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Abstract 

According to the literature, people with foot deformities report poor quality of life and nearly one-third of the population has some type 

of foot deformity. Of all the deformities, Pes Planus, caused by the loss of the medial longitudinal arch of the foot, and pes cavus, caused 

by having an abnormally high plantar longitudinal arch, are the ones that negatively influence the productivity of society most. In the 

light of the above, this study proposes a novel mobile pre-diagnosis system for pes planus and pes cavus that is utilizing conventional 

deformity identification methods accepted in the literature through a mobile phone app by harnesing image processing and deep neural 

networks. As part of the study, a prototype is implemented and tested using 34 participants - 22 (64.71%) males and 12 (35.29%) females 

- with an average age of 24.06. In order to benchmark our prototype, an orthopedic specialist was asked to identify the key decision 

making points, which was then used to calculate the deformity type, on a set of foot images collected from participants. Then the same 

images were fed to the prototype with the objective of identifying the key points and calculating the deformity type via the help of 

image processing and deep learning algorithms. The comparison of the results showed that specialist’s and prototypes findings were in 

91.80% match, which indicated an overall success. 

 

Keywords: Pes Planus, Pes Cavus, Vision, Image Processing, Orthopedics, Deep Learning  

Arch Index ile Pes Planus ve Pes Kavus'un Uzaktan Ön Tanısı 

Öz 

Literatüre göre nüfusun yaklaşık üçte birinin bir tür ayak deformitesine sahip olduğu ve bunun kişilerin yaşam kalitesinin düşürdüğü 

bilinmektedir. Tüm deformiteler içinde ayağın medial longitudinal arkının kaybından kaynaklanan Pes Planus ve anormal derecede 

yüksek plantar longitudinal arkın neden olduğu pes cavus toplum verimliliğini en çok olumsuz etkileyen deformitelerdendir. 

Yukarıdakiler ışığında, bu çalışmada pes planus ve pes cavus için literatürde kabul gören geleneksel deformite tanımlama yöntemlerini 

kullanan, görüntü işleme ve derin sinir ağları yardımıyla bir cep telefonu uygulaması konsepti geliştirilmesiyle birlikte yeni bir mobil 

ön tanı sistemi sunulmuştur. Çalışma kapsamında, yaş ortalaması 24,06 olan ve bunların 22’si (%64,71) erkek ve 12’si (%35,29) kadın 

olmak üzere toplamda 34 katılımcı üzerinde bir prototip mobil çözüm uygulanmış ve test edilmiştir. Çalışma boyunca, çalışmaya katılan 

katılımcılardan ayak görüntüleri toplanmış ve bir ortopedi uzmanından deformite tiplerini hesaplamak için kullanılan kilit karar verme 

noktalarının belirlenmesi istenmiştir. Daha sonra aynı görüntüler, görüntü işleme ve derin öğrenme algoritmaları yardımıyla kilit 

noktaları belirlemek ve deformite tipini hesaplamak amacıyla prototipe beslenmiştir. Sonuçların karşılaştırılması, uzman ve prototip 

bulgularının %91.80 oranında uyum içinde olduğunu göstermiş ve bu da genel bir başarıya işaret etmiştir. 

 

Anahtar Kelimeler: Pes Planus, Pes Cavus, Görüntü İşleme, Ortopedi, Derin Öğrenme. 
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1. Introduction 

All of the organs and bones in the human body work in 

harmony with each other. A medical condition in any of these 

organs and joints affects the overall body negatively. For example, 

the deformation in the foot structure, which allows anatomically 

walking, standing upright, carrying body weight, and moving, 

affects physical fitness and quality of life [54]. 

There are many foot deformities in society, but pes planus and 

pes cavus negatively influence the community's productivity 

most. Therefore, diagnosis and treatment of the pes planus and pes 

cavus is of upmost importance to the society. 

In the light of the above, this study aims to implement a 

mobile pre-diagnosis system for pes planus and pes cavus that 

uses image processing and deep neural networks to utulize 

traditional deformity recognition methods on a mobile phone app. 

Accordingly, this paper is structured as follows; Section 2 

introduces the overview of pes planus and pes cavus and previous 

research in the area. Section 3 provides an overview of the 

methodologies used in this domain. Section 4 contains the 

analysis and design of the proposed system. The following section 

presents the implementation of the prototype. Then the test and 

evaluation process of the paper is discussed in section 6. In section 

7 discusses the results of the developed prototype system. The last 

section concludes and highlights the finding of this study. 

2. Background 

Accordingly, this section provides overview of important and 

relevant studies in available medical solutions and detection 

algorithms in pes planus and pes cavus. 

2.1. Pes Planus & Pes Cavus 

Irregularities and abnormalities in the normal structure of the 

medial longitudinal arch produce unbalanced and functionality-

wise unstable conditions of the foot such as pes planus or pes 

cavus. Accordingly, pes planus is the loss of the medial 

longitudinal arch of the foot, which results with the entire bottom 

of the foot coming closer to the ground or directly touching the 

ground during standing or walking [1]. This arch serves as a 

flexible and adaptive foundation to the entire body [2]. Its 

functionality is vital to the body since, during the gait cycle, it 

reduces the pressures of weight-bearing and stores mechanical 

energy inside the stretched elastic ligaments [3]. Even though it 

may be asymptomatic, a defective medial longitudinal arch can 

alter the biomechanics of the lower limbs and lumbar spine, 

causing an increased risk of pain and injury [4].  

The etiology of pes planus has multiple factors which can be 

either acquired or congenital. Most congenital pes planus 

deformities disappear by the age of six, which is fixed as part of 

normal human body development [5]. However, some congenital 

instances may continue after adulthood, these are mainly related 

to obesity [6]. Nevertheless, pes planus can be acquired as a result 

of other dysfunctioning extremities. One of the most common 

ways of acquiring pes planus is through functional problems 

related to the posterior tibial tendon, which supports the foot's 

arch and inversion and plantarflexion. Females over 40 with 

comorbidities such as diabetes and obesity are more likely to have 

posterior tibial tendon impairment [7]. In addition, pes planus can 

be developed more commonly in patients with congenital 

ligamentous laxity secondary to Down syndrome, Marfan, or 

Ehlers Danos. Also, patients with midfoot or hindfoot trauma, 

such as navicular, first metatarsal and calcaneal fracture or 

Lisfranc ligament complex injury, can commonly develop pes 

planus. 

On the other hand, pes cavus is a deformity that is 

characterised by elevation of the plantar longitudinal arch of the 

foot. The array of related deformities observed with pes cavus 

includes clawing of the toes, posterior hindfoot deformity, 

contracture of the plantar fascia, and defects in the great toe. Pes 

cavus is commonly a symptom of an underlying neurological 

disorder [8]. 

2.2. Available Medical Detection Solutions  

Clinical examination, somatometric measurement, 

radiological evaluation, and ultrasonographic reviews have been 

used to detect pes planus and pes cavus. However, inked or digital 

footprints (pressure measurements) and photographic techniques 

are also used to detect pes planus and pes cavus in the literature, 

which are called indirect - i.e. non-anthropometric, measurements 

[9, 10]. The most accepted and widely used pes planus and pes 

cavus detection method are the Radiological evaluations [11,12].  

Considering the well accepted radiographic detection 

approach, Chung et al. [13] bases their work to compare the arch 

index and radiological results of 103 subject’s navicular and talar 

heights. Accordingly, their evaluations show that Clarke's angle, 

Chippaux-Smirak index, Staheli arch index respectively have 

83.89%, 90.54% and 85.43% probability of prediction in 

preschool-aged children. Another study by Pauk et al. [14] 

compares Clarke angle and radiography measurements of sixty 

children. They also found a correlation between radiography and 

footprint method. Similarly, many studies have looked into the 

correlation between radiography and footprint methodologies [15, 

16, 17]. 

Besides the above comparisons, there are a variety of studies 

in the literature that only use indirect methods to detect pes planus 

or pes cavus, such as arch index [18, 19] or planimeter [20]. 

Therefore, the usability of the indirect methods are proven to be 

successful. 

Igbigbi et al. [19] used an arch index (footprint ratio) to 

determine arc type and pes planus ratio on 305 Maldivians  

subjects with their ages ranging between 13 and 17. In this study, 

participant foot data is collected by creating an imprint of the 

subject's sole using ink and a piece of paper. The authors note that 

the method used is more precise, robust, and cost-effective. 

On the other hand, Kanatli et al. [15] compared radiologic 

measurements and footprint methods to determine the correlation 

between the two methods with 38 pre-schoolers and school-aged 

children with average age of 6.4 (ages ranging between 3.7–11.7). 

Based on the findings, the authors highlight significant correlation 

between arch index, talo–first metatarsal angle, and talo–

horizontal angle. On the other hand, they found no significant 

correlation between arch index, calcaneal pitch, and lateral 

talocalcaneal angles. 

With a similar Notion, a study [21] comparing footprint and 

radiographic measurements, which was conducted on 338 people, 

discovered a strong correlation between Staheli index, Chippaux-

Smirak index and Grivas Classification System. On the other 

hand, as a result of the finding the authors emphasise that there is 

a weak correlation between the radiological measurement 
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methods calcaneal pitch angles and talo-first metatarsal angle and 

all three footprint measurement methods. Furthermore, the study 

results indicate that there is no significant correlation between 

talo-horizontal angle and footprint measurement methods. 

2.3. Pes Planus & Pes Cavus Detection Algorithms  

There are many developed systems to detect foot deformities, 

ranging between straightforward solutions such as planimeter 

[20] and much more complex systems like gait analysis [22].   

Most commercially available systems use gait analysis [23, 

24] to detect a variety of foot deformities. In addition, some of 

these systems use optical motion capture systems (OMCS) [25] to 

detect foot deformities. However, having this additional hardware 

for further precision increases the required investment amount. 

On the other hand, some companies are developing low-cost 

products to fill the gap in the market by sacrificing sensitivity, 

such as Sennotech's Senno Gait. Sennotech [23] uses economical 

sensor and AI models for gait analysis. These systems are less 

expensive and accessible, providing various information such as 

injury risks and incorrect movement. 

Pressure detection devices [26, 27] are also used in many 

studies [28, 29, 30]. The proliferation of these devices are much 

wider than the OMCS tools but they provide less feedback. As an 

example to these kind of studies, In their work, Buldt et al. [28] 

used EMED, a pressure detection system to determine pes planus 

and pes cavus. 

3. Methodolog 

Accordingly, this section provides an overview of the 

methodologies used in pes cavus and pes planus detection, 

machine learning, and image processing. 

3.1. Pes Planus Pes & Cavus Detection 

Radiological images are one of the most effective ways of 

detecting pes planus and pes cavus. However, pes planus and pes 

cavus may only be visible while feet are pressuring on the sole. 

Therefore, radiological images are taken while pressing the foot 

on the ground and as a result, lateral radiographs are taken 

sideways or from the top of the knee and downwards for arch 

measurements. 

There are many methods that have been used in the literature 

to determine the status of the foot using radiological images. The 

most popular of all can be named as calcaneal inclination angle, 

first metatarsal declination angle and Meary's angle.  

 
Figure 1. Calcaneal inclination angle [31] 

Calcaneal inclination angle (Figure 1) is the angle between 

the tangent line drawn from the lower face of the calcaneus and 

the ground [31]. The foot in question is considered healthy if the 

calcaneal inclination angle is between 20 and 25 degrees. 

However, if the angle is less than 15 degrees then it is considered 

to be pes planus [32]. On the other hand, if the angle is larger than 

30 degrees then it is regarded as pes cavus [33].  

Metatarsal declination angle [31] is calculated using weight-

bearing lateral foot radiograph and considering the calcaneal 

inclination axis and the horizontal surface underneath the foot’s 

sole . In the general population the metatarsal declination angle is 

expected to be about 21 degrees [33]. Any cases where the 

metatarsal declination angle is larger than 30 degrees is 

considered to be pes planus [33].  

Meary's angle [31] is measured by drawing a line from the 

centers of longitudinal axes of the talus and the first metatarsal. If 

the resulting angle is greater than 4 degrees (convex downward) 

then the foot is considered to be pes planus [34]. On the other 

hand, if the calculated angle is less than -4 degrees (convex 

upward) then the foot is considered to be pes cavus [35]. 

Considering the anthropometric pes planus and cavus 

detection techniques mentioned above, the non-anthropometric 

measurements, even though less accurate, are much more easily 

accessible, less costly to conduct and less hazardous - i.e. require 

people to expose themselves to radiation. As a result of its ease of 

access, the non-anthropometric techniques can be conducted en 

masse and perform examinations in advance. 

One of the most popular non-anthropometric methods used in 

the literature is the footprint approach, which involves sinking the 

foot into ink and then pressing it onto a graph paper. There are 

many different indexes that utilize the graph paper to determine 

pes planus and pes cavus - such as Staheli arch Index and 

Chippaux-Smirak index. 

The Staheli index is calculated by dividing the width of a 

foot’s central region to the width of the heel region. If the 

identified ratio (index) is larger than 0.8 then the foot is 

considered to be pes planus. On the other hand, if the calculated 

ratio is less than 0.4, then it is considered pes cavus [36]. 

 

Figure 2. Chippaux-Smirak Index (a/b) [56] 

Chippaux-Smirak Index (Figure 2) is calculated by 

considering the proportion between the narrowest and widest 

region of the midfoot. In the Chippaux-Smirak Index, if the 

proportion is more than 0.45, it is considered pes planus. If the 

proportion is less than 0.25, then it is considered pes cavus[36].  

3.2. Machine Learning 

Machine Learning (ML) is the ability of machines to learn 

from experiences, make decisions regarding similar situations in 

the future, and produce solutions to problems [37]. 

One of the subsets of ML is Supervised Learning (SL). SL 

requires external intervention or an internal mechanism to achieve 

the desired output. In SL, the algorithm is expected to correct 

results in a test set that demands the generalization of learning 

algorithms. Subsequently, algorithms outputs are expected to be 

accurate in new datasets. 



Avrupa Bilim ve Teknoloji Dergisi 

 

e-ISSN: 2148-2683  1324 

Deep learning is one of the popular algorithms used for object 

detection, which is a subclass of machine learning and can be 

either supervised (such as classification) or unsupervised. 

Accordingly, deep learning uses many non-linear processing unit 

layers for feature extraction and conversion. Therefore, each 

successive layer takes the output from the previous layer as input 

and finally results with a classification. For example, a popular 

framework used in image processing is CNN (convolutional 

neural network), which consists of one or more convolutional 

layers, a subsampling layer and followed by one or more fully 

connected layers such as a standard multilayer neural network 

[38]. 

Besides classification, also establishing the location of the 

object in an image is another challenge in the domain of image 

processing. One of the first region-based architectures is R-CNN 

(Region-based convolutional neural network), which uses 

selective search to reduce the search region up to 2000 areas. 

Following suit with the previous algorithm, after the region 

reduction stage, a typical CNN is applied to extract features. 

Finally, the extracted features fed into a vector support machine 

to produce the results [39]. Following R-CNN, there are many 

algorithms that have been developed and proposed, which are 

further increasing the speed and accuracy of the R-CNN such as 

Fast R-CNN [40], Faster R-CNN [41], YOLO [42]. 

Another challenging problem in this domain is the Semantic 

segmentation. Semantic segmentation can be solved by tagging 

raw pixels in an image with the object category. For example, a 

Fully Convolutional Network (FCN) takes an image and produces 

a segmented image of the same size as input. Thus, distinct 

probability values are obtained for each pixel in the input image 

[43]. As a result, FCN [39] is very successful in the one-to-one 

mapping of each pixel without region. Accordingly, DeepLabv3 

[44] is one of the state-of-the-art semantic segmentation 

algorithms. The DeepLabv3 architecture is built on top of the 

ResNet-101 [45] architecture by adding Atous Spatial Pyramid 

Pooling (ASPP). This module obtains feature maps with different 

details according to the void ratios of the filters by applying 

convolution filters with different void ratios on the ResNet output. 

These maps are then combined and passed through a filter [44]. 

Our work also makes use of the DeepLabv3 architecture to detect 

humans in images, which is discussed in section 4. 

3.2. Image Processing 

Digital image processing is one of the major areas in 

computer science. The latest research shows that DL has 

significant breakthroughs in the area with large data sets and 

increased resources in computational power [46, 47].  

On the other hand, some areas lack large datasets to train DL 

algorithms. For these areas with dataset scarcity, conventional 

algorithms such as Sobel [48] can be beneficial for edge detection. 

Accordingly, Prewitt [49], Sobel [48], and Canny [50] are the 

most accepted and widely used edge detection algorithms in the 

literature. Sobel [48] algorithm calculates gradient on each point 

with respect to surrounding pixels, which is also called the kernel, 

on the image. In addition, in this algorithm, direction is also 

considered when calculating gradients.  

On the other hand, Canny [50] is a more compact algorithm 

which uses a number of steps to detect edges. Firstly, Canny uses 

a Gaussian filter to eliminate noise in the image. Secondly, 

changes in the color are detected using gradients. Furthermore, 

this second step also maintains a threshold value to remove any 

existing noise. Lastly, edges that are not strongly connected to any 

other edges are removed to filter out the most obvious ones.  

Literature shows that Sobel is still improved [51] and used in 

many research projects [52, 53]. Since our project requires 

something bit more advance version of the Canny, Sobel 

algorithm is chosen and used different kernels and directions to 

detect the foot sole. 

4. Analysis & Design 

Accordingly, this section provides an overview of the 

analysis and design, which includes requirements capturing and 

modelling and furthermore, explains overall structure of the 

protytpe. 

4.1. Requirements Capturing 

The system will provide the preliminary detection of 

potential pes planus and pes cavus patients. Therefore, the system 

should contain three essential structures: End-User Interface, 

Healthcare Interface, and last but not least, Backend services 

which will relay the data in between the two structures.  

The end-user application should cater %95 of the mobile 

device users. In addition, the system should be able to detect pes 

planus and pes cavus with at least %70 accuracy, which as a result 

would reduce the workload of healthcare officials. Moreover, the 

end user application should produce the pre-diagnosis results 

provided by the system to the user within two minutes.  

Furthermore, the prototype system should give an overall 

idea to the healthcare personnel and provide them with a 

provisional result. Hence, the final validation and confirmation of 

the result should be conducted by the healthcare personnel. 

However, in order to achieve this, there is a need for a web portal 

interface where the medical personnel could log in and keep track 

of their patients. 

4.2. Modelling 

Considering the above requirements, the system should be 

divided into two essential modules that feed each other to enable 

maximum efficiency - namely data and fine-tune modules. These 

modules should be designed in such a way that they would enable 

continuous improvement as can be seen in Figure 3.  

Accordingly, the data module should focus on information 

collection and initial pre-diagnosis. Furthermore, this module 

should collect and process the essential and detailed information 

regarding the users, which consists of three parts: essential, 

health, and foot information. 

The essential information should collect the name, surname, 

email address, birthdate. Also, in order to continue receiving the 

service, the users should be required to read and accept a consent 

form, which would explain to users how the collected data will be 

stored and processed.  

 
Figure 3. Data & Fine-Tuning Module 
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The health information collection part should focus on 

collecting the user’s existing health issues related to pes planus 

and pes cavus. It should also collect any health issues that require 

the immediate attention of health workers. Therefore, if such a 

case arises it should directly ask the user to make an appointment 

with the physician for an emergency consultation. In addition, the 

prototype system should have a rule-based approach to detect 

health issues such as night pain level etc.  

 
Figure 4. Detailed view of Fine-Tuning Module 

Lastly, informatim about the feet should be collected. These 

would includes information such as the degree of pain in physical 

activities, degree of pain at night, and most importantly pictures 

of the foot taken by the user him or herself. In addition, optionally 

users should be able to enter information about the deformity of 

the foot, if previously diagnosed. 

The fine-tuning (Figure 4) module will be involved with 

background processes and healthcare professionals' interactions. 

Therefore, this module should contain two critical functions, 

namely system improvements and user interactions. In this 

module, initially healthcare professionals, who are also called 

system managers, would interact and review the user-provided 

data and conduct refinements on the system diagnoses. Later, the 

system would use the data doctored and tweaked by the system 

managers to actively improve the pre-diagnosis. 

However, in order to achive this, a web application would be 

needed for system managers to display and review the user 

provided content, such as foot images, previous diseases 

information and medical background. In the web application the 

system managers should also be able to calculate the different foot 

indexes - i.e. Staheli Arch Index - on images provided by the 

users. To calculate these indexes, system managers would only 

require to mark the critical points on a foot image. Consequently, 

the index calculation would be generated and the medical 

professional guided in their decision making and diagnoses.  

The batch process would be the part of the fine-tuning 

module whose primary purpose is to improve the pre-diagnosis 

and analyze the healthcare professionals' diagnoses and critical 

points. Initially, this process will be designed to work manually, 

but it could be changed into an automated process for continuous 

learning after collecting enough data. Lastly, the batch is also 

responsible for the reporting results such as average successful 

pre-diagnoses. There would be multiple error calculations as part 

of the batch process in order to create the required analysis and 

and results.based on patient data. As a result, in these cycles, 

detailed errors would provide a benchmark to the batch process 

and recursively help improve its findings 

From a different perspective, bearing in mind that all 

collected data is confidential, storaging, accessing and 

transmiting of the data should be handled with extreme vigilance 

and care. Accordingly, all data transmissions on the network will 

be encrypted. Furthermore, all users accessing this data will be 

required to authenticate. Also, at the end of the study, all 

information collected from the users will be deleted. 

5. Implementation 

Some parts of this protorype contain well-defined 

requirements and design models, however, on the other hand, 

some other parts such as mobile client has more dynamic structure 

where its requirements are changed based on the feedback 

received from the pilots users.  

The client application follows the prototyping development 

model since our primary focus is collecting users' materials (foot 

pictures, deformity types, etc.). For example, initially, the iOS 

operating system was planned to be supported, but considering 

how diverse the mobile market is also an Android prototype was 

also introduced. On the other hand, server APIs were less prone 

to changes. Therefore, a waterfall model is adopted fort the 

implemetion of the server-side application. Furthermore, the core 

pre-diagnoses part of the application, where pes planus and pes 

cavus detection were undertaken embraced more of a Agile 

development model.  

Accordingly, the iOS client app (Figure 5) is compatible with 

iOS 11 and newer versions, making it available for 99,7% of the 

iOS device market. Since Swift language is selected for the 

development of the client, it results with an application that is 

easily extendable from features point of view and more 

intergratable from compatibility and iOS ecosystem point of view.  

 
Figure 5. Mobile Application - iOS 

On the other hand, the Android flavour of the client is 

compatible with Android devices API level 16 and newer version, 

which makes it available for 99,8% of the Android device market. 

In the development of the Android client the Flutter software 

development kit is used, which requires Dart programming 

language. As a result, makes the final software product 

compatible with iOS and Android operating systems. On the other 

hand, this dual-platform development using Flutter requires 

additional effort, hence, the Flutter application is only used in the 

implementation of the Android clients. However, in the future this 

could be changed so that a single development cycle could 

produce both iOS and Android clients. 
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Both end-user applications making use of the underlying 

operating systems UI follow the same workflow. Therefore, as a 

result, this enables users to complete their operations more 

comfortably and consistently with the UI they frequently use and 

they are familiar with. Furthermore, a user documentation is 

created to help improve the user experience and enhance how the 

users interact with the ArdAyak application.  

 
Figure 6. Web Application - Login Page 

 

Localization of an app is one of the important traits in the 

globalized world. The prototype client app supports multiple 

languages to increase international userbase in multiple regions. 

Therefore, ArdAyak client apps, for both operating systems, are 

designed so that the task of adding a new language would be as 

simple and straightforward as adding a new language definition 

file to the app’s language filebase. Additionally, to further support 

multilingual nature of its desig, the application makes use of the 

operating system-level localization tools to offer users features 

such as running the app by default in user’s pereferencial 

language. In the initial release, end-user applications support both 

English and Turkish to serve a variety of users. 

On the other hand, the web application is designed to work 

on all modern browsers such as Chrome and Safari. It has a 

simplistic graphical user interface which enables users to have an 

intuitive interaction with the system (Figure 6). Moreover, the 

web application also has validation and critical point assistance 

(Figure 7) to reduce user originating errors - such as virtual lines 

between the pins. 

The overall system is designed to provide two different types 

of service; mobile application and web application, which will 

each cater respectively to end-users and healthcare personnel. The 

underlying purpose of implementing the system with two facets 

is to increase its scalability. Accordingly, there would be one sub-

system dealing with multiple end-user interactions and data sent 

via the mobile up. On the other hand, another sub-system, which 

may reside on a totally different physical server, would be 

carrying out  batch processes and serving the medical personnel. 

Following this analogy, the store could be run on an independent 

sub-system safe and secure from direct access from the Internet. 

By following this layered approach, the end-users would carry out 

their transaction faster, on the other hand, medical personnel 

would have access to a much more powerful and interactive 

system. Last but not least, the data storage would be safer since it 

is not directly accessible by neither the medical personnel nor the 

end-user systems. 

 
Figure 7. Critical Point Assistance 

The end-user service uses microservice architecture to help 

rapid development. This enables us to deliver features more 

quickly to the production environment. Moreover, JWT(JSON 

Web Tokens - RFC7519) is used for authentication to prevent 

unauthorized access. Lastly, it has to be highlighted that all 

communication via HTTP protocol is encrypted with Secure 

Sockets Layer (SSL - RCF6101). 

In the epicenter of this system is the batch process, which is 

where the main computational algorithms are executed. 

Accordingly, this facet conducts image processing, which entails 

the following steps: (1) region of interest; (2) image preparation 

and (3) image processing. After these steps are executed their 

findings are recorded on the relevant database. 

In the first step, deep learning algorithms are applied to find 

the (1) regions of interest in the images. Considering that the 

existing datasets mostly contain full human body images and in 

this solution the objective is to detect body parts rather than full 

human body, multiple algorithms (such as YOLO, MIDAS, 

FCN_Resnet101, DeepLabV3) were tested to get the best result 

when they are applied to partial human body parts in an image - 

such as foot and parts of the leg. From all of the algorithms listed 

above the best performance was achieved by DeepLabV3.  

 
Figure 8. Image Processing 

After the body parts in the images are detected using the 

algorithm mentioned above (see Figure 8A), a minimum area 

rectangle (Figure 8B) is calculated and used to surround the body 

part in the overall picture. Then, this area is further processed and 

a perspective transformation (Figure 8C) is applied to localize the 

critical points. 

In order to detect the contour of the foot’s sole, Sobel edge 

detection algorithm needs to be applied to the image. However, 

the Sobel algorithm requires grayscale images and therefore, 

colored images first need to be converted to HSL color space. At 

this stage HSL color space is selected because the HSL is less 

sensitive to light since its light channel is different. In our context, 

this is very important because end-users most of the time take 
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pictures in various lights and shades. For the very same reason, 

the S channel was selected for the conversion, which is the best 

performer in overall color space. By performing all of the above 

tasks (2) the image preparation step is finalized. 

At this stage, as the image is converted into HSL, the S 

channel values are fed into the Sobel edge detection algorithm. 

During the edge detection process, multiple Sobel conversions are 

applied and merged into one edge image. For example, the order 

of the derivative in 'x' and 'y' direction is applied in kernel size of 

9 to images in Sobel conversions. In addition, threshold values are 

also used to remove unnecessary edges in images which can be 

seen in Figure 8E. 

Lastly, foot line detection is applied. Predefined window size 

all non-zero points extracted. After point extraction, the fifth-

order (Quintic) polynomial is fitted to points which can be seen in 

Figure 8F. 

After the foot sole is extracted, the Arc index is calculated. 

This calculation is based on the ratio of critical points in the foot, 

which does not require reversal of the perspective transformation. 

Consequently, the points location (top, bottom, and metatarsal) 

calculated using foot solo equation. 

6. Results and Evaluation 

This section describes the tests and evaluations conducted on 

the prototype system that has been described in the previous parts 

of the paper. 

Considering the core functionality of the prototype system, 

the most important aspect is to evaluate whether the system can 

successfully classify foot deformities or non-deformities. As part 

of the evaluation, the collected foot pictures were shared with the 

physician and he was asked to calculate the Arch Index for each 

one of them. Then received calculations were compared with the 

automated algorithm’s findings. 

 
Figure 9. Index Errors Normal Distribution 

Accordingly, the prototype was distributed to 34 participants 

- 22 (64,71%) males and 12 (35.29%) females - with an average 

age of 24,06 and they were asked to take pictures of their feet 

using the prototype app. All data uploaded by the participants then 

was stored on an online database.  

Since none of the data collection was conducted under 

supervision, some image data uploaded to the server were 

unusable and not fit for processing. Therefore, some of the images 

were removed from the database. As a result, 61 foot pictures, out 

of 68 foot images (2 feet per participant), were cleared for 

processing.  

Initially, as mentioned above, the 61 foot pictures were shared 

with the physician and their Arch Index values were manually 

calculated. The findings of the physician showed that 93% of the 

foot pictures were classified as pes planus and the remaining 7% 

foot pictures were classified as normal feet. 

After obtaining the manually calculated Arch Index values 

from the physician, the same foot images were fed to the 

prototype batch process. The foot type classification findings of 

the automated algorithm and the physician’s were 91.80% match. 

Since the participant pool was generated using the general public, 

with no specific foot disorders, the results were not that diverse.  

Considering the high percentage of (93%) of images being 

classified as pes planus, it was questioned whether there was a 

bias in the prototype algorithm towards pes planus. Therefore, a 

further analysis is conducted on the images where physicians 

selected index points and automatically identified index points 

were compared and their deviations calculated. Accordingly, the 

deviation comparison showed that in some cases where the image 

corrupted the error rates are substantially high but this most of the 

time is related to human error. The comparison showed that the 

standard deviation index error is 5.377. In some cases arch index 

error is as low as 0.02% which is a proof that the newly designed 

algorithm performed as required. 

7. Conclusion 

This study aims to implement a mobile pre-diagnostic tool 

that would help physicians in classifying and identifying potential 

patients with foot deformities - namely pes cavus, pes planus - 

remotely. Accordingly, this solution makes use of the client/server 

model to create the prototype, where the client side is used to 

collect the raw data and foot pictures and the server side to process 

and store the collected data. On the server side, the collected data 

is processed using machine learning, image processing, and deep 

neural networks. 

The implemented prototype then is tested with 34 participants 

and the overall evaluation showed that the pre-diagnoses 

prototype, acknowledging its shortcomings with non-clear 

images, has great potential and can identify pes cavus and pes 

planus 91.80% success when compared to a physician’s findings.  

However, the prototype, as acknowledged above, still has its 

shortcomings and space for improvement in pre-processing and 

clarification of pictures with non-ideal background or lighting.  
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