
2022, Vol 8, Issue 2, Pages: 222-236doi.org/10.28979/jarnas.1014469

e-ISSN 2757-5195

dergipark.org.tr/tr/pub/jarnas

Çanakkale Onsekiz Mart University
Journal of Advanced Research in Natural and Applied Sciences

Open Access

Learning From High-Cardinality Categorical Features in Deep Neural
Networks

Mustafa Murat Arat1*

1Department of Statistics, Faculty of Science, Hacettepe University, Ankara, Türkiye

Article History Abstract − Some machine learning algorithms expect the input variables and the output variables to
be numeric. Therefore, in an early stage of modelling, feature engineering is required when categorical
variables present in the dataset. As a result, we must encode those attributes into an appropriate feature
vector. However, categorical variables having more than 100 unique values are considered to be
high-cardinality and there exists no straightforward methods to handle them. Besides, the majority
of the work on categorical variable encoding in the literature assumes that the categories is limited,
known beforehand, and made up of mutually-exclusive elements, independently from the data, which
is not necessarily true for real-world applications. Feature engineering typically practices to tackle
the high cardinality issues with data-cleaning techniques which they are time-consuming and often
needs human intervention and domain expertise which are major costs in data science projects The
most common methods of transform categorical variables is one-hot encoding and target encoding.
To address the issue of encoding categorical variables in environments with a high cardinality, we
also seek a general-purpose approach for statistical analysis of categorical entries that is capable of
handling a very large number of categories, while avoiding computational and statistical difficulties.
Our proposed approach is low dimensional; thus, it is very efficient in processing time and memory,
it can be computed in an online learning setting. Even though for this paper, we opt to utilize it in the
input layer, dictionaries are typically architecture-independent and may be moved between different
architectures or layers.

Received: 25.10.2021

Accepted: 18.01.2022

Published: 10.06.2022

Research Article

Keywords − Categorical variable, deep neural networks, high cardinality, mean target encoding, one hot encoding

1 muratarat@hacettepe.edu.tr
*Corresponding Author

ISSN 2757-5195

CANAKKALE ONSEKİZ MART UNIVERSITY
JOURNAL OF ADVANCED

RESEARCH IN NATURAL AND

 APPLIED SCIENCES

T.C.
ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

1. Introduction

In order to transform raw categorical variables before feeding them to the model, in an early stage of
modelling, feature engineering is required when there are categorical variables in the dataset because some
algorithms expect all the input variables and the output variables to be numeric. Thereby, as a result, we must
encode those attributes into an appropriate feature vector. Encoding in this context refers to a parametric
map from inputs to their representations. A categorical variable can be easily defined as a discrete collection
of values (categories) that might be ordinal or nominal in form. Furthermore, categorical variables can be
used as either a dependent variable or an independent variable in a prediction problem. However, this study
focuses exclusively on the problem of nominal categorical input variables.

A categorical attribute's cardinality is defined as the number of distinct values that this attribute can take
(Perlich & Provost, 2006). Traditional nominal attributes are those with a low cardinality. On the other
hand, attributes having a very high cardinality are mainly referred in the literature to as high-cardinality
attributes (Moeyersoms & Martens, 2015). Especially in the e-commerce, retail, and banking industries,
some categorial predictors like user ID, item category, zip code, and user city might result in hundreds or
even thousands of distinct levels. Hence, Moeyersoms & Martens (2015) propose a threshold and consider

http://doi.org/10.28979/jarnas.1014469
http://dergipark.org.tr/tr/pub/jarnas
https://orcid.org/0000-0003-3740-5135

223

Journal of Advanced Research in Natural and Applied Sciences2022, Vol 8, Issue 2, Pages: 222-236

that nominal variables having more than 100 unique values are examples of "high-cardinality attributes".
High-cardinality categorical columns are often critical features in machine learning tasks, representing
serious challenges in cases such as classification and regression. Despite their promise, such variables
are frequently overlooked in predictive modelling, due to the fact that there exists no straightforward
engineering or statistical methods to handle them. The most common methods of transform categorical
variables for machine learning algorithms is one-hot encoding or transformation to a continuous feature
with prime example being mean target encoding (Micci-Barreca, 2001), which is especially most common
technique in Kaggle competitions. The majority of the work on categorical variable encoding in the literature
assumes that the categories is limited, known beforehand, and made up of mutually-exclusive elements-
independently from the data, which is not necessarily true for real-world applications.

Although, they are time-consuming and often needs human intervention and domain expertise which are
major costs in data science projects, typically, feature engineering employs data-cleaning techniques to
address issues of high cardinality. (Rahm & Do, 2000) and thus reducing the number of theoretically relevant
levels, finding strategies that work well across a wide variety of problems is critical for a wide variety of
applications, including automatic machine learning (Feurer, et al., 2019; Thomas, Coors, & Bischl, 2018;
Thornton, Hutter, Hoos, & Leyton-Brown, 2013). Optimally, strategies should be model agnostic. However,
since here we will be dealing with deep learning architectures, our main focus is to handle this problem in
the domain of neural network architectures with online learning.

In order to avoid this step, similarity encoding, which builds feature vectors from cross-category similarities,
relaxes one-hot encoding by using string similarities. As a consequence, when used in conjunction with
one-hot encoding, it resolves the problem of related categories and has been shown to enhance statistical
analysis. It does not, however, solve the problem of high cardinality, and important information may be lost
if the merging methodology is not exposed to statistical methods.

Feature hashing, commonly known as the hashing technique, is mostly used to minimize the number of
categories (Weinberger, Dasgupta, Langford, Smola, & Attenberg, 2009). It is a technique to represent
categories in a “one hot encoding style” as a sparse matrix but with a much lower dimension. Rather than
keeping a one-to-one mapping between categorical feature values and feature vector positions, we utilize
a hash function to identify the feature’s location in a lower-dimensional vector. Therefore, a large number
of values is mapped into a small finite set of values. In practice we are free to specify the dimensionality
of the vector space (output). This has the desirable effect of not only reducing dimensionality and therefore
computation. It also provides an elegant way of dealing with new or missing entries. However, because
its size is arbitrarily chosen, this technique may blindly assign radically different categories to the same
embedding vector (multiple distinct values may produce the same hash), a phenomenon known as collision,
which results in information loss and model quality degradation. In other words, the smaller the hash size,
the more collapsed levels there are. An advantage of this approach leads to a disadvantage. We do not need
to keep the exact one-to-one mapping of features to indices that other encoding methods demand. That is
why, exactly because we do not save the explicit feature mapping during feature extraction, we lose the
ability to execute the inverse mapping from feature indices to feature values.

Guo and Berkhahn (2016) present a neural network-based encoding technique, which maps high-dimensional
sparse vectors to a dense representation in a lower-dimensional continuous space that preserves semantic
relationships by grouping commonly co-occurring items together in the representation space and further
build neural networks to learn the latent patterns. This technique is intriguing since the mapping is learned
during the supervised training phase by a neural network. To put it another way, the embeddings serve as
the network’s parameters - or weights - and are modified iteratively to minimize performance loss. The
resultant embedded vectors are representations of categories in which comparable categories are more
closely related to one another in relation to the goal of the analysis.

The concept of embeddings has been expanded and developed in several ways (Bengio, Schwenk, Senécal,
Morin, & Gauvain, 2006; Mikolov, Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, Chen, Corrado, &
Dean, 2013; Pennington, Socher, & Manning, 2014; Levy & Goldberg, 2014; Mnih & Kavukcuoglu, 2013)
but each reflects the same main ideas. They have proven critical in a variety of natural language processing
applications (Li & Yang, 2018), and additionally, they have been extended to non-textual datasets (Rudolph,
Ruiz, Mandt, & Blei, 2016). One can use either pre-trained embeddings for that particular categorical

224

Journal of Advanced Research in Natural and Applied Sciences 2022, Vol 8, Issue 2, Pages: 222-236

variable, if exists, as in (Mikolov, Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, Chen, Corrado, &
Dean, 2013), or learn the embeddings as part of the training process.

The intuition behind embeddings is that - instead of using one-hot encoded variables, which implies that
each input level is orthogonal to every other - we allow for dependence (overlap information) between
the levels of categorical variables. Using an embedding layer instead of one-hot encoding significantly
lowers the number of parameters and leads to improved predictions, but at the price of higher training and
inference time. Most importantly, learning the embeddings as part of the network increases the model’s
complexity by adding many weights to the model, which means you will need much more labelled data
and repeated occurrences of individual exemplars in order to learn. Additionally, it incurs computational
and architectural selection costs associated with Deep Learning techniques. It also relies on single-hot
encoding, which has some of the same issues (Cerda, Varoquaux, & Kégl, 2018).

Additionally, dimensionality selection for embedding is a well-known research problem. The impact of
dimensionality on an embedding layer has not yet been fully understood. In practice it is chosen based on
experiments (either ad-hoc or by grid search) (Yin & Shen, 2018). As a critical hyperparameter, the choice
of embedding dimensionality has huge influence on the performance.

A low-dimensional embedding layer is generally insufficiently expressive to capture all potential relations, but
a high-dimensional embedding layer suffers from over-fitting. With increasing dimensionality, the quality of
the embedding improves. However, at a certain point, marginal benefit diminishes (Mikolov, Chen, Corrado,
& Dean, 2013). Typically, the vectors have a dimension of between 100 and 1,000. However, there is not a
single general rule. In a Google Developers’ blogpost (https://tinyurl.com/gglTFDev), it has been suggested to
take the 4th root of the number of categories. Another recommended rule of thumb for finding the embedding
size is to divide the cardinality size by two, but not to exceed 50 (https://tinyurl.com/mediumEmb).

To address the issue of encoding categorical variables in environments with a high cardinality, we seek a
general-purpose approach for statistical analysis of categorical entries that is capable of handling a very
large number of categories without requiring human intervention, while also avoiding computational and
statistical difficulties.

2. Materials and Methods

Before we mention about a novel applied technique for categorical attributes with high cardinality, let us
first consider the objectives and some relevant guidelines for methodology development.

2.1. One-Hot Encoding

In supervised learning, we are given N data points, (xi, yi), i = 1,2, …, N with a task to learn a mapping
from input variable x to the target variable y. Let’s assume that x is a categorical variable which has l non-
numeric levels, {x Î x(l), x(2)), … , x(l)}. Traditionally, handling a categorical variable is a method known as
dummy encoding. It's a straightforward and frequently-used encoding technique. This approach has been
published for the first time in 1957 and was mostly used in regression analysis (Suits, 1957). Therefore,
dummying is implemented by introducing l-1 binary dummy variables into the feature set for a categorical
variable with l levels.

The popular one-hot coding scheme is an extension of this method and is the de-facto standard for machine
learners on categorical variables. Even though numerous alternative implementations of the one-hot
encoding have been presented in the literature., the most common variation basically creates a binary
column for each unique levels of the categorical column (Cohen, Cohen, West, & Aiken, 2002). Similar to
dummying, this approach is applied to dichotomous variables where each level is represented by a vector
of zeros with an entry of 1 each time that particular level appears in the data. In the vector space that we
will have in the end, each category is orthogonal and equidistant to each other. It has been added to many
software packages as a very early stage before applying any machine learning algorithm. Figure 1 shows a
visual example where this type of encoding is applied on an example variable. In this example, we have one
categorical variable, Temperature, with four different levels, i.e., Hot, Cold, Very Hot, and Warm. Using
one-hot encoding approach, we can easily process it numerically and feed into any algorithm.

https://tinyurl.com/gglTFDev
https://tinyurl.com/mediumEmb

225

Journal of Advanced Research in Natural and Applied Sciences2022, Vol 8, Issue 2, Pages: 222-236

When the number of categorical features and the number of possible levels is modest, this transformation
produces acceptable performance. However, when one-hot encoding is used, high-cardinality categorical
variables provide a variety of difficulties.

First of all, when we are dealing with high-cardinality categorical variables, this method can end up
being intractable and introduce sparsity due to the expansion of the feature matrix because the majority of
predictive modelling approaches cannot handle such dimensions. It is highly prone to over-fitting, resulting
in a poor statistical estimation because it may be plagued by the curse of dimensionality, particularly in deep
learning applications. Previous research has shown that eliminating unnecessarily large feature input space
increases the robustness of neural networks (Xu, Evans, & Qi, 2018).

We can perform dimension reduction on the one-hot encoded matrix, albeit at the expense of information
loss. It also often results in an unrealistic amount of computational and memory requirements. As the
number of distinct categories increases, so does the number of model inputs, and therefore the number of
parameters to estimate. Secondly, while encoding all unique items using orthogonal vectors, we completely
disregard the overlap information which can be present in the representations, thus we might ignore the rich
relationships existing among categories that can be exploited during training. Thirdly, the resulting binary
features can be strongly correlated.

2.2. Mean Target Encoding

Another popular approach to incorporate the information from categorical variables is called mean
target encoding, which creates features that include information about the target variable. It is also known
as likelihood encoding. It is one of the most powerful techniques in feature engineering which is reported to
be useful by many practitioners on the influential machine learning competition platform, Kaggle (https://
www.kaggle.com), where many challenging datasets contain high cardinality features. It is also built into
popular machine learning libraries, which use tree-based Boosting algorithms, such as LightGBM (Ke, et
al., 2017) and CatBoost (Prokhorenkova, Gusev, Vorobev, Dorogush, & Gulin, 2018).

Target encoding method is overall continuousification of categorical variables via target using a statistical
aggregate function, e.g., mean, median, variance. The fundamental transformation in this technique is
one that translates each value of a categorical variable to the target variable’s probability estimate. The
categorical variable is replaced with a single new numerical variable, and each category of the categorical
variable is replaced with its corresponding probability of the target (if categorical) or mean of the target (if
numerical), a process known as mean encoding.

Figure 1. An example on creating dummy variables

226

Journal of Advanced Research in Natural and Applied Sciences 2022, Vol 8, Issue 2, Pages: 222-236

Main purpose of this technique is to deal categorical features without exploding dimensionality of the
dataset, which its one of the strategy’s early formal descriptions is given in Micci-Barreca (2001). There are
also similar ideas existed in the credit scoring literature (Hand & Henley, 1997).

Following the previous example, mean target encoding maps each level of into a feature, say,

κ Î {κ(1), κ(2),…, κ(l)} as given in Equation 2.1.

Journal of Advanced Research in Natural and Applied Sciences 2020, Vol. 6, Issue 1, Pages: 1-4

5

existing among categories that can be exploited during training. Thirdly, the resulting binary features can be
strongly correlated.

2.2. Mean Target Encoding

Another popular approach to incorporate the information from categorical variables is called mean target
encoding, which creates features that include information about the target variable. It is also known as
likelihood encoding. It is one of the most powerful techniques in feature engineering which is reported to be
useful by many practitioners on the influential machine learning competition platform, Kaggle
(https://www.kaggle.com), where many challenging datasets contain high cardinality features. It is also built
into popular machine learning libraries, which use tree-based Boosting algorithms, such as LightGBM (Ke,
et al., 2017) and CatBoost (Prokhorenkova, Gusev, Vorobev, Dorogush, & Gulin, 2018).

Target encoding method is overall continuousification of categorical variables via target using a statistical
aggregate function, e.g., mean, median, variance. The fundamental transformation in this technique is one
that translates each value of a categorical variable to the target variable's probability estimate. The
categorical variable is replaced with a single new numerical variable, and each category of the categorical
variable is replaced with its corresponding probability of the target (if categorical) or mean of the target (if
numerical), a process known as mean encoding.

Main purpose of this technique is to deal categorical features without exploding dimensionality of the
dataset, which its one of the strategy's early formal descriptions is given in Micci-Barreca (2001). There are
also similar ideas existed in the credit scoring literature (Hand & Henley, 1997).

Following the previous example, mean target encoding maps each level of 𝑥𝑥 into a feature, say,
𝜅𝜅 ∈ { 𝜅𝜅 ! , 𝜅𝜅 ! ,⋯ , 𝜅𝜅 ! } as given in Equation 2.1.

𝜅𝜅 ! =
1
𝑁𝑁 ! 𝑦𝑦! 𝐼𝐼 𝑥𝑥! = 𝑥𝑥 !

!

!!!

 (2.1)

where 𝐼𝐼{⋅} is the indicator function and 𝑁𝑁(!) = 𝐼𝐼 𝑥𝑥! = 𝑥𝑥 !!
!!! . That is to say 𝜅𝜅(!) is the average 𝑦𝑦-

value in level 𝑗𝑗 and 𝑁𝑁(!) is the total number of observations in level 𝑗𝑗. Figure 2 shows a visual example
where mean target encoding is applied on an exemplary Temperature variable.

where I{.} is the indicator function and

Journal of Advanced Research in Natural and Applied Sciences 2020, Vol. 6, Issue 1, Pages: 1-4

5

existing among categories that can be exploited during training. Thirdly, the resulting binary features can be
strongly correlated.

2.2. Mean Target Encoding

Another popular approach to incorporate the information from categorical variables is called mean target
encoding, which creates features that include information about the target variable. It is also known as
likelihood encoding. It is one of the most powerful techniques in feature engineering which is reported to be
useful by many practitioners on the influential machine learning competition platform, Kaggle
(https://www.kaggle.com), where many challenging datasets contain high cardinality features. It is also built
into popular machine learning libraries, which use tree-based Boosting algorithms, such as LightGBM (Ke,
et al., 2017) and CatBoost (Prokhorenkova, Gusev, Vorobev, Dorogush, & Gulin, 2018).

Target encoding method is overall continuousification of categorical variables via target using a statistical
aggregate function, e.g., mean, median, variance. The fundamental transformation in this technique is one
that translates each value of a categorical variable to the target variable's probability estimate. The
categorical variable is replaced with a single new numerical variable, and each category of the categorical
variable is replaced with its corresponding probability of the target (if categorical) or mean of the target (if
numerical), a process known as mean encoding.

Main purpose of this technique is to deal categorical features without exploding dimensionality of the
dataset, which its one of the strategy's early formal descriptions is given in Micci-Barreca (2001). There are
also similar ideas existed in the credit scoring literature (Hand & Henley, 1997).

Following the previous example, mean target encoding maps each level of 𝑥𝑥 into a feature, say,
𝜅𝜅 ∈ { 𝜅𝜅 ! , 𝜅𝜅 ! ,⋯ , 𝜅𝜅 ! } as given in Equation 2.1.

𝜅𝜅 ! =
1
𝑁𝑁 ! 𝑦𝑦! 𝐼𝐼 𝑥𝑥! = 𝑥𝑥 !

!

!!!

 (2.1)

where 𝐼𝐼{⋅} is the indicator function and 𝑁𝑁(!) = 𝐼𝐼 𝑥𝑥! = 𝑥𝑥 !!
!!! . That is to say 𝜅𝜅(!) is the average 𝑦𝑦-

value in level 𝑗𝑗 and 𝑁𝑁(!) is the total number of observations in level 𝑗𝑗. Figure 2 shows a visual example
where mean target encoding is applied on an exemplary Temperature variable.

. That is to say K(j) is the average -value in
level j and N(j) is the total number of observations in level j. Figure 2 shows a visual example where mean
target encoding is applied on an exemplary Temperature variable.

Figure 2. An example of how to use mean target encoding approach

One issue with target-based encoding is that some of the categories would have a very small number of
samples in the training data, e.g., zip-codes with small populations, since calculated values are based on
the frequency of the levels. In the extreme situation of a categorical feature having only unique values, the
mean target for each level of this feature will be similar to the true target value of a single observation. For
example, when N(j) = 1. When xi = x(j), the summation in Equation 2.1 includes just one non-zero term. As a
result, we get κ(i) = yi ; that is, κ(i) is encoded with the exact value we are attempting to predict. This would
make the average target (label) values for those small categories (or only unique categories) unstable as
this will cause overfitting of the training set and will lead to poor generalization of the model. This issue
is exacerbated when working with high-cardinality categorical variables. In order to avoid this kind of
overfitting, we may introduce regularization, or add random noise to the representation of the category in
train dataset or use Double Validation. However, all these strategies have important disadvantages. First,
they introduce additional hyperparameters for regularization and noise variance, which can be expected
to be crucial for the effectiveness of the encoding. Second, they can tremendously increase the amount of
computation especially for large samples.

2.3. Deep Learning

Classical machine learning algorithms are somewhat limited in their capabilities to learn from raw
data and how the data is fed to the model has a huge influence on their performances (LeCun, Bengio, &

227

Journal of Advanced Research in Natural and Applied Sciences2022, Vol 8, Issue 2, Pages: 222-236

Hinton, 2015). Thus, feature engineering focuses on converting data into meaningful features in the goal
of accurately capturing the fundamental structures (Domingos, 2012). It is an essential step of any kind of
data analysis but can be tedious, time-consuming, domain-specific and requires substantial human-effort.

Deep neural networks are a subset of machine learning models that have been effectively applied to a
variety of tasks. Through a hierarchical learning process, they automatically extract high-level, complex
abstractions as data representations. At each level of the hierarchy, complex abstractions are learned based
on comparatively smaller abstractions defined in the preceding level (LeCun, Bengio, & Hinton, 2015).
This technique enables neural network models to efficiently learn high-order features from raw input.

Deep learning methods are used to discover the parameters of a nested parametrized non-linear function
by utilizing gradient descent algorithm to minimize an example-based differentiable cost function. Deep
architectures of consecutive layers create aforementioned nestedness. Each layer performs a nonlinear
transformation on its input and outputs a representation. The output of this algorithm is determined by
characteristics of the features and the weights associated with the interconnections among them.

Let's assume that we have a data set where we have n observations and p features, which can be shown
mathematically as

Journal of Advanced Research in Natural and Applied Sciences 2020, Vol. 6, Issue 1, Pages: 1-4

7

mation on its input and outputs a representation. The output of this algorithm is determined by characteristics
of the features and the weights associated with the interconnections among them.

Let's assume that we have a data set where we have 𝑛𝑛 observations and 𝑝𝑝 features, which can be shown
mathematically as 𝑥𝑥(!) ∈ ℝ!, 𝑦𝑦(!) ∈ ℝ, 𝑖𝑖 = 1, 2, 3,… , 𝑛𝑛. A feature vector 𝑥𝑥(!) represents a record, an item,
a picture, or a vector expressing a word, for example. Its output instance 𝑦𝑦(!) is either a real-valued vector or
a scalar, as in regression, or an integer- or scalar-valued vector or scalar, as in classification. We want the
machine to learn from the training set and then to predict 𝑦𝑦(!) using the information given by 𝑥𝑥(!), so that we
can extract the underlying mapping function that maps 𝑥𝑥(!) to 𝑦𝑦(!). We want to build a neural network
𝑓𝑓!: ℝ! → ℝ which maps an input 𝑥𝑥 to a predicted output 𝑦𝑦, where 𝜃𝜃 is model parameters, i.e., weights and
biases in the network. The forward propagation equation for this particular sample is then given Equation
2.2.

𝑓𝑓! 𝑥𝑥 = 𝑊𝑊 ! ! 𝜙𝜙!!! 𝑊𝑊 !!! ! …𝜙𝜙! 𝑊𝑊 ! ! 𝜙𝜙! 𝑊𝑊 ! !𝑥𝑥 + 𝑏𝑏 ! ! + 𝑏𝑏 ! ! … + 𝑏𝑏 !!! ! + 𝑏𝑏 ! ! (2.2)

where 𝜃𝜃 = [𝑊𝑊 ! ,𝑊𝑊 ! ,… ,𝑊𝑊 ! , 𝑏𝑏 ! , 𝑏𝑏 ! ,… , 𝑏𝑏(!)]. We begin by enumerating the layers using the index 𝑙𝑙,
where each layer has a weight matrix 𝑊𝑊(!) and a bias vector 𝑏𝑏(!), 𝑙𝑙 = 1, 2, 3,… , 𝐿𝐿. 𝜙𝜙!(⋅) which is a function
from a real space to another real space is called an activation function and it can be different for each layer
and may or may not exist for the final layer based on the task we try to solve. We stack multiple layers, here.
Each layer consists of 𝑀𝑀! hidden units, where the dimension of which might vary depending on the layer.
The very first hidden layer, which corresponds to 𝑙𝑙 = 1, has a weight matrix 𝑊𝑊(!) of the dimension 𝑝𝑝× 𝑀𝑀!,
where 𝑝𝑝 is the number of neurons in the input layer and a bias vector of the dimension 1 × 𝑀𝑀!. For the final
layer, if it is a regression problem, 𝑊𝑊(!) has the dimension 𝑀𝑀!!! × 1 and bias vector 𝑏𝑏(!) is a scalar. For
applications of multi-class classification with 𝐾𝐾 classes, each neuron in the output layer will represent a
class, therefore, 𝑊𝑊(!) has the dimension 𝑀𝑀!!! × 𝐾𝐾 and bias vector 𝑏𝑏(!) has the dimension 1 × 𝐾𝐾. For all the
intermediate layers, 𝑙𝑙 = 2,3,… , 𝐿𝐿 − 1, 𝑊𝑊(!) has dimension 𝑀𝑀!!! × 𝑀𝑀! and the corresponding bias vector is
of size 1 × 𝑀𝑀!. Figure 3 shows a schematic representation of an artificial neural network structure for multi-
class classification that includes an input layer, a 𝐿𝐿 − 1 hidden layer, and an output layer (layer 𝐿𝐿).

Figure 3. A schematic of the deep learning architecture.

 A feature vector x(i) represents a record, an item,
a picture, or a vector expressing a word, for example. Its output instance y(i) is either a real-valued vector
or a scalar, as in regression, or an integer- or scalar-valued vector or scalar, as in classification. We want
the machine to learn from the training set and then to predict y(i) using the information given by x(i), so that
we can extract the underlying mapping function that maps x(i) to y(i). We want to build a neural network

Journal of Advanced Research in Natural and Applied Sciences 2020, Vol. 6, Issue 1, Pages: 1-4

7

mation on its input and outputs a representation. The output of this algorithm is determined by characteristics
of the features and the weights associated with the interconnections among them.

Let's assume that we have a data set where we have 𝑛𝑛 observations and 𝑝𝑝 features, which can be shown
mathematically as 𝑥𝑥(!) ∈ ℝ!, 𝑦𝑦(!) ∈ ℝ, 𝑖𝑖 = 1, 2, 3,… , 𝑛𝑛. A feature vector 𝑥𝑥(!) represents a record, an item,
a picture, or a vector expressing a word, for example. Its output instance 𝑦𝑦(!) is either a real-valued vector or
a scalar, as in regression, or an integer- or scalar-valued vector or scalar, as in classification. We want the
machine to learn from the training set and then to predict 𝑦𝑦(!) using the information given by 𝑥𝑥(!), so that we
can extract the underlying mapping function that maps 𝑥𝑥(!) to 𝑦𝑦(!). We want to build a neural network
𝑓𝑓!: ℝ! → ℝ which maps an input 𝑥𝑥 to a predicted output 𝑦𝑦, where 𝜃𝜃 is model parameters, i.e., weights and
biases in the network. The forward propagation equation for this particular sample is then given Equation
2.2.

𝑓𝑓! 𝑥𝑥 = 𝑊𝑊 ! ! 𝜙𝜙!!! 𝑊𝑊 !!! ! …𝜙𝜙! 𝑊𝑊 ! ! 𝜙𝜙! 𝑊𝑊 ! !𝑥𝑥 + 𝑏𝑏 ! ! + 𝑏𝑏 ! ! … + 𝑏𝑏 !!! ! + 𝑏𝑏 ! ! (2.2)

where 𝜃𝜃 = [𝑊𝑊 ! ,𝑊𝑊 ! ,… ,𝑊𝑊 ! , 𝑏𝑏 ! , 𝑏𝑏 ! ,… , 𝑏𝑏(!)]. We begin by enumerating the layers using the index 𝑙𝑙,
where each layer has a weight matrix 𝑊𝑊(!) and a bias vector 𝑏𝑏(!), 𝑙𝑙 = 1, 2, 3,… , 𝐿𝐿. 𝜙𝜙!(⋅) which is a function
from a real space to another real space is called an activation function and it can be different for each layer
and may or may not exist for the final layer based on the task we try to solve. We stack multiple layers, here.
Each layer consists of 𝑀𝑀! hidden units, where the dimension of which might vary depending on the layer.
The very first hidden layer, which corresponds to 𝑙𝑙 = 1, has a weight matrix 𝑊𝑊(!) of the dimension 𝑝𝑝× 𝑀𝑀!,
where 𝑝𝑝 is the number of neurons in the input layer and a bias vector of the dimension 1 × 𝑀𝑀!. For the final
layer, if it is a regression problem, 𝑊𝑊(!) has the dimension 𝑀𝑀!!! × 1 and bias vector 𝑏𝑏(!) is a scalar. For
applications of multi-class classification with 𝐾𝐾 classes, each neuron in the output layer will represent a
class, therefore, 𝑊𝑊(!) has the dimension 𝑀𝑀!!! × 𝐾𝐾 and bias vector 𝑏𝑏(!) has the dimension 1 × 𝐾𝐾. For all the
intermediate layers, 𝑙𝑙 = 2,3,… , 𝐿𝐿 − 1, 𝑊𝑊(!) has dimension 𝑀𝑀!!! × 𝑀𝑀! and the corresponding bias vector is
of size 1 × 𝑀𝑀!. Figure 3 shows a schematic representation of an artificial neural network structure for multi-
class classification that includes an input layer, a 𝐿𝐿 − 1 hidden layer, and an output layer (layer 𝐿𝐿).

Figure 3. A schematic of the deep learning architecture.

 which maps an input x to a predicted output ŷ, where θ is model parameters, i.e., weights and
biases in the network. The forward propagation equation for this particular sample is then given Equation
2.2.

Journal of Advanced Research in Natural and Applied Sciences 2020, Vol. 6, Issue 1, Pages: 1-4

7

mation on its input and outputs a representation. The output of this algorithm is determined by characteristics
of the features and the weights associated with the interconnections among them.

Let's assume that we have a data set where we have 𝑛𝑛 observations and 𝑝𝑝 features, which can be shown
mathematically as 𝑥𝑥(!) ∈ ℝ!, 𝑦𝑦(!) ∈ ℝ, 𝑖𝑖 = 1, 2, 3,… , 𝑛𝑛. A feature vector 𝑥𝑥(!) represents a record, an item,
a picture, or a vector expressing a word, for example. Its output instance 𝑦𝑦(!) is either a real-valued vector or
a scalar, as in regression, or an integer- or scalar-valued vector or scalar, as in classification. We want the
machine to learn from the training set and then to predict 𝑦𝑦(!) using the information given by 𝑥𝑥(!), so that we
can extract the underlying mapping function that maps 𝑥𝑥(!) to 𝑦𝑦(!). We want to build a neural network
𝑓𝑓!: ℝ! → ℝ which maps an input 𝑥𝑥 to a predicted output 𝑦𝑦, where 𝜃𝜃 is model parameters, i.e., weights and
biases in the network. The forward propagation equation for this particular sample is then given Equation
2.2.

𝑓𝑓! 𝑥𝑥 = 𝑊𝑊 ! ! 𝜙𝜙!!! 𝑊𝑊 !!! ! …𝜙𝜙! 𝑊𝑊 ! ! 𝜙𝜙! 𝑊𝑊 ! !𝑥𝑥 + 𝑏𝑏 ! ! + 𝑏𝑏 ! ! … + 𝑏𝑏 !!! ! + 𝑏𝑏 ! ! (2.2)

where 𝜃𝜃 = [𝑊𝑊 ! ,𝑊𝑊 ! ,… ,𝑊𝑊 ! , 𝑏𝑏 ! , 𝑏𝑏 ! ,… , 𝑏𝑏(!)]. We begin by enumerating the layers using the index 𝑙𝑙,
where each layer has a weight matrix 𝑊𝑊(!) and a bias vector 𝑏𝑏(!), 𝑙𝑙 = 1, 2, 3,… , 𝐿𝐿. 𝜙𝜙!(⋅) which is a function
from a real space to another real space is called an activation function and it can be different for each layer
and may or may not exist for the final layer based on the task we try to solve. We stack multiple layers, here.
Each layer consists of 𝑀𝑀! hidden units, where the dimension of which might vary depending on the layer.
The very first hidden layer, which corresponds to 𝑙𝑙 = 1, has a weight matrix 𝑊𝑊(!) of the dimension 𝑝𝑝× 𝑀𝑀!,
where 𝑝𝑝 is the number of neurons in the input layer and a bias vector of the dimension 1 × 𝑀𝑀!. For the final
layer, if it is a regression problem, 𝑊𝑊(!) has the dimension 𝑀𝑀!!! × 1 and bias vector 𝑏𝑏(!) is a scalar. For
applications of multi-class classification with 𝐾𝐾 classes, each neuron in the output layer will represent a
class, therefore, 𝑊𝑊(!) has the dimension 𝑀𝑀!!! × 𝐾𝐾 and bias vector 𝑏𝑏(!) has the dimension 1 × 𝐾𝐾. For all the
intermediate layers, 𝑙𝑙 = 2,3,… , 𝐿𝐿 − 1, 𝑊𝑊(!) has dimension 𝑀𝑀!!! × 𝑀𝑀! and the corresponding bias vector is
of size 1 × 𝑀𝑀!. Figure 3 shows a schematic representation of an artificial neural network structure for multi-
class classification that includes an input layer, a 𝐿𝐿 − 1 hidden layer, and an output layer (layer 𝐿𝐿).

Figure 3. A schematic of the deep learning architecture.

where

Journal of Advanced Research in Natural and Applied Sciences 2020, Vol. 6, Issue 1, Pages: 1-4

7

mation on its input and outputs a representation. The output of this algorithm is determined by characteristics
of the features and the weights associated with the interconnections among them.

Let's assume that we have a data set where we have 𝑛𝑛 observations and 𝑝𝑝 features, which can be shown
mathematically as 𝑥𝑥(!) ∈ ℝ!, 𝑦𝑦(!) ∈ ℝ, 𝑖𝑖 = 1, 2, 3,… , 𝑛𝑛. A feature vector 𝑥𝑥(!) represents a record, an item,
a picture, or a vector expressing a word, for example. Its output instance 𝑦𝑦(!) is either a real-valued vector or
a scalar, as in regression, or an integer- or scalar-valued vector or scalar, as in classification. We want the
machine to learn from the training set and then to predict 𝑦𝑦(!) using the information given by 𝑥𝑥(!), so that we
can extract the underlying mapping function that maps 𝑥𝑥(!) to 𝑦𝑦(!). We want to build a neural network
𝑓𝑓!: ℝ! → ℝ which maps an input 𝑥𝑥 to a predicted output 𝑦𝑦, where 𝜃𝜃 is model parameters, i.e., weights and
biases in the network. The forward propagation equation for this particular sample is then given Equation
2.2.

𝑓𝑓! 𝑥𝑥 = 𝑊𝑊 ! ! 𝜙𝜙!!! 𝑊𝑊 !!! ! …𝜙𝜙! 𝑊𝑊 ! ! 𝜙𝜙! 𝑊𝑊 ! !𝑥𝑥 + 𝑏𝑏 ! ! + 𝑏𝑏 ! ! … + 𝑏𝑏 !!! ! + 𝑏𝑏 ! ! (2.2)

where 𝜃𝜃 = [𝑊𝑊 ! ,𝑊𝑊 ! ,… ,𝑊𝑊 ! , 𝑏𝑏 ! , 𝑏𝑏 ! ,… , 𝑏𝑏(!)]. We begin by enumerating the layers using the index 𝑙𝑙,
where each layer has a weight matrix 𝑊𝑊(!) and a bias vector 𝑏𝑏(!), 𝑙𝑙 = 1, 2, 3,… , 𝐿𝐿. 𝜙𝜙!(⋅) which is a function
from a real space to another real space is called an activation function and it can be different for each layer
and may or may not exist for the final layer based on the task we try to solve. We stack multiple layers, here.
Each layer consists of 𝑀𝑀! hidden units, where the dimension of which might vary depending on the layer.
The very first hidden layer, which corresponds to 𝑙𝑙 = 1, has a weight matrix 𝑊𝑊(!) of the dimension 𝑝𝑝× 𝑀𝑀!,
where 𝑝𝑝 is the number of neurons in the input layer and a bias vector of the dimension 1 × 𝑀𝑀!. For the final
layer, if it is a regression problem, 𝑊𝑊(!) has the dimension 𝑀𝑀!!! × 1 and bias vector 𝑏𝑏(!) is a scalar. For
applications of multi-class classification with 𝐾𝐾 classes, each neuron in the output layer will represent a
class, therefore, 𝑊𝑊(!) has the dimension 𝑀𝑀!!! × 𝐾𝐾 and bias vector 𝑏𝑏(!) has the dimension 1 × 𝐾𝐾. For all the
intermediate layers, 𝑙𝑙 = 2,3,… , 𝐿𝐿 − 1, 𝑊𝑊(!) has dimension 𝑀𝑀!!! × 𝑀𝑀! and the corresponding bias vector is
of size 1 × 𝑀𝑀!. Figure 3 shows a schematic representation of an artificial neural network structure for multi-
class classification that includes an input layer, a 𝐿𝐿 − 1 hidden layer, and an output layer (layer 𝐿𝐿).

Figure 3. A schematic of the deep learning architecture.

 We begin by enumerating the layers using the index
, where each layer has a weight matrix and a bias vector

Journal of Advanced Research in Natural and Applied Sciences 2020, Vol. 6, Issue 1, Pages: 1-4

7

mation on its input and outputs a representation. The output of this algorithm is determined by characteristics
of the features and the weights associated with the interconnections among them.

Let's assume that we have a data set where we have 𝑛𝑛 observations and 𝑝𝑝 features, which can be shown
mathematically as 𝑥𝑥(!) ∈ ℝ!, 𝑦𝑦(!) ∈ ℝ, 𝑖𝑖 = 1, 2, 3,… , 𝑛𝑛. A feature vector 𝑥𝑥(!) represents a record, an item,
a picture, or a vector expressing a word, for example. Its output instance 𝑦𝑦(!) is either a real-valued vector or
a scalar, as in regression, or an integer- or scalar-valued vector or scalar, as in classification. We want the
machine to learn from the training set and then to predict 𝑦𝑦(!) using the information given by 𝑥𝑥(!), so that we
can extract the underlying mapping function that maps 𝑥𝑥(!) to 𝑦𝑦(!). We want to build a neural network
𝑓𝑓!: ℝ! → ℝ which maps an input 𝑥𝑥 to a predicted output 𝑦𝑦, where 𝜃𝜃 is model parameters, i.e., weights and
biases in the network. The forward propagation equation for this particular sample is then given Equation
2.2.

𝑓𝑓! 𝑥𝑥 = 𝑊𝑊 ! ! 𝜙𝜙!!! 𝑊𝑊 !!! ! …𝜙𝜙! 𝑊𝑊 ! ! 𝜙𝜙! 𝑊𝑊 ! !𝑥𝑥 + 𝑏𝑏 ! ! + 𝑏𝑏 ! ! … + 𝑏𝑏 !!! ! + 𝑏𝑏 ! ! (2.2)

where 𝜃𝜃 = [𝑊𝑊 ! ,𝑊𝑊 ! ,… ,𝑊𝑊 ! , 𝑏𝑏 ! , 𝑏𝑏 ! ,… , 𝑏𝑏(!)]. We begin by enumerating the layers using the index 𝑙𝑙,
where each layer has a weight matrix 𝑊𝑊(!) and a bias vector 𝑏𝑏(!), 𝑙𝑙 = 1, 2, 3,… , 𝐿𝐿. 𝜙𝜙!(⋅) which is a function
from a real space to another real space is called an activation function and it can be different for each layer
and may or may not exist for the final layer based on the task we try to solve. We stack multiple layers, here.
Each layer consists of 𝑀𝑀! hidden units, where the dimension of which might vary depending on the layer.
The very first hidden layer, which corresponds to 𝑙𝑙 = 1, has a weight matrix 𝑊𝑊(!) of the dimension 𝑝𝑝× 𝑀𝑀!,
where 𝑝𝑝 is the number of neurons in the input layer and a bias vector of the dimension 1 × 𝑀𝑀!. For the final
layer, if it is a regression problem, 𝑊𝑊(!) has the dimension 𝑀𝑀!!! × 1 and bias vector 𝑏𝑏(!) is a scalar. For
applications of multi-class classification with 𝐾𝐾 classes, each neuron in the output layer will represent a
class, therefore, 𝑊𝑊(!) has the dimension 𝑀𝑀!!! × 𝐾𝐾 and bias vector 𝑏𝑏(!) has the dimension 1 × 𝐾𝐾. For all the
intermediate layers, 𝑙𝑙 = 2,3,… , 𝐿𝐿 − 1, 𝑊𝑊(!) has dimension 𝑀𝑀!!! × 𝑀𝑀! and the corresponding bias vector is
of size 1 × 𝑀𝑀!. Figure 3 shows a schematic representation of an artificial neural network structure for multi-
class classification that includes an input layer, a 𝐿𝐿 − 1 hidden layer, and an output layer (layer 𝐿𝐿).

Figure 3. A schematic of the deep learning architecture.

 which is a function
from a real space to another real space is called an activation function and it can be different for each layer
and may or may not exist for the final layer based on the task we try to solve. We stack multiple layers,
here. Each layer consists of Ml hidden units, where the dimension of which might vary depending on the
layer. The very first hidden layer, which corresponds to l = 1, has a weight matrix W(i) of the dimension p
× M1, where p is the number of neurons in the input layer and a bias vector of the dimension 1 × M1. For
the final layer, if it is a regression problem, W(L) has the dimension M(L – 1) × 1 and bias vector b(L) is a scalar.
For applications of multi-class classification with K classes, each neuron in the output layer will represent a
class, therefore, W(L) has the dimension ML – 1 × K and bias vector b^((L)) has the dimension 1 × K. For all
the intermediate layers, l = 2,3,…,L – 1, W(l) has dimension Ml – 1 × Ml and the corresponding bias vector is
of size 1 × Ml Figure 3 shows a schematic representation of an artificial neural network structure for multi-
class classification that includes an input layer, L – 1 hidden layer, and an output layer (layer L).

Final layer, which is also known as output layer, provides the output of the model. Depending on the
problem, we decide whether to use an activation function or not. If it is a regression problem, the output
layer neurons often do not have an activation function (or it can also be thought as having an identity
activation function) since the values are unbounded. If it is a binary or multi-label classification problem,
sigmoid function will provide the probabilities of the input belonging to each of two categories. If it is a
multi-class classification, a Softmax layer is appended to the model for the same reasoning (Russell &
Norvig, 2020).

Algorithms for deep learning are not new. However, as volume of data has increased and computational
capacity have become more accessible, these networks have garnered more interest in recent years. The
models can be enormous in size – often millions of parameters - call this the complexity of the model since
each layer to be added carries a weight matrices and bias vector with it. Therefore, in order to train these
models to get the most precise and accurate results, a vast amount of labelled input data is required.

228

Journal of Advanced Research in Natural and Applied Sciences 2022, Vol 8, Issue 2, Pages: 222-236

2.4. Online learning

Deep Neural Networks are typically trained by back-propagation in a batch setting, requiring the entire
static training data to be first acquired prior to the learning task. This type of learning is called offline
learning, also sometimes known as batch learning. While running a deep neural network model, dataset to
be processed is potentially of a very large size, which might not fit in the memory, thus can raise the issue
of storage and memory management. With high volume incoming data, oftentimes, reading in the data all
at once is not feasible. It is not scalable for many real-world settings where we mostly work with streaming
data. Because online learning updates its model parameters progressively using just the most recent data
points, the system does not need to keep a huge quantity of data in memory; moreover, after data has been
consumed, it is no longer necessary. In comparison to offline learning, the model may change on the go to
keep up with real-time trends.

If the data is too big to fit in the RAM, we can read it in chunks or one observation at a time. Since we do
not see the entire data set, we cannot not know number of unique values in a categorical variable. Therefore,
in online learning fashion, an inherent limitation called “absent levels” problem, whose consequences have
never been carefully explored in the literature (Au, 2018), might arise for both of these encoding approaches
because of the fact that we need to have the same levels of a categorical variable in three sets. In real-life
problems, the categorical variable is not static and therefore, through the time, new levels may emerge. In
other words, new, previously unseen unique values might be discovered in “unseen data” (test/validation
sets) and the encoder does not know how to deal with these values. The transformed training, validation,
and test sets must all have the same number of columns in order to be used in any machine learning method
(Géron, 2019).

Thus, in this type of learning scheme, one-hot encoding does not fare well in the presence of new and
unseen levels, which are encoded in the training set because we need to go over all the data to do so. One
possible approach to handle this while using One-hot encoding approach, is to train an explicit “Unknown”
level (like “other” or “missing”) based on some prepared training data, where it will contain all 0 values
for all the cells in the row. In the validation and testing phases, all new levels are subsequently recognized
and mapped to this “Unknown” level. And then, we periodically refresh the model to include the recent
appeared levels into this “Unknown” level, which will create collisions. Consequently, one-hot encoding
is unsuitable not just for online learning but also for offline versions: if additional (new) categories are
added, the whole dataset’s encoding must be recalculated, and thus, the feature vector’s dimension becomes
unbounded.

Figure 3. A schematic of the deep learning architecture.

229

Journal of Advanced Research in Natural and Applied Sciences2022, Vol 8, Issue 2, Pages: 222-236

Similar case is also valid for target encoding. For each level of a categorical variable, computing the
summary statistics of corresponding values of target variable is more challenging. Additionally, where
some new category is found, which are not available in training data, we substitute values of that category
with the global mean of the target variable. This works fine as long as we have large amount of training data
and a categorical feature with low cardinality. But this fails to work in the other cases.

However, the procedures mentioned above are not elegant at all and can cause a lot of loss of information.
For the proposed method, this does not pose a problem because we can dynamically initialize a new key-
value pair, where key represent the new category and value is a randomly initialized weight for this new
category and then we keep on training.

2.5. The proposed method

So, we introduce a look-up-based approach arranged as key-value pairs, where the categorical levels are
the keys and their corresponding float-numbers weights are the values. A hash table provide a constant time
lookup and update for a mapping from a key to a value.

A dictionary, which has been created using unique levels of categorical variable, is initialized randomly
or from zero. Here, we add an additional bias term to Equation 2.2. Training involves jointly learning
a dictionary of weights of levels of categorical variables with high-cardinality and a small set of affine
transformations using the concatenation operator. Weight updates will be done using backpropagation
algorithm (Rumelhart, Hinton, & Williams, 1986).

Our proposed approach is low dimensional; thus, it is very efficient in processing time and memory, it can
be computed in an online learning setting. Even though for this paper, we opt to utilize it in the input layer,
dictionaries are typically architecture-independent and may be moved between different architectures or
layers.

2.6. Data

An American direct-response television shopping network serves as the context of this study. It is a
network which does broadcasting live shows 24 hours a day and 7 days a week on its own channel and
sells exclusive hedonistic products in multiple product categories. The dataset used is obtained from this
company, contains 362,235 data points. It consists of marketing and show related information, including
gross margin as the dependent variable. Table 1 summarizes the variables in the dataset.

The data set includes features that are both continuous and nominal. We differentiate categorical features
into two kinds of nominal attributes: traditional features and features with a high degree of cardinality.
The attribute Master ID is indicated as high-cardinality data, and this attribute has more than 100 distinct
categories.

Identifier characteristics, such as product identification numbers or personal names, which might contain
a high number of categories, are rarely used in statistical modeling (Perlich & Provost, 2006). Therefore,
in this study, we use Master ID variable, which is a unique ten-digit number identifier for every unit in the
dataset. In the dataset, there exists 6944 unique IDs, where we are going to use as a categorical variable
with high cardinality.

The salespersons variable (i.e., show host), where we use person-specific dummy variables to represent it,
carries the name of professional individual who pitches this particular product and there exists 53 different
people hosting the shows, in which the product was shown. Show type variable indicates general business
unit associated with a show where the product was shown. It is one of the two types of products whose
names are not disclosed for confidentiality. Merchandise Department variable describes the features of the
product and consists of 24 unique levels. Country of Origin variable represents the country of manufacture
and/or production where the product comes from. In the dataset, there are 40 different countries. All the
traditional nominal variables are dummy encoded.

230

Journal of Advanced Research in Natural and Applied Sciences 2022, Vol 8, Issue 2, Pages: 222-236

Descriptions of variables, unit cost and unit offer price are self-explanatory. Unit cost is the cost and unit
offer price is the price of one unit of a particular product being sold. Duration is adjusted display time on-air
in seconds for a given presentation of the product. Showing Start Time in Minutes and Showing End Time
in Minutes represent the start and end time of the product in minutes.

2.7. Model Architecture

In this work, our main focus will be on generic non-linear feed-forward neural network, where layers
are fully-connected to each other and each layer has number of hidden units that are of the same order of
magnitude, as this is the most commonly implemented network architecture and fairly easy to train. We
have a regression problem where we try to predict gross margin of the product. We highlight that our goal
here is not to continuously employ various tricks or fine-tune model parameters in order to evaluate the
performance of different machine learning algorithms at prediction. Rather, the major goal of this work is
to test and assess the usefulness of the suggested approach in a circumstance when additional tricks are not
present.

Since we compare three different encoding schemes based on some factors, we keep exactly the same neural
network architecture across all three methods. All the models are trained independently. As previously
mentioned, we treat only one categorical variable with high cardinality, i.e., Master ID variable.

We use a neural network architecture with four dense layers, which consist of decreasing number of neurons
at each layer, i.e., 1024, 512, 256, 128, respectively. Since this is a regression problem, the output layer has
only one neuron. To introduce non-linearity into the system, we focus on the popular Rectified Linear Unit
(ReLU) function which can be mathematically shown as σ(x) = max(x, 0) for all the hidden layers, though
our results can be extended (at notational cost) to cover other activation functions. Because of its superior
gradient propagation and efficiency in calculation, the ReLU activation function is the most commonly used
in practical applications (Glorot, Border, & Bengio, 2011). It often achieves better performance. Since this
is a regression problem, linear activation function is used in the output layer, where no transform is applied
at all.

All the weights in the models were initialized randomly using Glorot (also known as Xavier) Initialization
schema in order to prevent gradients from exploding or vanishing (Glorot & Bengio, 2010). The idea is to
initialize each weight with a small Gaussian value with zero mean and variance based on the number of
input and output units of a particular layer. Biases were typically initialized as 0. Similarly, the dictionary
which carries the weights for each of the product IDs has been initialized randomly.

All the models are trained from scratch using the entire training data set to learn the parameters. While
training networks, we follow the standard practices (Bengio, 2012). Trainings are performed with one of the
adaptive gradient methods, Adam optimizer (Kingma & Ba, 2015), which minimizes Mean Squared Error
loss function using a batch size of size 32 which is selected through the preliminary experimentation, and
learning rate of 0.0001 in all cases. Since we use Adam optimizer, we do not decay the learning rate. The
other parameters were maintained at their default values β1 = 0.9, β2 = 0.999, ϵ = 1 × e–7.

Table 1.

Attributes included in the data

Continuous Traditional Nominal High-cardinality Nominal

Unit Offer Price
Unit Cost
Gross Margin
Duration in Seconds
Showing Start Time in Minutes
Showing End Time in Minute

Salesperson
Show Type
Merchandise Department
Country of Origin

Master ID

231

Journal of Advanced Research in Natural and Applied Sciences2022, Vol 8, Issue 2, Pages: 222-236

Given that the number of epochs for which the algorithms were trained might affect the final results, all
models were trained for 200 epochs.

Implementation is done using Python and one of most well-known open-source Deep Learning framework,
low-level Tensorflow. All of our experiments run on 4 identical Nvidia GeForce GTX 1080 Ti GPUs, each
one has 3584 CuDA cores and 11 GB GDDR5X VRAM memory and Neural Networks were constructed
using Google’s famous Python library, Tensorflow 1.15.0.

3. Results and Discussion

Preprocessing is needed before to applying the various encoding methods to the data in order to make
it suitable for analysis. Therefore, we perform normalization on continuous features, and we use dummy
encoding on traditional nominal features because of the reasons we mentioned above.

When developing predictive models, it is crucial not to leak any information from the training dataset
into the validation set and testing set, which are created to simulate real-world, unseen data because
of the generalization being the goal. Data preprocessing (including creation of dummy variables and
computing mean values for the levels of categorical features from target variable) needs to be done
after splitting the data. Each such preprocessing should be first done on the training set before being
combined or concatenated with the validation and test subsets. Therefore, first, we split the data in to a
training set and test set with the ratio 9:1. Following that, the remaining portion of training set is split
into a training portion (3/4) for training the model and a validation portion (1/4) for identifying the
best model with the lowest loss value (Géron, 2019). Since our purpose for this study is to compare
proposed method with two existing encoding approaches, we keep the same levels of high-cardinality
feature balanced out for each of the sets that have been created, meaning that, we will not be dealing
with unseen category problem.

After the preparation of the datasets, we then follow the instructions given in the previous section to run
three different neural network models, where the high-cardinality categorical feature, Master ID, has been
encoded using three different approaches. Therefore, if we compute the number of neurons in the input
layer, we have 7,068 neurons for one-hot encoding, 125 neurons for mean target encoding and 124 neurons
for proposed method. The total number of trainable parameters for those models are 7,895,041 and 785,409
and 791,329, respectively.

Now, we can take a closer look at the performance of all the encoding methods.Figure 4 shows the predictive
performance of models, in terms of mean squared error, for both training and validation sets. A first observation
is that model with mean target encoding under-performs for both training and validation datasets. For model
with one-hot encoding approach, the training error goes down sharply. At first, it seems like doing a good job,
however, after a point, it starts to overfit the training set and not to generalize well to unseen data. For the proposed
technique, the training error slowly decreases and so does validation error. In other words, without memorizing
the training set, using this encoding technique, the neural network can learn unknown examples much better.
We also track the training time of models, which is composed of two main components: the time required to
obtain the data and the time required to process (learn from) the data, as shown in Figure 5. While training,
the average time per epoch took roughly 821 seconds (approximately 14 minutes) for one-hot encoding, 289
seconds (approximately 5 minutes) for mean target encoding and 275 seconds (approximately 5 minutes)
for proposed method. Overall training time was 45 hours, 16 hours and 15 hours, respectively. We may
deduce from the graph that our suggested approach is considerably quicker in terms of training time per
epoch and overall.

Based on these findings, we can confidently assert that our suggested approach reduces the human cost
of encoding categorical variables with high cardinality, as well as the training time and cost of employing
neural networks for applications.

232

Journal of Advanced Research in Natural and Applied Sciences 2022, Vol 8, Issue 2, Pages: 222-236

4. Conclusion

We have presented a simple but efficient method for dealing with categorical attributes with a high degree
of cardinality and compared its predictive performance with two well-known strategies that are used to
encode categorical features with a high number of unordered levels. In summary, the empirical analysis
shows promising results. In the proposed method, we can create an efficient data representation, without
consuming computational resources. The proposed methodology is model agnostic, can be combined with

(a) Model performance on training set

(b) Model performance on testing set

Figure 4. Comparing performances of three encoding approaches

233

Journal of Advanced Research in Natural and Applied Sciences2022, Vol 8, Issue 2, Pages: 222-236

any supervised deep learning algorithm, and it may be utilized in online-learning environments, allowing
for manageable analysis of extremely big datasets without the need for data cleaning. This article barely
scrapes the surface of learning from non-curated tables with high-cardinality categorical features, a topic that
is seldom addressed in machine learning. We hope to inspire further research into encoding of categorical
features in the context of identifier attributes to be included in any deep neural network model via such a
technique which is relatively straightforward to implement because the most of the papers in the scientific
literature seems to circle around string attributes. We expect that the benchmark datasets will stimulate
further research on this topic.

Figure 5. Comparison of training time of encoding methods

234

Journal of Advanced Research in Natural and Applied Sciences 2022, Vol 8, Issue 2, Pages: 222-236

Acknowledgement

The author would like to thank his PhD advisor, Dr. Michel Ballings, for the all support that he provided.

Author Contributions

Mustafa Murat Arat: Planned the study, designed the paper, performed data analysis, produced the statistical
results and outputs, made the visualization and wrote everything

Conflicts of Interest

The authors declare no conflict of interest.

References

Au, T. C. (2018). Random Forests, Decision Trees, and Categorical Predictors: The “Absent Levels” Problem. Journal
of Machine Learning Research, 19, 1-30. Retrieved From: https://www.jmlr.org/papers/v19

Bengio, Y. (2012). Practical Recommendations for Gradient-Based Training of Deep Architectures. In G. Montavon,
G. B. Orr, & K. R. Müller (Eds.), Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science (Vol.
7700). Berlin, Heidelberg: Springer. DOI: https://doi.org/10.1007/978-3-642-35289-8_26

Bengio, Y., Schwenk, H., Senécal, J.-S., Morin, F., & Gauvain, J.-L. (2006). Neural Probabilistic Language Models.
In Holmes D.E., Jain L.C. (Eds.), Innovations in Machine Learning (Vol. 194, pp. 137-186). Berlin, Heidelberg:
Springer. DOI: https://doi.org/10.1007/3-540-33486-6_6

Cerda, P., Varoquaux, G., & Kégl, B. (2018). Similarity encoding for learning with dirty categorical variables. Machine
Learning, 1477-1494. DOI: https://doi.org/10.1007/s10994-018-5724-2

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2002). Applied multiple regression/correlation analysis for the
behavioral sciences (3rd ed.). Lawrence Erlbaum Associates Publishers. ISBN: 9780203774441

Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78-
87. DOI: https://doi.org/10.1145/2347736.2347755

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., & Hutter, F. (2019). Auto-sklearn: Efficient
and Robust Automated Machine Learning. In F. Hutter , L. Kotthoff, & J. Vanschoren (Eds.), Automated Machine
Learning. The Springer Series on Challenges in Machine Learning. (pp.113-134). Springer, Cham. DOI: https://
doi.org/10.1007/978-3-030-05318-5_6

Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.). O’Reilly Media,
Inc. ISBN: 9781492032649

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics, 9, 249-256. Retrieved From:
https://proceedings.mlr.press/v9/glorot10a.html

Glorot, X., Border, A., & Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, 15, 315-323. Retrieved From: https://proceedings.
mlr.press/v15/glorot11a.html

Guo, C., & Berkhahn, F. (2016). Entity Embeddings of Categorical Variables. arXiv. Retrieved From: https://arxiv.
org/abs/1604.06737

Hand, D. J., & Henley, W. E. (1997). Statistical Classification Methods in Consumer Credit Scoring: A Review. Journal
of the Royal Statistical Society. Series A (Statistics in Society), 160(3), 523-541. DOI: https://doi.org/10.1111/
j.1467-985X.1997.00078.x

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Liu, T.-Y. (2017). LightGBM: A Highly Efficient Gradient
Boosting Decision Tree. Proceedings of the 31st International Conference on Neural Information Processing

https://www.jmlr.org/papers/v19
https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1007/3-540-33486-6_6
https://doi.org/10.1007/s10994-018-5724-2
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1007/978-3-030-05318-5_6
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://arxiv.org/abs/1604.06737
https://arxiv.org/abs/1604.06737
https://doi.org/10.1111/j.1467-985X.1997.00078.x
https://doi.org/10.1111/j.1467-985X.1997.00078.x

235

Journal of Advanced Research in Natural and Applied Sciences2022, Vol 8, Issue 2, Pages: 222-236

Systems, 3149–3157. Retrieved From: https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b7
6fa-Abstract.html

Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. The Proceedings of 3rd International
Conference on Learning Representation. San Diego, CA, USA. Retrieved From: https://arxiv.org/abs/1412.6980

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. DOI: https://doi.org/10.1038/
nature14539

Levy, O., & Goldberg, Y. (2014). Neural word embedding as implicit matrix factorization. Proceedings of the 27th
International Conference on Neural Information Processing Systems, 2177-2185. Retrieved From: https://papers.
nips.cc/paper/2014/hash/feab05aa91085b7a8012516bc3533958-Abstract.html

Li, Y., & Yang, T. (2018). Word Embedding for Understanding Natural Language: A Survey. In S. Srinivasan (Ed.),
Guide to Big Data Applications (pp. 83-104). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-53817-4_4

Micci-Barreca, D. (2001). A preprocessing scheme for high-cardinality categorical attributes in classification and
prediction problems. SIGKDD Explor. Newsl., 3(1), 27-32. DOI: https://doi.org/10.1145/507533.507538

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space.
Proceedings of 1st International Conference on Learning Representations. Scottsdale, Arizona, USA. Retrieved
From: https://arxiv.org/abs/1301.3781

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and
phrases and their compositionality. Proceedings of the 26th International Conference on Neural Information
Processing Systems, 3111-3119. Retrieved From: https://papers.nips.cc/paper/2013/hash/9aa42b31882ec039965f
3c4923ce901b-Abstract.html

Mnih, A., & Kavukcuoglu, K. (2013). Learning word embeddings efficiently with noise-contrastive estimation.
Proceedings of the 26th International Conference on Neural Information Processing Systems, 2265-2273.
Retrieved From: https://proceedings.neurips.cc/paper/2013/hash/db2b4182156b2f1f817860ac9f409ad7-Abstract.
html

Moeyersoms, J., & Martens, D. (2015). Including high-cardinality attributes in predictive models: A case study
in churn prediction in the energy sector. Decision Support Systems, 72, 72-81. DOI: https://doi.org/10.1016/j.
dss.2015.02.007

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word Representation. Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing, 1532-1543. DOI: https://doi.
org/10.3115/v1/D14-1162

Perlich, C., & Provost, F. (2006). Distribution-based aggregation for relational learning with identifier attributes.
Machine Learning, 62(1), 65-105. DOI: https://doi.org/10.1007/s10994-006-6064-1

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with
categorical features. Proceedings of the 32nd International Conference on Neural Information Processing Systems,
6639–6649. Retrieved From: https://arxiv.org/abs/1706.09516

Rahm, E., & Do, H.-H. (2000). Data Cleaning: Problems and Current Approaches. IEEE Data Engineering Bulletin,
23, 3-13. Retrieved From: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.98.8661

Rudolph, M., Ruiz, F. J., Mandt, S., & Blei, D. M. (2016). Exponential family embeddings. Proceedings of the 30th
International Conference on Neural Information Processing Systems, 478-486. Retrieved From: https://papers.
nips.cc/paper/2016/hash/06138bc5af6023646ede0e1f7c1eac75-Abstract.html

Rumelhart, D., Hinton, G. & Williams, R. (1986) Learning representations by back-propagating errors. Nature, 323,
533-536. DOI: https://doi.org/10.1038/323533a0

Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th Edition ed.). Pearson. ISBN:
0134610997

Suits, D. B. (1957). Use of Dummy Variables in Regression Equations. Journal of the American Statistical Association,
52(280), 548-551. DOI: https://doi.org/10.2307/2281705

https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://papers.nips.cc/paper/2014/hash/feab05aa91085b7a8012516bc3533958-Abstract.html
https://papers.nips.cc/paper/2014/hash/feab05aa91085b7a8012516bc3533958-Abstract.html
https://doi.org/10.1007/978-3-319-53817-4_4
https://doi.org/10.1145/507533.507538
https://arxiv.org/abs/1301.3781
https://papers.nips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://papers.nips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/db2b4182156b2f1f817860ac9f409ad7-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/db2b4182156b2f1f817860ac9f409ad7-Abstract.html
https://doi.org/10.1016/j.dss.2015.02.007
https://doi.org/10.1016/j.dss.2015.02.007
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1007/s10994-006-6064-1
https://arxiv.org/abs/1706.09516
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.98.8661
https://papers.nips.cc/paper/2016/hash/06138bc5af6023646ede0e1f7c1eac75-Abstract.html
https://papers.nips.cc/paper/2016/hash/06138bc5af6023646ede0e1f7c1eac75-Abstract.html
https://doi.org/10.1038/323533a0
https://doi.org/10.2307/2281705

236

Journal of Advanced Research in Natural and Applied Sciences 2022, Vol 8, Issue 2, Pages: 222-236

Thomas, J., Coors, S., & Bischl, B. (2018). Automatic Gradient Boosting. ArXiv. Retrieved From: https://arxiv.org/
abs/1807.03873

Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-WEKA: combined selection and
hyperparameter optimization of classification algorithms. Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, 847–855. DOI: https://doi.org/10.1145/2487575.2487629

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., & Attenberg, J. (2009). Feature hashing for large scale
multitask learning. Proceedings of the 26th Annual International Conference on Machine Learning, 1113–1120.
DOI: https://doi.org/10.1145/1553374.1553516

Xu, W., Evans, D., & Qi, Y. (2018). Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks.
Proceedings of 2018 Network and Distributed System Security Symposium. Retrieved From: https://arxiv.org/
abs/1704.01155

Yin, Z., & Shen, Y. (2018). On the dimensionality of word embedding. Proceedings of the 32nd International Conference
on Neural Information Processing Systems, 895-906. Retrieved From: https://arxiv.org/abs/1812.04224

https://arxiv.org/abs/1807.03873
https://arxiv.org/abs/1807.03873
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/1553374.1553516
https://arxiv.org/abs/1704.01155
https://arxiv.org/abs/1704.01155
https://arxiv.org/abs/1812.04224

