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Abstract 

In this paper, the Gaussian process (GP) algorithm, which is one of the machine 

learning methods, is designed to control the vehicle active suspension system 

(VASS). Experimental data were used to create the supervised learning method 

(regression method). The data was obtained from an optimal linear quadratic 

controller tuned based on a full state feedback optimal control approach. The results 

demonstrated that the proposed machine learning based (GPR) ML controller 

outperforms the optimal controller under uncertainties in terms of reducing the 

oscillation in spring mass position, vehicle body acceleration, and suspension 

deflection with 39.08%, 52.18%, 58.10%, and 17.81%, 15.63%, and 21.64% 

improvement for bump and sine sweep road conditions, respectively.  
 

 
1. Introduction 

 

The road irregularities that affect passenger 

comfort are one of the main sources of vibration in 

vehicles. Vehicle vibrations and undesirable noise 

have negative effects on human health, especially 

on the spinal cord and nervous systems [1]. 

Therefore, the improvement in road comfort is very 

important, and it is possible by designing active 

vehicle suspension systems (AVSS). 

 In the active suspension system, there are 

nonlinear components such as springs and dampers 

to generate force for adaptation to unknown road 

profiles. Owing to uncertain nonlinear dynamics 

and unknown road disturbances, it is difficult to 

design active suspension systems. Therefore, it is 

necessary to focus on advanced control techniques 

for these systems. Until today, the design of 

controller problems in AVSS has been widely 

discussed in the literature. For the sake of 

simplicity, researchers attempted to overcome 

these uncertainties by designing PID [2] and 

linear–quadratic (LQ) controllers [3]. However, 

these approaches are not satisfactory because the 
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parameters of both controllers are determined 

based on linearized models. Due to the nonlinear 

nature of the system, adaptive backstepping control 

considering the model uncertainties and actuator 

delays was discussed in [4]. In another study, five 

different continuous sliding-mode controllers were 

used to avoid the chattering effect, and the 

effectiveness of the proposed controllers was 

compared to the linear control approach [5]. 

Adaptive backstepping control for AVSS with hard 

constraints was proposed to ensure the stabilizing 

attitude of the vehicle under road disturbance 

driving conditions in [6]. Robust control structure 

studies [7] using adaptiveness contain a lot of 

complex mathematical expressions, and the 

designing processes of the controller are therefore 

difficult to formalize. To improve performance 

against disturbance effects or uncertainties, robust 

controllers such as H∞ control [8], gain scheduling, 

linear parameter varying control [9] were designed 

for active suspension systems to improve 

performance against disturbance effects or 

uncertainties. Also, a robust H infinity controller 

was investigated for an active suspension under 
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non-stationary operating conditions [10]. On the 

other hand, model-free approaches were applied to 

compensate for vehicle vibrations, unlike model-

based approaches. For this purpose, data-driven 

approaches such as fuzzy logic and neural-

networks were applied to deal with the nonlinear 

and time-varying characteristics of AVSS for 

improving the controller performance. In the 

experimental investigation of a multiple-input 

single-output fuzzy logic controller on an AVSS 

was compared with passive and classical fuzzy 

logic controllers [11]. An adaptive network based 

fuzzy inference (ANFIS) controller was designed 

by using the training data obtained from the system 

[12]. The performance of the designed controller 

was tested using an experimental setup and it was 

observed to have satisfactory closed loop 

performance. In [13], the neural network adjusts its 

weight parameters and learns from sliding mode 

control to prevent vibrations from vehicles due to 

ride irregularities. Besides, data-based methods are 

used to tune the parameters of different control 

structures. A back propagation neural network 

(BPN) was applied to determine the gain 

parameters of a PID controller for AVSS [14]. Data 

driven modeling methods are based on a machine 

learning approach. These techniques are applied in 

many different fields, like engineering, finance, 

and optimization problems, and they provide the 

ability to predict the complex dynamic behavior of 

systems [15]. 

 As can be seen from the literature reviews 

above, data-driven methods can estimate the 

unknown system dynamics and external 

disturbances and improve control performance. 

Therefore, the main purpose of this research paper 

is to investigate the Gaussian process (GP) 

machine learning controller design for AVSS 

considering road disturbance conditions and 

system uncertainties. Besides, bump and sine 

sweep of the road profile are used to define road 

deterioration and irregularities as input to AVSS. 

Then, the performance of the designed controller is 

compared with conventional control methods in 

terms of wheel deflection, suspension deflection, 

and vehicle displacement. Finally, validation 

results of the proposed learning-based control 

scheme are given to show the effectiveness of the 

designed controller. 

 

 

 

 

2. Material and Method 

 

We start in this section with an explanation of the 

physical background of active suspension systems 

and the test set-up, which enable us to understand 

the vehicle suspension properties and the designing 

of the controller problems. 

 
2.1. AVSS System 

 

The configuration of the VASS is sketched in 

Figure 1. As seen this Figure 1, 𝑚𝑠 and 𝑚𝑢𝑠 are 

the vehicle body (spring mass) and wheel 

(unsprung mass) masses. 𝑘𝑠 and 𝑏𝑠 are stiffness 

and damper elements that support the vehicle body 

over the wheel. The 𝑘𝑢𝑠 spring and 𝑏𝑢𝑠 damper 

represent stiffness and the damping of the tire in 

contact with the road. The force 𝐹 stands for the 

active damper. 

 

 
Figure 1. The active suspension system 

 

The state space definition of VAAS is 

given as follows [16] 

 

�̇� = 𝐴𝑥 + 𝐵1𝑢 + 𝐵2𝑓 

𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝐸𝑓 

 

𝑥 = [

𝑥𝑠 − 𝑥𝑢𝑠

�̇�𝑠

𝑥𝑢𝑠 − 𝑥𝑟

�̇�𝑢𝑠

] , 𝑢 = 𝐹, 𝑓 = �̇�𝑟,  

 

𝑦 = [
𝑥𝑠 − 𝑥𝑢𝑠

�̈�𝑠
]  

(1) 

 

where, 𝑥 is the state variables vector, 𝑢  is the 

control inputs and 𝑓 denotes the vector of external 
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inputs and disturbances and 𝑦 is the output vectors. 

𝑥𝑠 − 𝑥𝑢𝑠 state stands for suspension travel, while 

𝑥𝑢𝑠 − 𝑥𝑟 defines the tire travel and the fourth state 

is wheel velocity. 

 

𝐴 =

[
 
 
 
 
 

0 1 0 −1
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𝐷 = [

0
1

𝑚𝑠

] , 𝐸 = [
0
0
] 

(2) 

 

2.2. GP machine Learning Approach 
 

The Gaussian process (GP) is a nonparametric 

kernel-based probabilistic modeling approach [17]. 
The GP approach is widely used in engineering 

applications such as modeling, prediction, and 

optimization [18]. The GP is one of the machine 

learning methods, and the main goal of this 

technique is to define a mathematical relationship 

between input and output variables depending on 

the experimentally obtained data. 

In recent years, the GP technique has been 

used as a modeling tool in the machine learning 

area. The most important feature of the GP 

approach compared to other machine learning 

methods is the determination of the covariance 

matrix defined by the independent variables. Other 

methods use algebraic relationships between these 

variables. Therefore, much less input-output 

system data are required while creating the GP 

model [19]. 

A GP can be a collection of random 

variables that is determined with average 𝜇(𝑥) and 

covariance matrix 𝜅(𝑥, �̂�) as follows. 

 

𝜇(𝑥) = 𝔼[𝑦(𝑥)] 
 

(3) 

𝜅(𝑥, �̂�) = 𝔼[(𝑦(𝑥) − 𝜇(𝑥))(𝑦(�̂�) − 𝜇(�̂�))]  

 

𝑓(𝑥)~𝐺𝑃(𝜇(𝑥), 𝜅(𝑥, 𝑥)) 

 

where, 𝜇(𝑥) and 𝛽 stand for the mean of the input 

data and estimated coefficient, 𝜅(𝑥, �̂�) kernel 

function. The function is parameterized according 

to the generation of a set of hyperparameters. In the 

machine learning literature, there are several types 

of kernel functions with different features that are 

used to fit actual data and model output. Squared 

exponential, rational quadratic, and exponential are 

the best known kernel functions. The appropriate 

kernel function is determined according to the 

characteristics of the experimental data. 

 The output estimation with GP is derived 

by Equations (4) by using Eq. (3): 

 

�̅�∗ = 𝜇(𝑥∗) + 𝜅(𝑥∗, 𝑥)𝜅 𝑦
−1(𝑦 − 𝜇(𝑥)) (4) 

 

where, 𝜅𝑦 =  𝜅 + 𝜎𝑛
2𝐼 and the 𝑔(𝑥)𝑇𝛽 + 𝑓(𝑥) 

model is considered. 𝑔(𝑥)𝑇 is a basic function and 

the covariance matrix is obtained by a set of 

hypermeters. In the GPR modeling process, the 

vehicle body velocity of the vehicle was applied as 

input data to the GPR while the actuator force 

signal was applied as target data.  

 

3. Results and Discussion 

The controller algorithm applying GP by using the 

unsprung mass velocity as the feedback signal of 

the ML-based control scheme is conducted. The 

proposed control scheme is shown in Figure 2. 

 

Figure 2. The active suspension system 
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To construct the GP model, training data 

was generated from the scaled Quanser VASS test 

setup shown in Figure 3. A fast response DC 

electric motor is used as an active suspension 

element, and an accelerometer exists in the test rig. 

The position and velocity of the sprung mass, the 

tire, and the wheel travel are measured using three 

quadrature encoder sensors. The VASS test set up 

for mechanical components and sensor properties 

is given in Table 1. 

 

 
Figure 1. The experimental test rig 

Table 1. VASS parameters 

Symbol Description Value 

 Structure Total Height 0.53 m 

𝑀𝑠 Sprung mass 2.45 kg 

𝑀𝑢𝑠 Unsprung mass 1 kg 

𝑘𝑠 Suspension Passive 
Linear Stiffness 

coefficient 

900 N/m 
𝑘𝑢𝑠 Tire Linear Stiffness 

coefficient 
2500 N/m 

𝑏𝑠 Inherent Suspension 
Damping Coefficient 

7.5 N-
s2/m 𝑏𝑢𝑠 Inherent Tire Damping 

coefficient 
5 N-s2/m 

 Suspension Motor 
Torque Constant 

0.115 N-
m/A  Suspension Motor Shaft 

Radius 
0.006 m 

 Suspension Encoder 
Resolution 

942 × 

10−6 

m/count 
 

The data from the ASS system was 

obtained by using LQR full state feedback control. 

In this study, two road disturbance profiles were 

applied to investigate the suspension control 

system: bump-type road disturbance and random 

road disturbance. The bump road disturbance was 

simulated to represent bad road quality with 

discontinuities in the asphalt for a short time. This 

disturbance input has the most peak of 12 cm as 

shown in Figure 4. 

Figure 2. The applied bump disturbance input 

 

The results for the 10 cm bump road 

disturbance input are shown in Figure 5. ML 

and LQR controllers are implemented for 

suspension travel (deflection), vehicle body 

acceleration, and vehicle body travel states as 

shown in the Figure 5, 6, and 7, respectively.  

 
Figure 3. Comparison of suspension travel for LQR and ML based GPR controller (Bump dist.) 
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Figure 4. Comparison of vehicle body travel for bump disturbance input  

 

 
Figure 5. Comparison of vehicle body acceleration for bump road disturbance 

 

 As can be seen from Figure 5-7, an ML-

based GPR controller is better to suppress the 

fluctuations around the reference signal than a 

classical LQR control structure. Figure 8 compares 

the results obtained from the applied actuator force. 

When the data in Figure 8 is analyzed, it is clear 

that the amplitude of the force is larger under the 

proposed controller. The result is significant 

because of effectively reduces the oscillations. The 

actuator force must be applied opposite direction 

against the road vibrations. Therefore, the actuator 

gives an instantaneous response. 

 

 
Figure 6. Comparison actuator forces of LQR and ML based controller under bump road disturbance 

 

When the Figure 5-7 were examined, the 

spring mass position was significantly influenced 

by the road profile. Therefore, the sine sweep 

irregularity road profile is used to evaluate the 

performance of the designed controller as shown in 

Figure 9 in the second test.  The sine sweep 

disturbance signal is applied to test vehicle 

suspension systems in all automotive industries.  
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Figure 7. The generated sine sweep road disturbance profile 

 

The tracking performances of developed 

ML and LQR controllers are demonstrated 

according to sprung mass positions, suspension 

travel, and body acceleration in Figure 10-12. It can 

be clearly seen from the figures that the proposed 

approach is effective in tracking both spring and 

non-spring mass position errors. From the graph, 

the amplitude of sprung mass position oscillation 

was also reduced in comparison to the classical 

systems. In this way, passenger comfort can be 

improved by reducing the impact of road 

vibrations. 

 

Figure 8. Comparison of suspension travel for LQR and ML based GPR controller (sine sweep road dist.) 

 

Figure 9. Comparison of vehicle body travel for sine sweep disturbance input 

 

Figure 10. Comparison of vehicle body acceleration for sine sweep road disturbance 
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As can be seen in Figure 13, the applied 

actuator force changes rapidly to reduce the 

variable frequency vibrations in the PSD road 

profile conditions. From this data in Figure 13, 

there is an amplitude difference between LQR and 

ML-based GPR controllers in applied force.  

Interestingly, the amplitude of force for the 

proposed method is greater than the classical LQR 

control to suppress the vibration. 

 

Figure 11. Comparison actuator forces of LQR and ML based controller under sine sweep road profile 

 

The numerical values of VASS output for 

controlling vehicle body travel, suspension 

deflection, and body acceleration for two road 

disturbances are depicted in Table 2. It can be seen 

from the data in Table 2 that the ML controller 

shows the best performance according to RMS 

improvement percentage values in the bump and 

sine sweep road disturbances. 

Table 2. RMS values for LQR and ML controllers and improvement percentage 

  

Bump road disturbance  Sine sweep road disturbance 

LQR ML 
Improvement 

percentage  
LQR ML 

Improvement 

 percentage  

Vehicle Body travel 0.0371 0.0226 39.08% 0.0887 0.0729 17.81% 

Suspension deflection 0.0504 0.0241 52.18% 0.0902 0.0761 15.63% 

Vehicle body acceleration 13.5918 5.695 58.10% 35.2248 27.1138 23.03% 

4. Conclusion 

 

This study set out to determine the ML-based GPR 

control method for VASS. The optimal structure of 

the GPR model was determined by using the trial 

and error method. Real experimental data was used 

in the training process of the ML model. Then, the 

performance of the proposed controller was 

compared with the classical LQR control according 

to applied actuator force. In this study, it was 

designed to investigate the effect of vibrations 

caused by unevenness on the road surface on 

passenger comfort. One of the striking findings of 

the study is the direct control of a mechanical 

system with ML-based control approaches. The 

performance of the used proposed and classical 

control methods is compared in terms of the 

oscillations in the sprung part of the VASS. 

Therefore, it has been shown that the proposed 

ML-based control method outperforms the LQR 

controller with 39.08%, 52.18%, 58.10%, and 

17.81%, 15.63%, 23.03% reductions in both bump 

and sine sweep profile conditions. 
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