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Article History Abstract − Some machine learning algorithms expect the input variables and the output variables to 
be numeric. Therefore, in an early stage of modelling, feature engineering is required when categorical 
variables present in the dataset. As a result, we must encode those attributes into an appropriate feature 
vector. However, categorical variables having more than 100 unique values are considered to be 
high-cardinality and there exists no straightforward methods to handle them. Besides, the majority 
of the work on categorical variable encoding in the literature assumes that the categories is limited, 
known beforehand, and made up of mutually-exclusive elements, independently from the data, which 
is not necessarily true for real-world applications. Feature engineering typically practices to tackle 
the high cardinality issues with data-cleaning techniques which they are time-consuming and often 
needs human intervention and domain expertise which are major costs in data science projects The 
most common methods of transform categorical variables is one-hot encoding and target encoding. 
To address the issue of encoding categorical variables in environments with a high cardinality, we 
also seek a general-purpose approach for statistical analysis of categorical entries that is capable of 
handling a very large number of categories, while avoiding computational and statistical difficulties. 
Our proposed approach is low dimensional; thus, it is very efficient in processing time and memory, 
it can be computed in an online learning setting. Even though for this paper, we opt to utilize it in the 
input layer, dictionaries are typically architecture-independent and may be moved between different 
architectures or layers. 
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1. Introduction 

In order to transform raw categorical variables before feeding them to the model, in an early stage of 
modelling, feature engineering is required when there are categorical variables in the dataset because some 
algorithms expect all the input variables and the output variables to be numeric. Thereby, as a result, we must 
encode those attributes into an appropriate feature vector. Encoding in this context refers to a parametric 
map from inputs to their representations. A categorical variable can be easily defined as a discrete collection 
of values (categories) that might be ordinal or nominal in form. Furthermore, categorical variables can be 
used as either a dependent variable or an independent variable in a prediction problem. However, this study 
focuses exclusively on the problem of nominal categorical input variables. 

A categorical attribute's cardinality is defined as the number of distinct values that this attribute can take 
(Perlich & Provost, 2006). Traditional nominal attributes are those with a low cardinality. On the other 
hand, attributes having a very high cardinality are mainly referred in the literature to as high-cardinality 
attributes (Moeyersoms & Martens, 2015). Especially in the e-commerce, retail, and banking industries, 
some categorial predictors like user ID, item category, zip code, and user city might result in hundreds or 
even thousands of distinct levels. Hence, Moeyersoms & Martens (2015) propose a threshold and consider 
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that nominal variables having more than 100 unique values are examples of "high-cardinality attributes". 
High-cardinality categorical columns are often critical features in machine learning tasks, representing 
serious challenges in cases such as classification and regression. Despite their promise, such variables 
are frequently overlooked in predictive modelling, due to the fact that there exists no straightforward 
engineering or statistical methods to handle them. The most common methods of transform categorical 
variables for machine learning algorithms is one-hot encoding or transformation to a continuous feature 
with prime example being mean target encoding (Micci-Barreca, 2001), which is especially most common 
technique in Kaggle competitions. The majority of the work on categorical variable encoding in the literature 
assumes that the categories is limited, known beforehand, and made up of mutually-exclusive elements-
independently from the data, which is not necessarily true for real-world applications.

Although, they are time-consuming and often needs human intervention and domain expertise which are 
major costs in data science projects, typically, feature engineering employs data-cleaning techniques to 
address issues of high cardinality. (Rahm & Do, 2000) and thus reducing the number of theoretically relevant 
levels, finding strategies that work well across a wide variety of problems is critical for a wide variety of 
applications, including automatic machine learning (Feurer, et al., 2019; Thomas, Coors, & Bischl, 2018; 
Thornton, Hutter, Hoos, & Leyton-Brown, 2013). Optimally, strategies should be model agnostic. However, 
since here we will be dealing with deep learning architectures, our main focus is to handle this problem in 
the domain of neural network architectures with online learning.

In order to avoid this step, similarity encoding, which builds feature vectors from cross-category similarities, 
relaxes one-hot encoding by using string similarities. As a consequence, when used in conjunction with 
one-hot encoding, it resolves the problem of related categories and has been shown to enhance statistical 
analysis. It does not, however, solve the problem of high cardinality, and important information may be lost 
if the merging methodology is not exposed to statistical methods.

Feature hashing, commonly known as the hashing technique, is mostly used to minimize the number of 
categories (Weinberger, Dasgupta, Langford, Smola, & Attenberg, 2009). It is a technique to represent 
categories in a “one hot encoding style” as a sparse matrix but with a much lower dimension. Rather than 
keeping a one-to-one mapping between categorical feature values and feature vector positions, we utilize 
a hash function to identify the feature’s location in a lower-dimensional vector. Therefore, a large number 
of values is mapped into a small finite set of values. In practice we are free to specify the dimensionality 
of the vector space (output). This has the desirable effect of not only reducing dimensionality and therefore 
computation. It also provides an elegant way of dealing with new or missing entries. However, because 
its size is arbitrarily chosen, this technique may blindly assign radically different categories to the same 
embedding vector (multiple distinct values may produce the same hash), a phenomenon known as collision, 
which results in information loss and model quality degradation. In other words, the smaller the hash size, 
the more collapsed levels there are. An advantage of this approach leads to a disadvantage. We do not need 
to keep the exact one-to-one mapping of features to indices that other encoding methods demand. That is 
why, exactly because we do not save the explicit feature mapping during feature extraction, we lose the 
ability to execute the inverse mapping from feature indices to feature values.

Guo and Berkhahn (2016) present a neural network-based encoding technique, which maps high-dimensional 
sparse vectors to a dense representation in a lower-dimensional continuous space that preserves semantic 
relationships by grouping commonly co-occurring items together in the representation space and further 
build neural networks to learn the latent patterns. This technique is intriguing since the mapping is learned 
during the supervised training phase by a neural network. To put it another way, the embeddings serve as 
the network’s parameters - or weights - and are modified iteratively to minimize performance loss. The 
resultant embedded vectors are representations of categories in which comparable categories are more 
closely related to one another in relation to the goal of the analysis.

The concept of embeddings has been expanded and developed in several ways (Bengio, Schwenk, Senécal, 
Morin, & Gauvain, 2006; Mikolov, Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, Chen, Corrado, & 
Dean, 2013; Pennington, Socher, & Manning, 2014; Levy & Goldberg, 2014; Mnih & Kavukcuoglu, 2013) 
but each reflects the same main ideas. They have proven critical in a variety of natural language processing 
applications (Li & Yang, 2018), and additionally, they have been extended to non-textual datasets (Rudolph, 
Ruiz, Mandt, & Blei, 2016). One can use either pre-trained embeddings for that particular categorical 
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variable, if exists, as in (Mikolov, Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, Chen, Corrado, & 
Dean, 2013), or learn the embeddings as part of the training process.

The intuition behind embeddings is that - instead of using one-hot encoded variables, which implies that 
each input level is orthogonal to every other - we allow for dependence (overlap information) between 
the levels of categorical variables. Using an embedding layer instead of one-hot encoding significantly 
lowers the number of parameters and leads to improved predictions, but at the price of higher training and 
inference time. Most importantly, learning the embeddings as part of the network increases the model’s 
complexity by adding many weights to the model, which means you will need much more labelled data 
and repeated occurrences of individual exemplars in order to learn. Additionally, it incurs computational 
and architectural selection costs associated with Deep Learning techniques. It also relies on single-hot 
encoding, which has some of the same issues (Cerda, Varoquaux, & Kégl, 2018).

Additionally, dimensionality selection for embedding is a well-known research problem. The impact of 
dimensionality on an embedding layer has not yet been fully understood. In practice it is chosen based on 
experiments (either ad-hoc or by grid search) (Yin & Shen, 2018). As a critical hyperparameter, the choice 
of embedding dimensionality has huge influence on the performance.

A low-dimensional embedding layer is generally insufficiently expressive to capture all potential relations, but 
a high-dimensional embedding layer suffers from over-fitting. With increasing dimensionality, the quality of 
the embedding improves. However, at a certain point, marginal benefit diminishes (Mikolov, Chen, Corrado, 
& Dean, 2013). Typically, the vectors have a dimension of between 100 and 1,000. However, there is not a 
single general rule. In a Google Developers’ blogpost (https://tinyurl.com/gglTFDev), it has been suggested to 
take the 4th root of the number of categories. Another recommended rule of thumb for finding the embedding 
size is to divide the cardinality size by two, but not to exceed 50 (https://tinyurl.com/mediumEmb).

To address the issue of encoding categorical variables in environments with a high cardinality, we seek a 
general-purpose approach for statistical analysis of categorical entries that is capable of handling a very 
large number of categories without requiring human intervention, while also avoiding computational and 
statistical difficulties.

2. Materials and Methods

Before we mention about a novel applied technique for categorical attributes with high cardinality, let us 
first consider the objectives and some relevant guidelines for methodology development.

2.1. One-Hot Encoding

In supervised learning, we are given N data points, (xi, yi), i = 1,2, …, N with a task to learn a mapping 
from input variable x to the target variable y. Let’s assume that x is a categorical variable which has l non-
numeric levels, {x Î x(l), x(2)), … , x(l)}. Traditionally, handling a categorical variable is a method known as 
dummy encoding. It's a straightforward and frequently-used encoding technique. This approach has been 
published for the first time in 1957 and was mostly used in regression analysis (Suits, 1957). Therefore, 
dummying is implemented by introducing l-1 binary dummy variables into the feature set for a categorical 
variable with l levels.

The popular one-hot coding scheme is an extension of this method and is the de-facto standard for machine 
learners on categorical variables. Even though numerous alternative implementations of the one-hot 
encoding have been presented in the literature., the most common variation basically creates a binary 
column for each unique levels of the categorical column (Cohen, Cohen, West, & Aiken, 2002). Similar to 
dummying, this approach is applied to  dichotomous variables where each level is represented by a vector 
of zeros with an entry of 1 each time that particular level appears in the data. In the vector space that we 
will have in the end, each category is orthogonal and equidistant to each other. It has been added to many 
software packages as a very early stage before applying any machine learning algorithm. Figure 1 shows a 
visual example where this type of encoding is applied on an example variable. In this example, we have one 
categorical variable, Temperature, with four different levels, i.e., Hot, Cold, Very Hot, and Warm. Using 
one-hot encoding approach, we can easily process it numerically and feed into any algorithm.

https://tinyurl.com/gglTFDev
https://tinyurl.com/mediumEmb
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When the number of categorical features and the number of possible levels is modest, this transformation 
produces acceptable performance. However, when one-hot encoding is used, high-cardinality categorical 
variables provide a variety of difficulties.

First of all, when we are dealing with high-cardinality categorical variables, this method can end up 
being intractable and introduce sparsity due to the expansion of the feature matrix because the majority of 
predictive modelling approaches cannot handle such dimensions. It is highly prone to over-fitting, resulting 
in a poor statistical estimation because it may be plagued by the curse of dimensionality, particularly in deep 
learning applications. Previous research has shown that eliminating unnecessarily large feature input space 
increases the robustness of neural networks (Xu, Evans, & Qi, 2018).

We can perform dimension reduction on the one-hot encoded matrix, albeit at the expense of information 
loss. It also often results in an unrealistic amount of computational and memory requirements. As the 
number of distinct categories increases, so does the number of model inputs, and therefore the number of 
parameters to estimate. Secondly, while encoding all unique items using orthogonal vectors, we completely 
disregard the overlap information which can be present in the representations, thus we might ignore the rich 
relationships existing among categories that can be exploited during training. Thirdly, the resulting binary 
features can be strongly correlated.

2.2. Mean Target Encoding

Another popular approach to incorporate the information from categorical variables is called mean 
target encoding, which creates features that include information about the target variable. It is also known 
as likelihood encoding. It is one of the most powerful techniques in feature engineering which is reported to 
be useful by many practitioners on the influential machine learning competition platform, Kaggle (https://
www.kaggle.com), where many challenging datasets contain high cardinality features. It is also built into 
popular machine learning libraries, which use tree-based Boosting algorithms, such as LightGBM (Ke, et 
al., 2017) and CatBoost (Prokhorenkova, Gusev, Vorobev, Dorogush, & Gulin, 2018).

Target encoding method is overall continuousification of categorical variables via target using a statistical 
aggregate function, e.g., mean, median, variance. The fundamental transformation in this technique is 
one that translates each value of a categorical variable to the target variable’s probability estimate. The 
categorical variable is replaced with a single new numerical variable, and each category of the categorical 
variable is replaced with its corresponding probability of the target (if categorical) or mean of the target (if 
numerical), a process known as mean encoding.

Figure 1. An example on creating dummy variables
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Main purpose of this technique is to deal categorical features without exploding dimensionality of the 
dataset, which its one of the strategy’s early formal descriptions is given in Micci-Barreca (2001). There are 
also similar ideas existed in the credit scoring literature (Hand & Henley, 1997).

Following the previous example, mean target encoding maps each level of  into a feature, say,

κ Î {κ(1), κ(2),…, κ(l)} as given in Equation 2.1.
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Figure 2. An example of how to use mean target encoding approach

One issue with target-based encoding is that some of the categories would have a very small number of 
samples in the training data, e.g., zip-codes with small populations, since calculated values are based on 
the frequency of the levels. In the extreme situation of a categorical feature having only unique values, the 
mean target for each level of this feature will be similar to the true target value of a single observation. For 
example, when N(j) = 1. When xi = x(j), the summation in Equation 2.1 includes just one non-zero term. As a 
result, we get κ(i) = yi ; that is, κ(i) is encoded with the exact value we are attempting to predict. This would 
make the average target (label) values for those small categories (or only unique categories) unstable as 
this will cause overfitting of the training set and will lead to poor generalization of the model. This issue 
is exacerbated when working with high-cardinality categorical variables. In order to avoid this kind of 
overfitting, we may introduce regularization, or add random noise to the representation of the category in 
train dataset or use Double Validation. However, all these strategies have important disadvantages. First, 
they introduce additional hyperparameters for regularization and noise variance, which can be expected 
to be crucial for the effectiveness of the encoding. Second, they can tremendously increase the amount of 
computation especially for large samples.

2.3. Deep Learning 

Classical machine learning algorithms are somewhat limited in their capabilities to learn from raw 
data and how the data is fed to the model has a huge influence on their performances (LeCun, Bengio, & 
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Hinton, 2015). Thus, feature engineering focuses on converting data into meaningful features in the goal 
of accurately capturing the fundamental structures (Domingos, 2012). It is an essential step of any kind of 
data analysis but can be tedious, time-consuming, domain-specific and requires substantial human-effort.

Deep neural networks are a subset of machine learning models that have been effectively applied to a 
variety of tasks. Through a hierarchical learning process, they automatically extract high-level, complex 
abstractions as data representations. At each level of the hierarchy, complex abstractions are learned based 
on comparatively smaller abstractions defined in the preceding level (LeCun, Bengio, & Hinton, 2015).  
This technique enables neural network models to efficiently learn high-order features from raw input.

Deep learning methods are used to discover the parameters of a nested parametrized non-linear function 
by utilizing gradient descent algorithm to minimize an example-based differentiable cost function. Deep 
architectures of consecutive layers create aforementioned nestedness. Each layer performs a nonlinear 
transformation on its input and outputs a representation. The output of this algorithm is determined by 
characteristics of the features and the weights associated with the interconnections among them.

Let's assume that we have a data set where we have n observations and p features, which can be shown 
mathematically as 
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Figure 3. A schematic of the deep learning architecture. 
 

 A feature vector x(i) represents a record, an item, 
a picture, or a vector expressing a word, for example. Its output instance y(i) is either a real-valued vector 
or a scalar, as in regression, or an integer- or scalar-valued vector or scalar, as in classification. We want 
the machine to learn from the training set and then to predict y(i) using the information given by x(i), so that 
we can extract the underlying mapping function that maps x(i) to y(i). We want to build a neural network  
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class, therefore, W(L) has the dimension ML – 1  × K and bias vector b^((L)) has the dimension 1 × K. For all 
the intermediate layers, l = 2,3,…,L – 1, W(l) has dimension Ml – 1 × Ml and the corresponding bias vector is 
of size 1 × Ml Figure 3 shows a schematic representation of an artificial neural network structure for multi-
class classification that includes an input layer, L – 1 hidden layer, and an output layer (layer L). 

Final layer, which is also known as output layer, provides the output of the model. Depending on the 
problem, we decide whether to use an activation function or not. If it is a regression problem, the output 
layer neurons often do not have an activation function (or it can also be thought as having an identity 
activation function) since the values are unbounded. If it is a binary or multi-label classification problem, 
sigmoid function will provide the probabilities of the input belonging to each of two categories. If it is a 
multi-class classification, a Softmax layer is appended to the model for the same reasoning (Russell & 
Norvig, 2020).

Algorithms for deep learning are not new. However, as volume of data has increased and computational 
capacity have become more accessible, these networks have garnered more interest in recent years. The 
models can be enormous in size – often millions of parameters - call this the complexity of the model since 
each layer to be added carries a weight matrices and bias vector with it. Therefore, in order to train these 
models to get the most precise and accurate results, a vast amount of labelled input data is required.
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2.4. Online learning

Deep Neural Networks are typically trained by back-propagation in a batch setting, requiring the entire 
static training data to be first acquired prior to the learning task. This type of learning is called offline 
learning, also sometimes known as batch learning. While running a deep neural network model, dataset to 
be processed is potentially of a very large size, which might not fit in the memory, thus can raise the issue 
of storage and memory management. With high volume incoming data, oftentimes, reading in the data all 
at once is not feasible. It is not scalable for many real-world settings where we mostly work with streaming 
data. Because online learning updates its model parameters progressively using just the most recent data 
points, the system does not need to keep a huge quantity of data in memory; moreover, after data has been 
consumed, it is no longer necessary. In comparison to offline learning, the model may change on the go to 
keep up with real-time trends.

If the data is too big to fit in the RAM, we can read it in chunks or one observation at a time. Since we do 
not see the entire data set, we cannot not know number of unique values in a categorical variable. Therefore, 
in online learning fashion, an inherent limitation called “absent levels” problem, whose consequences have 
never been carefully explored in the literature (Au, 2018), might arise for both of these encoding approaches 
because of the fact that we need to have the same levels of a categorical variable in three sets. In real-life 
problems, the categorical variable is not static and therefore, through the time, new levels may emerge. In 
other words, new, previously unseen unique values might be discovered in “unseen data” (test/validation 
sets) and the encoder does not know how to deal with these values. The transformed training, validation, 
and test sets must all have the same number of columns in order to be used in any machine learning method 
(Géron, 2019).

Thus, in this type of learning scheme, one-hot encoding does not fare well in the presence of new and 
unseen levels, which are encoded in the training set because we need to go over all the data to do so. One 
possible approach to handle this while using One-hot encoding approach, is to train an explicit “Unknown” 
level (like “other” or “missing”) based on some prepared training data, where it will contain all 0 values 
for all the cells in the row. In the validation and testing phases, all new levels are subsequently recognized 
and mapped to this “Unknown” level. And then, we periodically refresh the model to include the recent 
appeared levels into this “Unknown” level, which will create collisions. Consequently, one-hot encoding 
is unsuitable not just for online learning but also for offline versions: if additional (new) categories are 
added, the whole dataset’s encoding must be recalculated, and thus, the feature vector’s dimension becomes 
unbounded.

Figure 3. A schematic of the deep learning architecture.
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Similar case is also valid for target encoding. For each level of a categorical variable, computing the 
summary statistics of corresponding values of target variable is more challenging. Additionally, where 
some new category is found, which are not available in training data, we substitute values of that category 
with the global mean of the target variable. This works fine as long as we have large amount of training data 
and a categorical feature with low cardinality. But this fails to work in the other cases. 

However, the procedures mentioned above are not elegant at all and can cause a lot of loss of information. 
For the proposed method, this does not pose a problem because we can dynamically initialize a new key-
value pair, where key represent the new category and value is a randomly initialized weight for this new 
category and then we keep on training.

2.5. The proposed method

So, we introduce a look-up-based approach arranged as key-value pairs, where the categorical levels are 
the keys and their corresponding float-numbers weights are the values. A hash table provide a constant time 
lookup and update for a mapping from a key to a value.

A dictionary, which has been created using unique levels of categorical variable, is initialized randomly 
or from zero. Here, we add an additional bias term to Equation 2.2. Training involves jointly learning 
a dictionary of weights of levels of categorical variables with high-cardinality and a small set of affine 
transformations using the concatenation operator. Weight updates will be done using backpropagation 
algorithm (Rumelhart, Hinton, & Williams, 1986).

Our proposed approach is low dimensional; thus, it is very efficient in processing time and memory, it can 
be computed in an online learning setting. Even though for this paper, we opt to utilize it in the input layer, 
dictionaries are typically architecture-independent and may be moved between different architectures or 
layers.

2.6. Data

An American direct-response television shopping network serves as the context of this study. It is a 
network which does broadcasting live shows 24 hours a day and 7 days a week on its own channel and 
sells exclusive hedonistic products in multiple product categories. The dataset used is obtained from this 
company, contains 362,235 data points. It consists of marketing and show related information, including 
gross margin as the dependent variable. Table 1 summarizes the variables in the dataset.

The data set includes features that are both continuous and nominal. We differentiate categorical features 
into two kinds of nominal attributes: traditional features and features with a high degree of cardinality. 
The attribute Master ID is indicated as high-cardinality data, and this attribute has more than 100 distinct 
categories.

Identifier characteristics, such as product identification numbers or personal names, which might contain 
a high number of categories, are rarely used in statistical modeling (Perlich & Provost, 2006). Therefore, 
in this study, we use Master ID variable, which is a unique ten-digit number identifier for every unit in the 
dataset. In the dataset, there exists 6944 unique IDs, where we are going to use as a categorical variable 
with high cardinality.

The salespersons variable (i.e., show host), where we use person-specific dummy variables to represent it, 
carries the name of professional individual who pitches this particular product and there exists 53 different 
people hosting the shows, in which the product was shown. Show type variable indicates general business 
unit associated with a show where the product was shown. It is one of the two types of products whose 
names are not disclosed for confidentiality. Merchandise Department variable describes the features of the 
product and consists of 24 unique levels. Country of Origin variable represents the country of manufacture 
and/or production where the product comes from. In the dataset, there are 40 different countries. All the 
traditional nominal variables are dummy encoded.
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Descriptions of variables, unit cost and unit offer price are self-explanatory. Unit cost is the cost and unit 
offer price is the price of one unit of a particular product being sold. Duration is adjusted display time on-air 
in seconds for a given presentation of the product. Showing Start Time in Minutes and Showing End Time 
in Minutes represent the start and end time of the product in minutes.

2.7. Model Architecture

In this work, our main focus will be on generic non-linear feed-forward neural network, where layers 
are fully-connected to each other and each layer has number of hidden units that are of the same order of 
magnitude, as this is the most commonly implemented network architecture and fairly easy to train. We 
have a regression problem where we try to predict gross margin of the product. We highlight that our goal 
here is not to continuously employ various tricks or fine-tune model parameters in order to evaluate the 
performance of different machine learning algorithms at prediction. Rather, the major goal of this work is 
to test and assess the usefulness of the suggested approach in a circumstance when additional tricks are not 
present.

Since we compare three different encoding schemes based on some factors, we keep exactly the same neural 
network architecture across all three methods. All the models are trained independently. As previously 
mentioned, we treat only one categorical variable with high cardinality, i.e., Master ID variable.

We use a neural network architecture with four dense layers, which consist of decreasing number of neurons 
at each layer, i.e., 1024, 512, 256, 128, respectively. Since this is a regression problem, the output layer has 
only one neuron. To introduce non-linearity into the system, we focus on the popular Rectified Linear Unit 
(ReLU) function which can be mathematically shown as σ(x) = max(x, 0) for all the hidden layers, though 
our results can be extended (at notational cost) to cover other activation functions. Because of its superior 
gradient propagation and efficiency in calculation, the ReLU activation function is the most commonly used 
in practical applications (Glorot, Border, & Bengio, 2011). It often achieves better performance. Since this 
is a regression problem, linear activation function is used in the output layer, where no transform is applied 
at all.

All the weights in the models were initialized randomly using Glorot (also known as Xavier) Initialization 
schema in order to prevent gradients from exploding or vanishing (Glorot & Bengio, 2010). The idea is to 
initialize each weight with a small Gaussian value with zero mean and variance based on the number of 
input and output units of a particular layer. Biases were typically initialized as 0. Similarly, the dictionary 
which carries the weights for each of the product IDs has been initialized randomly. 

All the models are trained from scratch using the entire training data set to learn the parameters. While 
training networks, we follow the standard practices (Bengio, 2012). Trainings are performed with one of the 
adaptive gradient methods, Adam optimizer (Kingma & Ba, 2015), which minimizes Mean Squared Error 
loss function using a batch size of size 32 which is selected through the preliminary experimentation, and 
learning rate of 0.0001 in all cases. Since we use Adam optimizer, we do not decay the learning rate. The 
other parameters were maintained at their default values β1 = 0.9, β2 = 0.999, ϵ = 1 × e–7.

Table 1.

Attributes included in the data

Continuous Traditional Nominal High-cardinality Nominal

Unit Offer Price
Unit Cost
Gross Margin
Duration in Seconds
Showing Start Time in Minutes
Showing End Time in Minute

Salesperson
Show Type
Merchandise Department
Country of Origin

Master ID
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Given that the number of epochs for which the algorithms were trained might affect the final results, all 
models were trained for 200 epochs.

Implementation is done using Python and one of most well-known open-source Deep Learning framework, 
low-level Tensorflow. All of our experiments run on 4 identical Nvidia GeForce GTX 1080 Ti GPUs, each 
one has 3584 CuDA cores and 11 GB GDDR5X VRAM memory and Neural Networks were constructed 
using Google’s famous Python library, Tensorflow 1.15.0.

3. Results and Discussion

Preprocessing is needed before to applying the various encoding methods to the data in order to make 
it suitable for analysis. Therefore, we perform normalization on continuous features, and we use dummy 
encoding on traditional nominal features because of the reasons we mentioned above.

When developing predictive models, it is crucial not to leak any information from the training dataset 
into the validation set and testing set, which are created to simulate real-world, unseen data because 
of the generalization being the goal. Data preprocessing (including creation of dummy variables and 
computing mean values for the levels of categorical features from target variable) needs to be done 
after splitting the data. Each such preprocessing should be first done on the training set before being 
combined or concatenated with the validation and test subsets. Therefore, first, we split the data in to a 
training set and test set with the ratio 9:1. Following that, the remaining portion of training set is split 
into a training portion (3/4) for training the model and a validation portion (1/4) for identifying the 
best model with the lowest loss value (Géron, 2019). Since our purpose for this study is to compare 
proposed method with two existing encoding approaches, we keep the same levels of high-cardinality 
feature balanced out for each of the sets that have been created, meaning that, we will not be dealing 
with unseen category problem.

After the preparation of the datasets, we then follow the instructions given in the previous section to run 
three different neural network models, where the high-cardinality categorical feature, Master ID, has been 
encoded using three different approaches. Therefore, if we compute the number of neurons in the input 
layer, we have 7,068 neurons for one-hot encoding, 125 neurons for mean target encoding and 124 neurons 
for proposed method. The total number of trainable parameters for those models are 7,895,041 and 785,409 
and 791,329, respectively.

Now, we can take a closer look at the performance of all the encoding methods.Figure 4 shows the predictive 
performance of models, in terms of mean squared error, for both training and validation sets. A first observation 
is that model with mean target encoding under-performs for both training and validation datasets. For model 
with one-hot encoding approach, the training error goes down sharply. At first, it seems like doing a good job, 
however, after a point, it starts to overfit the training set and not to generalize well to unseen data. For the proposed 
technique, the training error slowly decreases and so does validation error. In other words, without memorizing 
the training set, using this encoding technique, the neural network can learn unknown examples much better. 
We also track the training time of models, which is composed of two main components: the time required to 
obtain the data and the time required to process (learn from) the data, as shown in Figure 5. While training, 
the average time per epoch took roughly 821 seconds (approximately 14 minutes) for one-hot encoding, 289 
seconds (approximately 5 minutes) for mean target encoding and 275 seconds (approximately 5 minutes) 
for proposed method. Overall training time was 45 hours, 16 hours and 15 hours, respectively. We may 
deduce from the graph that our suggested approach is considerably quicker in terms of training time per 
epoch and overall.

Based on these findings, we can confidently assert that our suggested approach reduces the human cost 
of encoding categorical variables with high cardinality, as well as the training time and cost of employing 
neural networks for applications.
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4. Conclusion

We have presented a simple but efficient method for dealing with categorical attributes with a high degree 
of cardinality and compared its predictive performance with two well-known strategies that are used to 
encode categorical features with a high number of unordered levels. In summary, the empirical analysis 
shows promising results. In the proposed method, we can create an efficient data representation, without 
consuming computational resources. The proposed methodology is model agnostic, can be combined with 

(a) Model performance on training set

(b) Model performance on testing set

Figure 4. Comparing performances of three encoding approaches
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any supervised deep learning algorithm, and it may be utilized in online-learning environments, allowing 
for manageable analysis of extremely big datasets without the need for data cleaning. This article barely 
scrapes the surface of learning from non-curated tables with high-cardinality categorical features, a topic that 
is seldom addressed in machine learning. We hope to inspire further research into encoding of categorical 
features in the context of identifier attributes to be included in any deep neural network model via such a 
technique which is relatively straightforward to implement because the most of the papers in the scientific 
literature seems to circle around string attributes. We expect that the benchmark datasets will stimulate 
further research on this topic.

Figure 5. Comparison of training time of encoding methods
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