\operatorname{im}\left(\widetilde{\varphi}^{M}\right)}{M_{2}} \rightarrow 0
$$

Since $\binom{\operatorname{ker}\left(\widetilde{\varphi}^{M}\right)}{0}$ is $F P$-injective by [16, Theorem 3.3], we have $F P$ - $i d(M)=\max \{F P$ $\left.i d\binom{\operatorname{ker}\left(\widetilde{\varphi}^{M}\right)}{0}, F P-i d\binom{\operatorname{im}\left(\widetilde{\varphi}^{M}\right)}{M_{2}}\right\}=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{coker}\left(\widetilde{\varphi}^{M}\right)\right)+1\right\}$ by (2).
(5) There exists an exact sequence in T-Mod

$$
0 \rightarrow\binom{M_{1}}{M_{2}}_{\varphi^{M}} \rightarrow\binom{M_{1} \oplus \operatorname{Hom}_{B}\left(U, M_{2}\right)}{M_{2}} \rightarrow\binom{\operatorname{Hom}_{B}\left(U, M_{2}\right)}{0} \rightarrow 0
$$

Since M_{1} and M_{2} are $F P$-injective, we have $\binom{M_{1} \oplus \operatorname{Hom}_{B}\left(U, M_{2}\right)}{M_{2}}$ is $F P$-injective by [16, Theorem 3.3]. Therefore, for any finitely presented left T-module $X=\binom{X_{1}}{X_{2}}_{\varphi^{X}}$, $\operatorname{Ext}_{T}^{i}\left(\binom{X_{1}}{X_{2}}_{\varphi^{X}},\binom{M_{1} \oplus \operatorname{Hom}_{B}\left(U, M_{2}\right)}{M_{2}}\right)=0$ for any $i \geq 1$ by [21, Lemma 3.1]. So

$$
\operatorname{Ext}_{T}^{i+1}\left(\binom{X_{1}}{X_{2}}_{\varphi^{X}},\binom{M_{1}}{M_{2}}_{\varphi^{M}}\right) \cong \operatorname{Ext}_{T}^{i}\left(\binom{X_{1}}{X_{2}}_{\varphi^{X}},\binom{\operatorname{Hom}_{B}\left(U, M_{2}\right)}{0}\right)
$$

$$
\cong \operatorname{Ext}_{A}^{i}\left(X_{1}, \operatorname{Hom}_{B}\left(U, M_{2}\right)\right) .
$$

Note that X_{1} is finitely presented. Thus $F P-i d(M)=F P-i d\left(\operatorname{Hom}_{B}\left(U, M_{2}\right)\right)+1$ if $F P-$ $i d(M) \neq 0$.
Corollary 2.9. Let R be a left coherent ring and $T(R)=\left(\begin{array}{ll}R & 0 \\ R & R\end{array}\right), M=\binom{M_{1}}{M_{2}}_{\varphi^{M}} \neq 0$ be a left $T(R)$-module.
(1) If φ^{M} is an epimorphism, then
$F P-i d(M)=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{ker}\left(\varphi^{M}\right)\right)\right\}$.
(2) If φ^{M} is a monomorphism, then

$$
F P-i d(M)=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{coker}\left(\varphi^{M}\right)\right)+1\right\}
$$

(3) If $\operatorname{ker}\left(\varphi^{M}\right)$ is FP-injective, then

$$
F P-i d(M)=\max \left\{F P-i d\left(M_{2}\right), F P-i d\left(\operatorname{coker}\left(\varphi^{M}\right)\right)+1\right\}
$$

Proof. It is an immediate consequence of Theorem 2.8 since $T(R)$ is a left coherent ring by [16, Corollary 3.7].

3. Global dimensions of formal triangular matrix rings

Theorem 3.1. Let U_{A} be flat. Then the following assertions hold.
(1) If ${ }_{B} U$ is projective and $l D(A) \neq l D(B)$, then $l D(T)=\max \{l D(A), l D(B)\}$.
(2) If ${ }_{B} U$ is flat and $w D(A) \neq w D(B)$, then $w D(T)=\max \{w D(A), w D(B)\}$.

Proof. (1) We first note that $\max \{l D(A), l D(B)\} \leq l D(T) \leq \max \{l D(A)+1, l D(B)\}$ by [15, Corollary 3.3].
Next we prove that $l D(T) \leq \max \{l D(A), l D(B)+1\}$. For any left T-module $N=$ $\binom{N_{1}}{N_{2}}_{\varphi^{N}} \neq 0$, there exists an exact sequence in T-Mod

$$
0 \rightarrow\binom{0}{N_{2}} \rightarrow\binom{N_{1}}{N_{2}}_{\varphi^{N}} \rightarrow\binom{N_{1}}{0} \rightarrow 0
$$

By [18, Theorem 2.4], $p d(N) \leq \max \left\{p d\binom{N_{1}}{0}, p d\binom{0}{N_{2}}\right\}=\max \left\{\max \left\{p d\left(N_{1}\right), p d\left(U \otimes_{A}\right.\right.\right.$ $\left.\left.\left.N_{1}\right)+1\right\}, p d\left(N_{2}\right)\right\} \leq \max \{\max \{l D(A), l D(B)+1\}, l D(B)\}=\max \{l D(A), l D(B)+1\}$, which means that $l D(T) \leq \max \{l D(A), l D(B)+1\}$.
Case (i): $l D(A)=\infty$ or $l D(B)=\infty$.
Since $\max \{l D(A), l D(B)\} \leq l D(T), l D(T)=\infty$. So $l D(T)=\max \{l D(A), l D(B)\}$.
Case (ii): $l D(A)=m<\infty$ and $l D(B)=n<\infty$.
Since $m \neq n$, we have $\max \{m, n\} \leq l D(T) \leq \min \{\max \{m+1, n\}, \max \{m, n+1\}\}=$ $\max \{m, n\}$. So $l D(T)=\max \{m, n\}$.

It follows that $l D(T)=\max \{l D(A), l D(B)\}$.
(2) We first note that $\max \{w D(A), w D(B)\} \leq w D(T) \leq \max \{w D(A)+1, w D(B)\}$ by [15, Corollary 3.6].
Next we prove that $w D(T) \leq \max \{w D(A), w D(B)+1\}$. For any left T-module $N=$ $\binom{N_{1}}{N_{2}}_{\varphi^{N}} \neq 0$, we have $f d(N) \leq \max \left\{f d\binom{N_{1}}{0}, f d\binom{0}{N_{2}}\right\}=\max \left\{\max \left\{f d\left(N_{1}\right), f d\left(U \otimes_{A}\right.\right.\right.$ $\left.\left.\left.\left.N_{1}\right)+1\right)\right\}, f d\left(N_{2}\right)\right\} \leq \max \{\max \{f d(A), f d(B)+1\}, f d(B)\} \leq \max \{f d(A), f d(B)+1\}$ by [18, Theorem 2.4]. So $w D(T) \leq \max \{w D(A), w D(B)+1\}$.

Case (i): $w D(A)=\infty$ or $w D(B)=\infty$.
Since $\max \{w D(A), w D(B)\} \leq w D(T)$, we have $w D(T)=\infty$. Therefore $w D(T)=$ $\max \{w D(A), w D(B)\}$.

Case (ii): $w D(A)=m<\infty$ and $w D(B)=n<\infty$.

Since $m \neq n$, we have $\max \{m, n\} \leq w D(T) \leq \min \{\max \{m+1, n\}, \max \{m, n+1\}\}=$ $\max \{m, n\}$. So $w D(T)=\max \{m, n\}$.

Consequently $w D(T)=\max \{w D(A), w D(B)\}$.
It is well known that if $U=0$, then $l D(T)=\max \{l D(A), l D(B)\}$ and $w D(T)=$ $\max \{w D(A), w D(B)\}$. However, the conditions " $l D(A) \neq l D(B)$ " and " $w D(A) \neq w D(B)$ " in Theorem 3.1 is not superfluous.
Example 3.2. Let R be a ring and $T(R)=\left(\begin{array}{ll}R & 0 \\ R & R\end{array}\right)$, then $l D(T(R))=l D(R)+1 \neq l D(R)$ and $w D(T(R))=w D(R)+1 \neq w D(R)$ by [15, Corollaries 3.4 and 3.7].
Example 3.3. Let S be a commutative von Neumann regular ring which is not semisimple Artinian. Then there is an ideal I such that I is not a direct summand of S. Let $R=S / I$ and $T=\left(\begin{array}{ll}S & 0 \\ R & R\end{array}\right)$. Then $w D(R)=w D(S)=0$. But $w D(T)=1 \neq \max \{w D(S), w D(R)\}$ (see [13, 2.34, p.47]).

The condition that " ${ }_{B} U$ is projective" in Theorem 3.1 is not superfluous.
Example 3.4. Let $T=\left(\begin{array}{ll}\mathbb{Q} & 0 \\ \mathbb{Q} & \mathbb{Z}\end{array}\right)$. Note that \mathbb{Q} is a flat \mathbb{Z}-module but is not a projective
\mathbb{Z}-module, $1=w D(\mathbb{Z})=l D(\mathbb{Z}) \neq l D(\mathbb{Q})=w D(\mathbb{Q})=0$. Then we have $w D(T)=$ $\max \{w D(\mathbb{Q}), w D(\mathbb{Z})\}=1$ but $l D(T) \neq \max \{w D(\mathbb{Q}), w D(\mathbb{Z})\}=1$ (see [7. Exercises 11, p.113]).

By taking the supremums of one of projective, injective or flat dimensions of specified R-modules, one obtains various "global" dimensions of R. We write
$\operatorname{lIFD}(R)=\sup \{f d(E): E$ is an injective left R-module $\}$ (see [4]);
$l I P D(R)=\sup \{p d(E): E$ is an injective left R-module $\} ;$
$l P I D(R)=\sup \{i d(P): P$ is a projective left R-module $\} ;$
$l F I D(R)=\sup \{i d(F): F$ is a flat left R-module $\}$.
The following theorem gives an estimation of these "global" dimensions of a formal triangular matrix ring T.
Theorem 3.5. Let U_{A} be flat. Then the following assertions hold.
(1) If ${ }_{B} U$ is flat, then $\max \{l \operatorname{IFD}(A), \operatorname{lIFD}(B)\} \leq l \operatorname{IFD}(T) \leq \max \{\operatorname{lIFD}(A)+1, \operatorname{lIFD}(B)\}$.
(2) If ${ }_{B} U$ is projective, then $\max \{l I P D(A), l I P D(B)\} \leq l I P D(T) \leq \max \{l I P D(A)+1, l I P D(B)\}$.
(3) If ${ }_{B} U$ is projective, then $\max \{l P I D(A), l P I D(B)\} \leq l P I D(T) \leq \max \{l P I D(A), l P I D(B)+1\}$.
(4) If ${ }_{B} U$ is projective, then $\max \{l F I D(A), l F I D(B)\} \leq l F I D(T) \leq \max \{l F I D(A), l F I D(B)+1\}$.
Proof. (1) Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ be an injective left T-module. By Lemma 2.1(2), we get the exact sequence

$$
0 \rightarrow \operatorname{ker}\left(\widetilde{\varphi^{M}}\right) \rightarrow M_{1} \xrightarrow{\widetilde{\varphi_{M}}} \operatorname{Hom}_{B}\left(U, M_{2}\right) \rightarrow 0
$$

with $\operatorname{ker}\left(\widetilde{\varphi^{M}}\right)$ and M_{2} injective. Since U_{A} is flat, $\operatorname{Hom}_{B}\left(U, M_{2}\right)$ is injective and so M_{1} is injective. By [15, Corollary 3.6], $f d(M) \leq \max \left\{f d\left(M_{1}\right)+1, f d\left(M_{2}\right)\right\} \leq \max \{l I F D(A)+$ $1, \operatorname{lIFD}(B)\}$. So $\operatorname{lIFD}(T) \leq \max \{\operatorname{lIFD}(A)+1, \operatorname{lIFD}(B)\}$.

Let N be an injective left A-module. Then $\binom{N}{0}$ is injective by Lemma 2.1(2). So $f d(N) \leq f d\binom{N}{0} \leq l I F D(T)$ by [15, Corollary 3.6]. Let G be an injective left B-module.

Then $\binom{\operatorname{Hom}_{B}(U, G)}{G}$ is injective by Lemma 2.1(2). So $f d(G) \leq f d\binom{\operatorname{Hom}_{B}(U, G)}{G} \leq$ $\operatorname{lIFD}(T)$ by $[15$, Corollary 3.6]. Thus $\max \{\operatorname{lIFD}(A), \operatorname{lIFD}(B)\} \leq \operatorname{lIFD}(T)$.
(2) Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ be an injective left T-module. Then M_{1} and M_{2} are injective. By [15, Corollary 3.3], $p d(M) \leq \max \left\{p d\left(M_{1}\right)+1, p d\left(M_{2}\right)\right\} \leq \max \{l I P D(A)+1, l I P D(B)\}$. So $l I P D(T) \leq \max \{l I P D(A)+1, l I P D(B)\}$.
Let N be an injective left A-module. Then $p d(N) \leq p d\binom{N}{0} \leq l I P D(T)$ by $[15$, Corollary 3.3]. Let G be an injective left B-module. Then $p d(G) \leq p d\binom{\operatorname{Hom}_{B}(U, G)}{G} \leq$ $l I P D(T)$ by [15, Corollary 3.3]. So $\max \{l I P D(A), l I P D(B)\} \leq l I P D(T)$.
(3) Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ be a projective left T-module. By Lemma 2.1(1), we get the exact sequence

$$
0 \rightarrow U \otimes_{A} M_{1} \xrightarrow{\varphi_{M}^{M}} M_{2} \rightarrow \operatorname{coker}\left(\varphi^{M}\right) \rightarrow 0
$$

with M_{1} and $\operatorname{coker}\left(\varphi^{M}\right)$ projective. Since ${ }_{B} U$ is projective, $U \otimes_{A} M_{1}$ is projective and so M_{2} is projective. By [15, Corollary 3.3], we have

$$
i d(M) \leq \max \left\{i d\left(M_{1}\right), i d\left(M_{2}\right)+1\right\} \leq \max \{l P I D(A), l P I D(B)+1\} .
$$

So $l P I D(T) \leq \max \{l P I D(A), l P I D(B)+1\}$.
Let N be a projective left A-module. Then $\binom{N}{U \otimes_{A} N}$ is a projective left T-module by Lemma 2.1(1). So $i d(N) \leq i d\binom{N}{U \otimes_{A} N} \leq l P I D(T)$ by [15, Corollary 3.3]. Let G be a projective left B-module. Then $\binom{0}{G}$ is a projective left T-module by Lemma 2.1(1). So $i d(G) \leq i d\binom{0}{G} \leq l P I D(T)$ by $[15$, Corollary 3.3]. Thus $\max \{l P I D(A), l P I D(B)\} \leq$ $l P I D(T)$.
(4) Let $M=\binom{M_{1}}{M_{2}}_{\varphi^{M}}$ be a flat left T-module. By Lemma 2.1(3), there exists the exact sequence

$$
0 \rightarrow U \otimes_{A} M_{1} \xrightarrow{\varphi^{M}} M_{2} \rightarrow \operatorname{coker}\left(\varphi^{M}\right) \rightarrow 0
$$

with M_{1} and $\operatorname{coker}\left(\varphi^{M}\right)$ flat. Since ${ }_{B} U$ is projective, $U \otimes_{A} M_{1}$ is flat and so M_{2} is flat. By [15, Corollary 3.3], $i d(M) \leq \max \left\{i d\left(M_{1}\right), i d\left(M_{2}\right)+1\right\} \leq \max \{l F I D(A), l F I D(B)+1\}$. So $l F I D(T) \leq \max \{l F I D(A), l F I D(B)+1\}$.

Let N be a flat left A-module. Then $\binom{N}{U \otimes_{A} N}$ is a flat left T-module by Lemma 2.1(3). So $i d(N) \leq i d\binom{N}{U \otimes_{A} N} \leq l F I D(T)$ by [15, Corollary 3.3]. Let G be a flat left B-module. Then $\binom{0}{G}$ is a flat left T-module by Lemma 2.1(3). So $i d(G) \leq i d\binom{0}{G} \leq l F I D(T)$ by [15, Corollary 3.3]. Thus max $\{l F I D(A), l F I D(B)\} \leq l F I D(T)$.
Remark 3.6. It is easy to verify that if $U=0$, then

$$
\begin{aligned}
& \operatorname{lIFD}(T)=\max \{l \operatorname{IFD}(A), \operatorname{lIFD}(B)\}, \\
& l I P D(T)=\max \{l I P D(A), l I P D(B)\}, \\
& l P I D(T)=\max \{l P I D(A), l P I D(B)\}, \\
& l F I D(T)=\max \{l F I D(A), l F I D(B)\} .
\end{aligned}
$$

It is known that R is a quasi-Frobenius ring if and only if every injective left R-module is projective if and only if every projective (flat) left R-module is injective.

Recall that R is a left IF ring [2] if every injective left R-module is flat.
Proposition 3.7. Let R be a ring and $T(R)=\left(\begin{array}{ll}R & 0 \\ R & R\end{array}\right)$. Then
(1) $\operatorname{lIFD}(T(R))=\operatorname{lIFD}(R)+1$.
(2) $\operatorname{lIPD}(T(R))=\operatorname{lIPD}(R)+1$.
(3) $l P I D(T(R))=l P I D(R)+1$.
(4) $l F I D(T(R))=l F I D(R)+1$.

Consequently, R is a left IF ring if and only if $\operatorname{lIFD}(T(R))=1 ; R$ is a quasiFrobenius ring if and only if $\operatorname{lIPD}(T(R))=1$ if and only if $\operatorname{lPID}(T(R))=1$ if and only if $\operatorname{lFID}(T(R))=1$.

Proof. (1) Let $\operatorname{lIFD}(R)=n<\infty$.
Case (i): If $n=0$, then $\operatorname{lIFD}(T(R)) \leq 1$ by Theorem 3.5. Since $\binom{R^{+}}{0}$ is an injective left $T(R)$-module but not a flat left $T(R)$-module by Lemma $2.1(2,3), \operatorname{lIFD}(T(R)) \geq$ $f d\binom{R^{+}}{0} \geq 1$. So $\operatorname{lIFD}(T(R))=1$.

Case (ii): If $n \geq 1$, then there is an injective left R-module G such that $f d(G)=$ n. So there is a right R-module X such that $\operatorname{Tor}_{n}^{R}(X, G) \neq 0$. By [15, Lemma 3.5], $\operatorname{Tor}_{n}^{T(R)}\left((0, X),\binom{0}{G}\right) \cong \operatorname{Tor}_{n}^{R}(X, G) \neq 0$ and $\operatorname{Tor}_{n}^{T(R)}\left((0, X),\binom{G}{G}\right) \cong \operatorname{Tor}_{n}^{R}(0, G)=0$. The exact sequence $0 \rightarrow\binom{0}{G} \rightarrow\binom{G}{G} \rightarrow\binom{G}{0} \rightarrow 0$ induces the exact sequence

$$
\operatorname{Tor}_{n+1}^{T(R)}\left((0, X),\binom{G}{0}\right) \rightarrow \operatorname{Tor}_{n}^{T(R)}\left((0, X),\binom{0}{G}\right) \rightarrow \operatorname{Tor}_{n}^{T(R)}\left((0, X),\binom{G}{G}\right)=0
$$

So $\operatorname{Tor}_{n+1}^{T(R)}\left((0, X),\binom{G}{0}\right) \neq 0$. Since $f d\binom{G}{0} \leq f d(G)+1=n+1$ by [15, Corollary 3.6], $f d\binom{G}{0}=n+1$. Also $\binom{G}{0}$ is injective, hence $\operatorname{lIFD}(T(R)) \geq f d\binom{G}{0}=n+1$. But $\operatorname{lIFD}(T(R)) \leq n+1$ by Theorem 3.5. So $\operatorname{lIFD}(T(R))=n+1$.
(2) Let $l I P D(R)=m<\infty$.

Case (i): If $m=0$, then $\operatorname{lIPD}(T(R)) \leq 1$ by Theorem 3.5. Since $\binom{R^{+}}{0}$ is an injective left $T(R)$-module but not a projective left $T(R)$-module by Lemma 2.1(1,2), $l I P D(T(R)) \geq p d\binom{R^{+}}{0} \geq 1$. So $l I P D(T(R))=1$.

Case (ii): If $m \geq 1$, then there exists an injective left R-module E such that $p d(E)=m$. So there exists a left R-module Y such that $\operatorname{Ext}_{R}^{m}(E, Y) \neq 0$. By [15, Lemma 3.2], $\left.\operatorname{Ext}_{T(R)}^{m}\binom{E}{E},\binom{0}{Y}\right) \cong \operatorname{Ext}_{R}^{m}(E, 0)=0$ and $\operatorname{Ext}_{T(R)}^{m}\left(\binom{0}{E},\binom{0}{Y}\right) \cong \operatorname{Ext}_{R}^{m}(E, Y) \neq 0$. The exact sequence $0 \rightarrow\binom{0}{E} \rightarrow\binom{E}{E} \rightarrow\binom{E}{0} \rightarrow 0$ induces the exact sequence

$$
\left.\left.0=\operatorname{Ext}_{T(R)}^{m}\left(\binom{E}{E},\binom{0}{Y}\right) \rightarrow \operatorname{Ext}_{T(R)}^{m}\binom{0}{E},\binom{0}{Y}\right) \rightarrow \operatorname{Ext}_{T(R)}^{m+1}\binom{E}{0},\binom{0}{Y}\right) .
$$

Therefore $\left.\operatorname{Ext}_{T(R)}^{m+1}\binom{E}{0},\binom{0}{Y}\right) \neq 0$. But $p d\binom{E}{0} \leq m+1$ by [15, Corollary 3.4]. So $p d\binom{E}{0}=m+1$. Hence $l I P(T(R)) \geq p d\binom{E}{0}=m+1$. Also $l I P D(T(R)) \leq m+1$ by Theorem 3.5. Thus $l I P(T(R))=m+1$.
(3) Let $l P I D(R)=k<\infty$.

Case (i): If $k=0$, then $l P I D(T(R)) \leq 1$ by Theorem 3.5. Since $\binom{0}{R}$ is a projective left $T(R)$-module but not an injective left $T(R)$-module by Lemma $2.1(1,2), \operatorname{lPID}(T(R)) \geq$ $i d\binom{0}{R} \geq 1$. So $l P I D(T(R))=1$.

Case (ii): If $k \geq 1$, then there exists a projective left R-module P such that $i d(P)=k$. So there exists a left R-module H such that $\operatorname{Ext}_{R}^{k}(H, P) \neq 0$. By [15, Lemma 3.2], $\left.\operatorname{Ext}_{T(R)}^{k}\binom{H}{0},\binom{P}{P}\right) \cong \operatorname{Ext}_{R}^{k}(0, P)=0$ and $\operatorname{Ext}_{T(R)}^{k}\left(\binom{H}{0},\binom{P}{0}\right) \cong \operatorname{Ext}_{R}^{k}(H, P) \neq 0$. The exact sequence $0 \rightarrow\binom{0}{P} \rightarrow\binom{P}{P} \rightarrow\binom{P}{0} \rightarrow 0$ induces the exact sequence

$$
\left.\left.0=\operatorname{Ext}_{T(R)}^{k}\left(\binom{H}{0},\binom{P}{P}\right) \rightarrow \operatorname{Ext}_{T(R)}^{k}\binom{H}{0},\binom{P}{0}\right) \rightarrow \operatorname{Ext}_{T(R)}^{k+1}\binom{H}{0},\binom{0}{P}\right) .
$$

Whence $\left.\operatorname{Ext}_{T(R)}^{k+1}\binom{H}{0},\binom{0}{P}\right) \neq 0$. Since $i d\binom{0}{P} \leq k+1$ by [15, Lemma 3.2], id $\binom{0}{P}=$ $k+1$. Hence $l P I(T(R)) \geq p d\binom{0}{P}=k+1$. But $l P I D(T(R)) \leq k+1$ by Theorem 3.5. Thus $l P I(T(R))=k+1$.

The proof of (4) is similar to that of (3).
Acknowledgment. This research was supported by NSFC (12171230, 12271249) and NSF of Jiangsu Province of China (BK20211358). The author wants to express his gratitude to the referee for the very helpful comments and suggestions.

References

[1] J. Asadollahi and S. Salarian, On the vanishing of Ext over formal triangular matrix rings, Forum Math. 18, 951-966, 2006.
[2] R.R. Colby, Rings which have flat injective modules, J. Algebra 35, 239-252, 1975.
[3] R.R. Colby and K.R. Fuller, Equivalence and Duality for Module Categories, Cambridge University Press, Cambridge, 2004.
[4] N.Q. Ding and J.L. Chen, The flat dimensions of injective modules, Manuscripta Math. 78, 165-177, 1993.
[5] D.J. Fieldhouse, Character modules, dimension and purity, Glasgow Math. J. 13, 144-146, 1972.
[6] R.M. Fossum, P. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lect. Notes in Math. 456, Springer-Verlag, Berlin, 1975.
[7] K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Monographs Textbooks Pure Appl. Math. 33, Marcel Dekker, Inc. New York and Basel, 1976.
[8] R. Göbel and J. Trifaj, Approximations and Endomorphism Algebras of Modules, GEM 41, De Gruyter, Berlin-New York, 2006.
[9] E.L. Green, On the representation theory of rings in matrix form, Pacific J. Math. 100, 123-138, 1982.
[10] A. Haghany and K. Varadarajan, Study of formal triangular matrix rings, Comm. Algebra 27, 5507-5525, 1999.
[11] A. Haghany and K. Varadarajan, Study of modules over formal triangular matrix rings, J. Pure Appl. Algebra 147, 41-58, 2000.
[12] P. Krylov and A. Tuganbaev, Formal Matrices, Springer International Publishing, Switzerland, 2017.
[13] T.Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York-HeidelbergBerlin, 1999.
[14] P. Loustaunau and J. Shapiro, Homological dimensions in a Morita context with applications to subidealizers and fixed rings, Proc. Amer. Math. Soc. 110, 601-610, 1990.
[15] L.X. Mao, Cotorsion pairs and approximation classes over formal triangular matrix rings, J. Pure Appl. Algebra 224, 106271 (21 pages), 2020.
[16] L.X. Mao, Duality pairs and FP-injective modules over formal triangular matrix rings, Comm. Algebra 48, 5296-5310, 2020.
[17] L.X. Mao, The structures of dual modules over formal triangular matrix rings, Publ. Math. Debrecen 97 (3-4), 367-380, 2020.
[18] L.X. Mao, Homological dimensions of special modules over formal triangular matrix rings, J. Algebra Appl. 21, 2250146 (14 pages), 2022.
[19] C. Psaroudakis, Homological theory of recollements of abelian categories, J. Algebra 398, 63-110, 2014.
[20] J.J. Rotman, An Introduction to Homological Algebra, Second Edition, Springer, New York, 2009.
[21] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2, 323-329, 1970.

[^0]: Email address: maolx2@hotmail.com
 Received: 24.10.2021; Accepted: 17.05.2022

