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1. Introduction 

Due to its difficult controllability, inverted pendulum systems are one of the preferred systems in the 
application of control techniques. The single pendulum on a cart (Bugeja,2003) and single rotary inverted 
pendulum systems (Stimac, 1999), double pendulum on a cart (Zhong & Röck, 2001), and double rotary 
inverted pendulum systems are some of the inverted pendu-lum systems developed until today  (Krishen & 
Becerra, 2006; Awtar, S., King, N., Allen, T. & et all, 2002).

One of the preferred inverted pendulum systems in applications is rotary inverted pendulum (rip) system. 
The Rip system is an excellent test system for working on the control of indirectly driven nonlinear unstable 
systems. The rip system has been the system of choice for control applications in recent years, where it is 
more manufacturable and easier to use according to an inverted pendulum on a cart. The rip system has two 
arms, a horizontally moving rotary arm, and a vertically moving pendulum. Rotary arm takes its motion 
from DC motor. After the DC motor moves the rotating arm, the pendulum connected to the rotating arm 
is tried to be stabilized at the upper balance point, that is, where it is unstable (Yan,2003; Kuo, Huang, & 
Hong 2009).
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Figure 1. Rotary Inverted Pendulum System

In the studies presented so far in the literature for the angle control of the rotary inverted pendulum system 
shown in figure 1, classical control methods such as PID (Kuo, Huang, & Hong 2009), PI, PD (Altinoz, 
Yilmaz, &  Weber, 2010), adaptive control methods with sliding mode control (Wang, 2009; Bogdanov, 
2004; Aydin, Yakut, & Tutumlu, 2019), fuzzy control (Krishen & Becerra, 2006), sliding mode control 
(Khanesar, Teshnehlab, & Shoorehdeli, 2007), particle swarm optimization based PID control (Hassanzadeh 
& Mobayen, 2008; Bogdanov, 2004; Sugie & Fujimoto 1998; Sukontanakarn & Parnichkun 2009) and there 
are control studies sliding mode control methods via artificial neural network (Aydin, Yakut, & Tutumlu, 
2019).

Especially in recent years, development of a Neuro-Fuzzy Friction Estimation Model used to estimate 
the joint friction coefficients of a Triple Link Rotary Inverted Pendulum system (Hazem, Fotuhi, & 
Bingül, 2020), controlled of a rotary inverted pendulum by adaptive techniques (Nath & Dewan, 2017) 
, performing stability control of double link rotary inverted pendulum with Fuzzy-LQR and Fuzzy-
LQG methods (Hazem, Fotuhi, & Bingül, 2020), developing of a fuzzy logic controller for rotary in-
verted pendulum (Le, Vo, Van & et all, 2018) , controlling the rotary inverted pendulum with incre-
mental sliding mode control (Hong, Nguyen, Hoang & et all 2019), a comparative analysis of the linear 
quadratic regulator and sliding mode control results for the rotary inverted pendulum (Nath & Dewan, 
2018), performing of model-free sliding mode stabilizing control of the real rotary inverted pendulum 
(Yiğit, 2017), developing of numerical design method by using nonlinear sliding mode control method 
for Rotary inverted pendulum (Cui, 2019), comparing the PID and sliding mode control results of the 
rotary inverted pendulum system using PLC (Howimanporn, Chookaew & Silawatchananai, 2020), pole 
placement controller applied to rotary inverted pendulum system (Muñoz-Poblete, 2018), per-forming 
of a rotary inverted pendulum real-time stability control using an LQR-based sliding mode controller 
(Chawla & Singla, 2021), performing of an adaptive neural network-based control of the rotary inverted 
pendulum with oscillation compensation (Zabihifar, Yushchenko & Navvabi, 2020) studies have come 
to the fore.

In this paper, the non-linear model of the rotary inverted pendulum system was obtained and the fuzzy 
sliding mode control approach, which has a moving sliding surface, was used to control the pendulum. The 
slope of the slip surface was obtained using a fuzzy logic structure. The values of the coefficients in the 
fuzzy logic structure are optimized using the genetic algorithm. In the second part, Material and method, 
Modeling of Rotary Inverted Pendulum System and Sliding Surface Moving Fuzzy Sliding Mode Control 
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Design are explained. In the third chapter, results and discussion are given. In the last section, the results 
are mentioned.

2. Materials and Methods 

2.1 Modeling of Rotary Inverted Pendulum System 

The system in figure 1 is a two-degree-of-freedom system driven by a single motor. Ɵ and β are variable 
parameters of the system. The coordinate axis layout of the system is shown in figure 1. If the total kinetic 
energy of the system is calculated according to this coordinate axis set;
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The equation of motion for 𝜃𝜃 (see 2.12): 
 
>
>?
@AB
AĊ
D − AB

AC
= 𝑄𝑄C                                                                                                                                (2.12) 

 
If the expressions in this equation are calculated and replaced, the equation of motion for θ is obtained as 
follows (see 2.13). 
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The equation of motion for 𝛽𝛽 (see 2.14): 
 

x1, y1 in the equations are the center of gravity coordinates of the first limb., x2, y2 and z2  represent the 
center of gravity coordinates of the second arm. m1 and m2 are the masses of each arm. I1 and I2 represent 
the mass moments of inertia of the arms. The limb dimensions according to their center of gravity are L1 and 
L2, respectively. The friction coefficients at the joints are b1 and b2. τ represents the control torque applied 
by the motor.

The equations of the expressions given in equation 2.1 are obtained as follows (see 2.2, 2.3, 2.4, 2.5 and 2.6).
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AĊ
D − AB

AC
= 𝑄𝑄C                                                                                                                                (2.12) 

 
If the expressions in this equation are calculated and replaced, the equation of motion for θ is obtained as 
follows (see 2.13). 
 
&𝑚𝑚#𝐿𝐿#$ + 𝐼𝐼# + 𝑚𝑚$𝐿𝐿# + 𝑚𝑚$𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠$𝛽𝛽+�̈�𝜃 + 𝑚𝑚$𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̈�𝛽 − 𝑚𝑚$𝐿𝐿#𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽�̇�𝛽$ + 2𝑚𝑚$𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̇�𝛽�̇�𝜃 
= 𝜏𝜏 − 𝑏𝑏#�̇�𝜃                                                                                                                                                    (2.13) 
 
The equation of motion for 𝛽𝛽 (see 2.14): 
 

If the above expressions are substituted to find the total kinetic energy of the system (see 2.7);

Journal of Advanced Research in Natural and Applied Sciences                                                       2020, Vol. 6, Issue 1, Pages: 1-4 
 

3 
 

2. Materials and Methods  

2.1. Modeling of Rotary Inverted Pendulum System  

The system in figure 1 is a two-degree-of-freedom system driven by a single motor. Ɵ and β are variable 
parameters of the system. The coordinate axis layout of the system is shown in figure 1. If the total kinetic 
energy of the system is calculated according to this coordinate axis set; 
 
𝑇𝑇 = #

$
𝑚𝑚#&�̇�𝑥#$ + �̇�𝑦#$+ +

#
$
𝐼𝐼#�̇�𝜃$ +

#
$
𝑚𝑚$&�̇�𝑥$$ + �̇�𝑦$$ + �̇�𝑧$$+ +

#
$
𝐼𝐼$�̇�𝛽$                                                            (2.1) 

 
𝑥𝑥#, 𝑦𝑦# in the equations are the center of gravity coordinates of the first limb.	𝑥𝑥$, 𝑦𝑦$, and 𝑧𝑧$  represent the center 
of gravity coordinates of the second arm. 𝑚𝑚# and 𝑚𝑚$ are the masses of each arm. 𝐼𝐼# and 𝐼𝐼$represent the mass 
moments of inertia of the arms. The limb dimensions according to their center of gravity are 𝐿𝐿# and 𝐿𝐿$, 
respectively. The friction coefficients at the joints are 𝑏𝑏# and 𝑏𝑏$. τ represents the control torque applied by the 
motor. 
The equations of the expressions given in equation 2.1 are obtained as follows (see 2.2, 2.3, 2.4, 2.5 and 2.6). 
 
𝑥𝑥# = 𝐿𝐿#𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃                                                                                                                                                  (2.2) 
𝑦𝑦# = 𝐿𝐿#𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃                                                                                                                                           (2.3) 
𝑥𝑥$ = 𝑥𝑥# − 𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃                                                                                                                                  (2.4) 
𝑦𝑦$ = 𝑦𝑦# + 𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃                                                                                                                             (2.5) 
𝑧𝑧$ = 𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽	                                                                                                                                            (2.6) 
 
If the above expressions are substituted to find the total kinetic energy of the system (see 2.7); 
 
𝑇𝑇 = #

$
𝑚𝑚#𝐿𝐿#$�̇�𝜃$ +

#
$
𝐼𝐼#�̇�𝜃$ +

#
$
𝑚𝑚$&𝐿𝐿#�̇�𝜃$ + 2𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̇�𝜃�̇�𝛽 + 𝐿𝐿$$�̇�𝛽$ + 𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠$𝛽𝛽�̇�𝜃$+ +

#
$
𝐼𝐼$�̇�𝛽$                     (2.7) 

 
Potential energy of the system (see 2.8 and 2.9): 
 
𝑉𝑉 = 𝑚𝑚$𝑔𝑔𝑧𝑧$                                                                                                                                               (2.8) 
𝑉𝑉 = 𝑚𝑚$𝑔𝑔𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽                                                                                                                                  (2.9) 
 
From here, the Lagrangian function is created as follows (see 2.10 and 2.11). 
 
𝐿𝐿 = 𝑇𝑇 − 𝑉𝑉                                                                                                                                             (2.10) 
𝐿𝐿 = #

$
&𝑚𝑚#𝐿𝐿#$ + 𝐼𝐼#+�̇�𝜃$ +

#
$
𝑚𝑚$<&𝐿𝐿# + 𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠$𝛽𝛽+�̇�𝜃$ + 2𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̇�𝜃�̇�𝛽 + 𝐿𝐿$$�̇�𝛽$= +

#
$
𝐼𝐼$�̇�𝛽$ − 𝑚𝑚$𝑔𝑔𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽               

(2.11) 
 
The equation of motion for 𝜃𝜃 (see 2.12): 
 
>
>?
@AB
AĊ
D − AB

AC
= 𝑄𝑄C                                                                                                                                (2.12) 

 
If the expressions in this equation are calculated and replaced, the equation of motion for θ is obtained as 
follows (see 2.13). 
 
&𝑚𝑚#𝐿𝐿#$ + 𝐼𝐼# + 𝑚𝑚$𝐿𝐿# + 𝑚𝑚$𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠$𝛽𝛽+�̈�𝜃 + 𝑚𝑚$𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̈�𝛽 − 𝑚𝑚$𝐿𝐿#𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽�̇�𝛽$ + 2𝑚𝑚$𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̇�𝛽�̇�𝜃 
= 𝜏𝜏 − 𝑏𝑏#�̇�𝜃                                                                                                                                                    (2.13) 
 
The equation of motion for 𝛽𝛽 (see 2.14): 
 

Potential energy of the system (see 2.8 and 2.9):
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2.1. Modeling of Rotary Inverted Pendulum System  

The system in figure 1 is a two-degree-of-freedom system driven by a single motor. Ɵ and β are variable 
parameters of the system. The coordinate axis layout of the system is shown in figure 1. If the total kinetic 
energy of the system is calculated according to this coordinate axis set; 
 
𝑇𝑇 = #

$
𝑚𝑚#&�̇�𝑥#$ + �̇�𝑦#$+ +

#
$
𝐼𝐼#�̇�𝜃$ +

#
$
𝑚𝑚$&�̇�𝑥$$ + �̇�𝑦$$ + �̇�𝑧$$+ +

#
$
𝐼𝐼$�̇�𝛽$                                                            (2.1) 

 
𝑥𝑥#, 𝑦𝑦# in the equations are the center of gravity coordinates of the first limb.	𝑥𝑥$, 𝑦𝑦$, and 𝑧𝑧$  represent the center 
of gravity coordinates of the second arm. 𝑚𝑚# and 𝑚𝑚$ are the masses of each arm. 𝐼𝐼# and 𝐼𝐼$represent the mass 
moments of inertia of the arms. The limb dimensions according to their center of gravity are 𝐿𝐿# and 𝐿𝐿$, 
respectively. The friction coefficients at the joints are 𝑏𝑏# and 𝑏𝑏$. τ represents the control torque applied by the 
motor. 
The equations of the expressions given in equation 2.1 are obtained as follows (see 2.2, 2.3, 2.4, 2.5 and 2.6). 
 
𝑥𝑥# = 𝐿𝐿#𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃                                                                                                                                                  (2.2) 
𝑦𝑦# = 𝐿𝐿#𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃                                                                                                                                           (2.3) 
𝑥𝑥$ = 𝑥𝑥# − 𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃                                                                                                                                  (2.4) 
𝑦𝑦$ = 𝑦𝑦# + 𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃                                                                                                                             (2.5) 
𝑧𝑧$ = 𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽	                                                                                                                                            (2.6) 
 
If the above expressions are substituted to find the total kinetic energy of the system (see 2.7); 
 
𝑇𝑇 = #

$
𝑚𝑚#𝐿𝐿#$�̇�𝜃$ +

#
$
𝐼𝐼#�̇�𝜃$ +

#
$
𝑚𝑚$&𝐿𝐿#�̇�𝜃$ + 2𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̇�𝜃�̇�𝛽 + 𝐿𝐿$$�̇�𝛽$ + 𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠$𝛽𝛽�̇�𝜃$+ +

#
$
𝐼𝐼$�̇�𝛽$                     (2.7) 

 
Potential energy of the system (see 2.8 and 2.9): 
 
𝑉𝑉 = 𝑚𝑚$𝑔𝑔𝑧𝑧$                                                                                                                                               (2.8) 
𝑉𝑉 = 𝑚𝑚$𝑔𝑔𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽                                                                                                                                  (2.9) 
 
From here, the Lagrangian function is created as follows (see 2.10 and 2.11). 
 
𝐿𝐿 = 𝑇𝑇 − 𝑉𝑉                                                                                                                                             (2.10) 
𝐿𝐿 = #

$
&𝑚𝑚#𝐿𝐿#$ + 𝐼𝐼#+�̇�𝜃$ +

#
$
𝑚𝑚$<&𝐿𝐿# + 𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠$𝛽𝛽+�̇�𝜃$ + 2𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̇�𝜃�̇�𝛽 + 𝐿𝐿$$�̇�𝛽$= +

#
$
𝐼𝐼$�̇�𝛽$ − 𝑚𝑚$𝑔𝑔𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽               

(2.11) 
 
The equation of motion for 𝜃𝜃 (see 2.12): 
 
>
>?
@AB
AĊ
D − AB

AC
= 𝑄𝑄C                                                                                                                                (2.12) 

 
If the expressions in this equation are calculated and replaced, the equation of motion for θ is obtained as 
follows (see 2.13). 
 
&𝑚𝑚#𝐿𝐿#$ + 𝐼𝐼# + 𝑚𝑚$𝐿𝐿# + 𝑚𝑚$𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠$𝛽𝛽+�̈�𝜃 + 𝑚𝑚$𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̈�𝛽 − 𝑚𝑚$𝐿𝐿#𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽�̇�𝛽$ + 2𝑚𝑚$𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̇�𝛽�̇�𝜃 
= 𝜏𝜏 − 𝑏𝑏#�̇�𝜃                                                                                                                                                    (2.13) 
 
The equation of motion for 𝛽𝛽 (see 2.14): 
 

From here, the Lagrangian function is created as follows (see 2.10 and 2.11).
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The equation of motion for 𝜃𝜃 (see 2.12): 
 
>
>?
@AB
AĊ
D − AB

AC
= 𝑄𝑄C                                                                                                                                (2.12) 

 
If the expressions in this equation are calculated and replaced, the equation of motion for θ is obtained as 
follows (see 2.13). 
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The equation of motion for 𝛽𝛽 (see 2.14): 
 

The equation of motion for θ (see 2.12):
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If the expressions in this equation are calculated and replaced, the equation of motion for θ is obtained as 
follows (see 2.13).
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2. Materials and Methods  

2.1. Modeling of Rotary Inverted Pendulum System  

The system in figure 1 is a two-degree-of-freedom system driven by a single motor. Ɵ and β are variable 
parameters of the system. The coordinate axis layout of the system is shown in figure 1. If the total kinetic 
energy of the system is calculated according to this coordinate axis set; 
 
𝑇𝑇 = #

$
𝑚𝑚#&�̇�𝑥#$ + �̇�𝑦#$+ +

#
$
𝐼𝐼#�̇�𝜃$ +

#
$
𝑚𝑚$&�̇�𝑥$$ + �̇�𝑦$$ + �̇�𝑧$$+ +

#
$
𝐼𝐼$�̇�𝛽$                                                            (2.1) 

 
𝑥𝑥#, 𝑦𝑦# in the equations are the center of gravity coordinates of the first limb.	𝑥𝑥$, 𝑦𝑦$, and 𝑧𝑧$  represent the center 
of gravity coordinates of the second arm. 𝑚𝑚# and 𝑚𝑚$ are the masses of each arm. 𝐼𝐼# and 𝐼𝐼$represent the mass 
moments of inertia of the arms. The limb dimensions according to their center of gravity are 𝐿𝐿# and 𝐿𝐿$, 
respectively. The friction coefficients at the joints are 𝑏𝑏# and 𝑏𝑏$. τ represents the control torque applied by the 
motor. 
The equations of the expressions given in equation 2.1 are obtained as follows (see 2.2, 2.3, 2.4, 2.5 and 2.6). 
 
𝑥𝑥# = 𝐿𝐿#𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃                                                                                                                                                  (2.2) 
𝑦𝑦# = 𝐿𝐿#𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃                                                                                                                                           (2.3) 
𝑥𝑥$ = 𝑥𝑥# − 𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃                                                                                                                                  (2.4) 
𝑦𝑦$ = 𝑦𝑦# + 𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃                                                                                                                             (2.5) 
𝑧𝑧$ = 𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽	                                                                                                                                            (2.6) 
 
If the above expressions are substituted to find the total kinetic energy of the system (see 2.7); 
 
𝑇𝑇 = #

$
𝑚𝑚#𝐿𝐿#$�̇�𝜃$ +

#
$
𝐼𝐼#�̇�𝜃$ +

#
$
𝑚𝑚$&𝐿𝐿#�̇�𝜃$ + 2𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̇�𝜃�̇�𝛽 + 𝐿𝐿$$�̇�𝛽$ + 𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠$𝛽𝛽�̇�𝜃$+ +

#
$
𝐼𝐼$�̇�𝛽$                     (2.7) 

 
Potential energy of the system (see 2.8 and 2.9): 
 
𝑉𝑉 = 𝑚𝑚$𝑔𝑔𝑧𝑧$                                                                                                                                               (2.8) 
𝑉𝑉 = 𝑚𝑚$𝑔𝑔𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽                                                                                                                                  (2.9) 
 
From here, the Lagrangian function is created as follows (see 2.10 and 2.11). 
 
𝐿𝐿 = 𝑇𝑇 − 𝑉𝑉                                                                                                                                             (2.10) 
𝐿𝐿 = #

$
&𝑚𝑚#𝐿𝐿#$ + 𝐼𝐼#+�̇�𝜃$ +

#
$
𝑚𝑚$<&𝐿𝐿# + 𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠$𝛽𝛽+�̇�𝜃$ + 2𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̇�𝜃�̇�𝛽 + 𝐿𝐿$$�̇�𝛽$= +

#
$
𝐼𝐼$�̇�𝛽$ − 𝑚𝑚$𝑔𝑔𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽               

(2.11) 
 
The equation of motion for 𝜃𝜃 (see 2.12): 
 
>
>?
@AB
AĊ
D − AB

AC
= 𝑄𝑄C                                                                                                                                (2.12) 

 
If the expressions in this equation are calculated and replaced, the equation of motion for θ is obtained as 
follows (see 2.13). 
 
&𝑚𝑚#𝐿𝐿#$ + 𝐼𝐼# + 𝑚𝑚$𝐿𝐿# + 𝑚𝑚$𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠$𝛽𝛽+�̈�𝜃 + 𝑚𝑚$𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̈�𝛽 − 𝑚𝑚$𝐿𝐿#𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽�̇�𝛽$ + 2𝑚𝑚$𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽�̇�𝛽�̇�𝜃 
= 𝜏𝜏 − 𝑏𝑏#�̇�𝜃                                                                                                                                                    (2.13) 
 
The equation of motion for 𝛽𝛽 (see 2.14): 
 The equation of motion for b (see 2.14):
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>
>?
@AB
AḢ
D − AB

AH
= 𝑄𝑄H                                                                                                                               (2.14) 

 
After performing the necessary operations in the above equation, the equation of motion for β is obtained as 
follows (see 2.15). 
 
𝑚𝑚$𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�̈�𝜃 + &𝑚𝑚$𝐿𝐿$$ + 𝐼𝐼$+�̈�𝑐 − 𝑚𝑚$𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�̇�𝜃$ − 𝑚𝑚$𝑔𝑔𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 = −𝑏𝑏$�̇�𝑐                                    (2.15) 
 
If the expressions �̈�𝜃 and �̈�𝑐 in the equations of motion are separated, the following equations are obtained (see 
2.16 and 2.17). 
 

�̈�𝜃 =
&𝑚𝑚$𝐿𝐿$$ + 𝐼𝐼$+&𝑏𝑏#�̇�𝜃 − 𝜏𝜏 −𝑚𝑚$𝐿𝐿#𝐿𝐿$𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐�̇�𝑐$ + 2𝑚𝑚$𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�̇�𝑐�̇�𝜃+

(𝑚𝑚$𝐿𝐿#𝐿𝐿$𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)$ − &𝑚𝑚$𝐿𝐿$$ + 𝐼𝐼$+&𝑚𝑚#𝐿𝐿#$ + 𝐼𝐼# + 𝑚𝑚$𝐿𝐿# + 𝑚𝑚$𝐿𝐿$$𝑐𝑐𝑠𝑠𝑠𝑠$𝑐𝑐+
 

 

−	 KLBMBLNOPH&QLḢRKLBLLPSTHNOPHĊLRKLUBLPSTH+
(KLBMBLNOPH)LR&KLBLLVWL+&KMBMLVWMVKLBMVKLBLLPSTLH+

                                                                             (2.16) 

 

�̈�𝑐 =
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−	 KLBMBLNOPH&QMĊRXRKLBMBLPSTHḢLV$KLBLLPSTHNOPHḢĊ+
(KLBMBLNOPH)LR&KLBLLVWL+&KMBMLVWMVKLBMVKLBLLPSTLH+

                                                                             (2.17) 

 
The equation of motion of the DC motor that provides the rotational motion of the first arm can be written as 
follows (see 2.18). Here, 𝑉𝑉Y is the motor supply voltage and also the control signal, 𝐾𝐾Q is the back electromotive 
voltage coefficient, N is the gear ratio, R is the motor winding ohmic resistance, L is the motor inductance 
coefficient and i is the electrical current flowing through the motor windings. 
 
>S
>?
= [\R]S

B
− ^_Ċ

B`
                                   (2.18) 

 
If we convert the expressions in the equations into state variables is obtained as 2.19, 2.20, 2.21, 2.22 and 2.23: 
 
𝜃𝜃 = 𝑥𝑥(1)                                                                                                                                             (2.19) 
�̇�𝜃 = 𝑥𝑥(2)                                                                                                                                             (2.20) 
𝑐𝑐 = 𝑥𝑥(3)                                                                                                                                             (2.21) 
�̇�𝑐 = 𝑥𝑥(4)                                                                                                                                             (2.22) 
>S
>?
= 𝑥𝑥(5)                                                                                                                                                     (2.23) 

 
The motor control torque is calculated as 2.24: 
 
𝜏𝜏 = êS

`
                                               (2.24) 

 
Where 𝐾𝐾? is the motor torque coefficient. 
For the rotary inverted pendulum system, using these state variables, the moving sliding mode control method 
was applied with the help of the program written in the Matlab program. With this control method, it will be 
ensured that the pendulum angle β goes to the desired zero reference point. The Values of used system 
parameters are given in table 1. 
 
 
 

After performing the necessary operations in the above equation, the equation of motion for β is obtained 
as follows (see 2.15).
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After performing the necessary operations in the above equation, the equation of motion for β is obtained as 
follows (see 2.15). 
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If the expressions �̈�𝜃 and �̈�𝑐 in the equations of motion are separated, the following equations are obtained (see 
2.16 and 2.17). 
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−	 KLBMBLNOPH&QMĊRXRKLBMBLPSTHḢLV$KLBLLPSTHNOPHḢĊ+
(KLBMBLNOPH)LR&KLBLLVWL+&KMBMLVWMVKLBMVKLBLLPSTLH+

                                                                             (2.17) 

 
The equation of motion of the DC motor that provides the rotational motion of the first arm can be written as 
follows (see 2.18). Here, 𝑉𝑉Y is the motor supply voltage and also the control signal, 𝐾𝐾Q is the back electromotive 
voltage coefficient, N is the gear ratio, R is the motor winding ohmic resistance, L is the motor inductance 
coefficient and i is the electrical current flowing through the motor windings. 
 
>S
>?
= [\R]S

B
− ^_Ċ

B`
                                   (2.18) 

 
If we convert the expressions in the equations into state variables is obtained as 2.19, 2.20, 2.21, 2.22 and 2.23: 
 
𝜃𝜃 = 𝑥𝑥(1)                                                                                                                                             (2.19) 
�̇�𝜃 = 𝑥𝑥(2)                                                                                                                                             (2.20) 
𝑐𝑐 = 𝑥𝑥(3)                                                                                                                                             (2.21) 
�̇�𝑐 = 𝑥𝑥(4)                                                                                                                                             (2.22) 
>S
>?
= 𝑥𝑥(5)                                                                                                                                                     (2.23) 

 
The motor control torque is calculated as 2.24: 
 
𝜏𝜏 = êS

`
                                               (2.24) 

 
Where 𝐾𝐾? is the motor torque coefficient. 
For the rotary inverted pendulum system, using these state variables, the moving sliding mode control method 
was applied with the help of the program written in the Matlab program. With this control method, it will be 
ensured that the pendulum angle β goes to the desired zero reference point. The Values of used system 
parameters are given in table 1. 
 
 
 

If the expressions θ and β in the equations of motion are separated, the following equations are obtained 
(see 2.16 and 2.17).

Journal of Advanced Research in Natural and Applied Sciences                                                       2020, Vol. 6, Issue 1, Pages: 1-4 
 

4 
 

>
>?
@AB
AḢ
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Where 𝐾𝐾? is the motor torque coefficient. 
For the rotary inverted pendulum system, using these state variables, the moving sliding mode control method 
was applied with the help of the program written in the Matlab program. With this control method, it will be 
ensured that the pendulum angle β goes to the desired zero reference point. The Values of used system 
parameters are given in table 1. 
 
 
 

The equation of motion of the DC motor that provides the rotational motion of the first arm can be written 
as follows (see 2.18). Here, Va  is the motor supply voltage and also the control signal, Kb is the back 
electromotive voltage coefficient, N is the gear ratio, R is the motor winding ohmic resistance, L is the 
motor inductance coefficient and i is the electrical current flowing through the motor windings.
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If we convert the expressions in the equations into state variables is obtained as 2.19, 2.20, 2.21, 2.22 and 2.23: 
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Where 𝐾𝐾? is the motor torque coefficient. 
For the rotary inverted pendulum system, using these state variables, the moving sliding mode control method 
was applied with the help of the program written in the Matlab program. With this control method, it will be 
ensured that the pendulum angle β goes to the desired zero reference point. The Values of used system 
parameters are given in table 1. 
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`
                                               (2.24) 

 
Where 𝐾𝐾? is the motor torque coefficient. 
For the rotary inverted pendulum system, using these state variables, the moving sliding mode control method 
was applied with the help of the program written in the Matlab program. With this control method, it will be 
ensured that the pendulum angle β goes to the desired zero reference point. The Values of used system 
parameters are given in table 1. 
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The motor control torque is calculated as 2.24:
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Where 𝐾𝐾? is the motor torque coefficient. 
For the rotary inverted pendulum system, using these state variables, the moving sliding mode control method 
was applied with the help of the program written in the Matlab program. With this control method, it will be 
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Where  is the motor torque coefficient.

For the rotary inverted pendulum system, using these state variables, the moving sliding mode control 
method was applied with the help of the program written in the Matlab program. With this control method, 
it will be ensured that the pendulum angle β goes to the desired zero reference point. The Values of used 
system parameters are given in table 1.

Table 1

System Parameter Values

Parameter Value Unit

m1 0.15 kg

m2 0.1 kg

L1 0.4 m

L2 0.4 m

b1 0.01 Ns/m

b2 0.01 Ns/m

I1 0.0248 kgm2

I2 0.00386 kgm2

L 0.1 Henry

R 1.4 Ohm

Kt 0.25 -

Kb 0.05 -

N 1/20 -

2.2 Sliding Surface Moving Fuzzy Sliding Mode Control Design

The sliding mode control method is a nonlinear and robust control method. Compared to other control 
methods, it is a method that is not affected by external disturbances. Thanks to the oscillations on the sliding 
surface to reach the desired reference, it can reach the result quickly with high accuracy (Young, Utkin, & 
Ozguner, 1999). Because the system parameters are unknown or constantly changing and there are external 
disturbances affecting the system, the sliding mode control allows long-term controllability as long as the 
limit values of the system are known.

While performing the sliding mode control design, the slip surface must first be determined and a control 
rule must be created to reach the determined slip surface. The time taken to reach the slip surface is called 
the reach time. This region of the phase trajectory is called the reach mode. In reach mode, the system is 
sensitive to parameter uncertainty and external noise (Edwards & Spurgeon, 1998). When the slip surface 
is reached, the slip mode starts, in which the trajectory of the system is insensitive to uncertain parameters 
and external factors. Chattering in sliding mode control applications is caused by oscillations around the 
system’s desired equilibrium point, and it discloses the system’s unmodeled high-frequency dynamics. 
Sliding mode control expression with sign function can be written as 2.25:

U = -k sign(S)                                                                                                                                         (2.25)  
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S in equation 25 is the slip surface function and it can be expressed as given in equation (2.26), depending 
on the error (e) that occurs according to the response of the system and the variation of the error with time 
(de). When choosing S, the slope of the slip surface C is taken as a time variable. The slope value is updated 
instantly by looking at the answers of the system.

S = C e + de                                                                                                                                               (2.26)  

An example of the sliding surface of the sliding mode control is shown in figure 2. As can be seen from 
the given figure, the slip surface has a certain slope. The coefficient C in equation (2.26) represents this 
slope.

Figure 2. Sliding surface
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The controller's success is ensured by determining the best value for this defined slope. The sliding mode 
controller's slip surface slope coefficients are treated as moving in this investigation. Fuzzy logic was used to 
calculate the slope coefficient C. Mamdani type was used as fuzzy inference method. Center of gravity was 
used as the defuzzification method. The error of the pendulum angle and the derivative of the pendulum error 
are given as an introduction to the fuzzy logic structure. As an output, the slope coefficient of the sliding 
surface of the sliding mode control is obtained. The optimum values of the base coefficients of the membership 
functions in the fuzzy logic structure were calculated using a genetic algorithm. Genetic algorithm parameters 
were used as FitnessLimit 1e-10, Generations 100 and PopulationSize 20. Figure 3 shows the block diagram 
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Since the C coefficient obtained will vary each time, the control method has a moving sliding surface. Below 
is the figure 4 showing the mobility of the C coefficient. 
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Figure 3. Controller Block Diagram

The controller’s success is ensured by determining the best value for this defined slope. The sliding mode 
controller’s slip surface slope coefficients are treated as moving in this investigation. Fuzzy logic was 
used to calculate the slope coefficient C. Mamdani type was used as fuzzy inference method. Center of 
gravity was used as the defuzzification method. The error of the pendulum angle and the derivative of the 
pendulum error are given as an introduction to the fuzzy logic structure. As an output, the slope coefficient 
of the sliding surface of the sliding mode control is obtained. The optimum values of the base coefficients 
of the membership functions in the fuzzy logic structure were calculated using a genetic algorithm. Genetic 
algorithm parameters were used as FitnessLimit 1e-10, Generations 100 and PopulationSize 20. Figure 3 
shows the block diagram in which the coefficients of the controller are optimized by the genetic algorithm 
technique.
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Since the C coefficient obtained will vary each time, the control method has a moving sliding surface. 
Below is the Figure 4 showing the mobility of the C coefficient.

Figure 4. Variation of the C coefficient

Figure 5. Membership functions for input1(e)
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The rule table for the inputs and the output for the fuzzy logic structure, membership functions are shown in 
table 2, figure 5, figure 6, and figure 7, respectively. Triangular membership functions are used for each input 
and output. 
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The rule table for the inputs and the output for the fuzzy logic structure, membership functions are shown 
in table 2, fi gure 5, fi gure 6, and fi gure 7, respectively. Triangular membership functions are used for each 
input and output.

Table 2

Rule table of fuzzy logic structure for slip surface C

NBde Zde PBde

NBe Z NB NB

Ze NB Z kg PB

PB1 PB PB PB

e
de/dt
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The p1, p2, p3, p4, p5, and p6 values of the base coefficients of the membership functions used in the fuzzy 
structures were calculated by genetic algorithm and obtained as given in table 3

Figure 6. Membership functions for input2(de/dt)
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Figure 7. Membership functions for output (C)
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Figure 7. Membership functions for output (C) 

The p1, p2, p3, p4, p5, and p6 values of the base coefficients of the membership functions used in the fuzzy 
structures were calculated by genetic algorithm and obtained as given in table 3 
 
Table 3 
Base values of membership functions 

p1 p2 p3 p4 p5 p6 

20.7646 0.4166 0.7657 11.0061 91.7301 8.4752 

 
The sign function in the sliding mode control expression causes the control signal to crackle. Various types of 
functions are used instead of this sign function to solve this problem. The widely used saturation function was 
chosen to replace the sign function in this study. As a result, equation (2.27) calculates the sliding mode control 
expression with saturation function. 
 
U=-k*SAT( S / epsilon )                                                                                                                        (2.27) 
 
Where the epsilon value was found to be 74.55 by genetic algorithm. The Fitness value-Generation (Iteration) 
graph of the optimization process performed while calculating the unknown coefficients with the genetic 
algorithm is given in figure 8. 
 

Table 3

Base values of membership functions

p1 p2 p3 p4 p5 p6

20.7646 0.4166 0.7657 11.0061 91.7301 8.4752

The sign function in the sliding mode control expression causes the control signal to crackle. Various types 
of functions are used instead of this sign function to solve this problem. The widely used saturation function 
was chosen to replace the sign function in this study. As a result, equation (2.27) calculates the sliding mode 
control expression with saturation function.

U = -k*SAT( S / epsilon )                                                                                                                        (2.27)

Where the epsilon value was found to be 74.55 by genetic algorithm. The Fitness value-Generation 
(Iteration) graph of the optimization process performed while calculating the unknown coefficients with the 
genetic algorithm is given in figure 8.

3. Results and Discussion

In figure 9, the variation of the angular position of the first arm connected to the motor with respect to 
time is seen. It started from the zero point at the beginning and changed direction in the first seconds. This 
is an expected result to raise the pendulum.
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Figure 9. Variation of theta angle according to time
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The graph in figure 10 shows the angular velocity of the first arm to time. It is seen that the angular velocity 
value reaches 14 rad/s at the beginning and is fixed at 0 rad/s. 
 

 
Figure 10. Angular velocity change of the first arm according to time 
 

Figure 8. The Fitness value-Generation (Iteration) graph of the genetic algorithm optimization process
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3. Results and Discussion 

In figure 9, the variation of the angular position of the first arm connected to the motor with respect to time 
is seen. It started from the zero point at the beginning and changed direction in the first seconds. This is an 
expected result to raise the pendulum. 

 

The graph in figure 10 shows the angular velocity of the first arm to time. It is seen that the angular velocity 
value reaches 14 rad/s at the beginning and is fixed at 0 rad/s.
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In figure 11, there is a graph showing the change of pendulum angle with respect to time. The pendulum is 
required to stop at the unstable upper balance point. Therefore, the pendulum angle must reach the desired 
zero reference point. As seen in the figure, the pendulum reaches the desired reference value in about 1 
second.

In figure 12, the variation of the angular velocity of the pendulum with time is shown. As can be seen from 
the graph, the angular velocity of the pendulum reaches zero after 1 second.

Figure 10. Angular velocity change of the first arm according to time
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The graph in figure 10 shows the angular velocity of the first arm to time. It is seen that the angular velocity 
value reaches 14 rad/s at the beginning and is fixed at 0 rad/s. 
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Figure 11. Variation of beta angle (pendulum angle) according to time
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In figure 11, there is a graph showing the change of pendulum angle with respect to time. The pendulum is 
required to stop at the unstable upper balance point. Therefore, the pendulum angle must reach the desired zero 
reference point. As seen in the figure, the pendulum reaches the desired reference value in about 1 second. 
 

 
Figure 12. Angular velocity change of the pendulum according to time 

In figure 12, the variation of the angular velocity of the pendulum with time is shown. As can be seen from the 
graph, the angular velocity of the pendulum reaches zero after 1 second. 



365

Journal of Advanced Research in Natural and Applied Sciences2022, Vol 8, Issue 3, Pages: 355-369

In figure 13 and 14, respectively, the torque value of the DC motor to be applied to the first arm and the 
graph of the slope values of the slip surface are given. When the DC motor torque graph in figure 13 is 
examined, it is clear that approximately 20 Nm of motor torque will be sufficient to bring the pendulum to 
the desired reference value. It can be said that this torque value is reasonable for real applications. After 
about 1 second, the control signal reaches zero. When the slip surface slope graph in figure 14. is examined, 
it is seen that it takes values between 0-50 values.

Figure 12. Angular velocity change of the pendulum according to time
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In figure 12, the variation of the angular velocity of the pendulum with time is shown. As can be seen from the 
graph, the angular velocity of the pendulum reaches zero after 1 second. 

Figure 13. Variation of DC motor’s torque according to time

Journal of Advanced Research in Natural and Applied Sciences                                                       2020, Vol. 6, Issue 1, Pages: 1-4 
 

12 
 

In figures 13 and 14, respectively, the torque value of the DC motor to be applied to the first arm and the graph 
of the slope values of the slip surface are given. When the DC motor torque graph in figure 13 is examined, it 
is clear that approximately 20 Nm of motor torque will be sufficient to bring the pendulum to the desired 
reference value. It can be said that this torque value is reasonable for real applications. After about 1 second, 
the control signal reaches zero. When the slip surface slope graph in figure 14. is examined, it is seen that it 
takes values between 0-50 values. 
 

 
Figure 13. Variation of DC motor's torque according to time 
 

 
Figure 14. Sliding surface slope graph 

Figure 15 shows the time variation of the supply voltage signal that should be applied to the DC motor. It can 
also be seen from the graph that the DC motor supply voltage source is limited to 12 volts. In figure 16, the 
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Figure 15 shows the time variation of the supply voltage signal that should be applied to the DC motor. It 
can also be seen from the graph that the DC motor supply voltage source is limited to 12 volts. In fi gure 16, 
the variation of the current passing through the DC motor windings with time is shown. It is seen that the 
current drawn by the motor reaches zero value after about 1 second.

Figure 14. Sliding surface slope graph
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variation of the current passing through the DC motor windings with time is shown. It is seen that the current 
drawn by the motor reaches zero value after about 1 second. 
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Figure 16. Graph of DC Motor Current according to Time 

In Table 4, the results of the study conducted in this research article and a publication in the literature are 
compared. As can be seen in the table, the pendulum angle of the system achieved a better settling time of 0.9 
s in the current study (Nath & Dewan 2018). 
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Figure 16. Graph of DC Motor Current according to Time
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In Table 4, the results of the study conducted in this research article and a publication in the literature are 
compared. As can be seen in the table, the pendulum angle of the system achieved a better settling time of 0.9 
s in the current study (Nath & Dewan 2018). 
 
 
 

In Table 4, the results of the study conducted in this research article and a publication in the literature are 
compared. As can be seen in the table, the pendulum angle of the system achieved a better settling time of 
0.9 s in the current study (Nath & Dewan 2018)..

Table 4

Comparison of between work in the literature and the present work 

Rotary inverted 
pendulum arm 
angle results

Method Settling Time (s) Max. Overshoot 
(rad)

Max. Undershoot 
(rad)

LQR 0.80 0.1260 -
SMC 0.80 0.1460 -

Present Work 1.05 0.6981 0.1523

Pendulum angle 
results

LQR 1.25 0.0072 - 0.003
SMC 1.25 0.0130 - 0.004

Present Work 0.90 0.1745 - 0.035

4. Conclusion 

In this study, the nonlinear model of the rotary inverted pendulum system, which has a single degree 
of freedom, was first obtained using the Lagrangian method. The pendulum angle was controlled by the 
program created in Matlab with the help of state variables on the model obtained. For this reason, the 
system has been controlled using the moving sliding mode control approach. The variability of the slope of 
the slip surface was calculated by the fuzzy logic method. The coefficients of the fuzzy logic structure were 
calculated with the help of the genetic algorithm. At the end of the study, it was observed that the pendulum 
reached the desired reference value in about 1 second, the error was zero, and the control signal reached 
zero. It has been observed that the motor torque value reaches up to 20 Nm and the motor draws a maximum 
of 4 amperes. From these results, it has been obtained that the moving sliding mode control can be applied 
to the system without any problems if the motor is selected considering the obtained motor values   in the 
real-time motor selection.



368

Journal of Advanced Research in Natural and Applied Sciences 2022, Vol 8, Issue 3, Pages: 355-369

Author Contributions

Muhammet Aydin: Modeling of rotary inverted pendulum system.

Oğuz Yakut: Sliding surface moving fuzzy sliding mode control design.

Conflicts of Interest

The authors declare no conflict of interest.

References

Altinoz, O. T., Yilmaz, A. E., & Weber, G. W. (2010). Chaos particle swarm optimized PID controller for 
the inverted pendulum system. In 2nd international conference on engineering optimization. http://
www.dem.ist.utl.pt/engopt2010/Book_and_CD/Papers_CD_Final_Version/pdf/01/01454-01.pdf  

Awtar, S., King, N., Allen, T., Bang, I., Hagan, M., Skidmore, D., & Craig, K. (2002). Inverted pendulum 
systems: rotary and arm-driven-a mechatronic system design case study. Mechatronics, 12(2), 357-370. 
https://doi.org/10.1016/S0957-4158(01)00075-7

Aydin, M., Yakut, O., & Tutumlu, H. (2019). Implementation of the Network-Based Moving Sliding Mode 
Control Algorithm to the Rotary Inverted Pendulum System. Journal of Engineering and Techno-
logy, 3(1), 32-41. https://dergipark.org.tr/en/download/article-file/721111 

Bogdanov, A. (2004, Aralık) Optimal control of a double inverted pendulum on a cart, Health and Science 
University Technical Report. 

Bugeja, M. (2003, September). Non-linear swing-up and stabilizing control of an inverted pendulum sys-
tem. In The IEEE Region 8 EUROCON 2003. Computer as a Tool. (Vol. 2, pp. 437-441). IEEE. https://
doi.org/10.1109/EURCON.2003.1248235 

Chawla, I., & Singla, A. (2021). Real-Time Stabilization Control of a Rotary Inverted Pendulum Using 
LQR-Based Sliding Mode Controller. Arabian Journal for Science and Engineering, 46(3), 2589-2596. 
https://doi.org/10.1007/s13369-020-05161-7 

Cui, J. (2019, July). Numerical Design Method for Nonlinear Sliding Mode Control of Inverted Pendu-
lum. In 2019 Chinese Control Conference (CCC) (pp. 2646-2649). IEEE. http://doi.org/10.23919/
ChiCC.2019.8865123 

Edwards, C., & Spurgeon, S. (1998). Sliding mode control: theory and applications. Crc Press.

Hassanzadeh, I., & Mobayen, S. (2008). PSO-based controller design for rotary inverted pendulum sys-
tem. Journal of Applied Sciences, 8(16), 2907-2912. https://docsdrive.com/pdfs/ansinet/jas/2008/2907-
2912.pdf 

Hazem, Z. B., Fotuhi, M. J., & Bingül, Z. (2020). A comparative study of the joint neuro-fuzzy friction 
models for a triple link rotary inverted pendulum. Ieee Access, 8, 49066-49078. http://doi.org/10.1109/
ACCESS.2020.2978025 

Hazem, Z. B., Fotuhi, M. J., & Bingül, Z. (2020). Development of a Fuzzy-LQR and Fuzzy-LQG stability 
control for a double link rotary inverted pendulum. Journal of the Franklin Institute, 357(15), 10529-
10556. https://doi.org/10.1016/j.jfranklin.2020.08.030 

Hong, G. B., Nguyen, H. T., Nguyen, M. T., Hoang Le, T. T., & Hai Nguyen, V. D. (2019). TRAJECTORY 
TRACKING FOR FUTURA PENDULUM BY INCREMENTAL SLIDING MODE CONTROL. 
Robotica & Management, 24(1). https://web.p.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&si-
d=6590e51f-2bfb-4b30-b7aa-5aa088f805fc%40redis 

Howimanporn, S., Chookaew, S., & Silawatchananai, C. (2020, October). Comparison between PID and 
Sliding Mode Controllers for Rotary Inverted Pendulum Using PLC. In 2020 4th International Con-
ference on Automation, Control and Robots (ICACR) (pp. 122-126). IEEE. http://doi.org/10.1109/
ICACR51161.2020.9265510 

http://www.dem.ist.utl.pt/engopt2010/Book_and_CD/Papers_CD_Final_Version/pdf/01/01454-01.pdf
http://www.dem.ist.utl.pt/engopt2010/Book_and_CD/Papers_CD_Final_Version/pdf/01/01454-01.pdf
https://doi.org/10.1016/S0957-4158(01)00075-7
https://dergipark.org.tr/en/download/article-file/721111
https://doi.org/10.1109/EURCON.2003.1248235
https://doi.org/10.1007/s13369-020-05161-7
http://doi.org/10.23919/ChiCC.2019.8865123
http://doi.org/10.23919/ChiCC.2019.8865123
https://docsdrive.com/pdfs/ansinet/jas/2008/2907-2912.pdf
https://docsdrive.com/pdfs/ansinet/jas/2008/2907-2912.pdf
http://doi.org/10.1109/ACCESS.2020.2978025
http://doi.org/10.1109/ACCESS.2020.2978025
https://doi.org/10.1016/j.jfranklin.2020.08.030
https://web.p.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=6590e51f-2bfb-4b30-b7aa-5aa088f805fc%40redis
https://web.p.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=6590e51f-2bfb-4b30-b7aa-5aa088f805fc%40redis
http://doi.org/10.1109/ICACR51161.2020.9265510
http://doi.org/10.1109/ICACR51161.2020.9265510


369

Journal of Advanced Research in Natural and Applied Sciences2022, Vol 8, Issue 3, Pages: 355-369

Khanesar, M. A., Teshnehlab, M., & Shoorehdeli, M. A. (2007, June). Sliding mode control of rotary inver-
ted pendulm. In 2007 Mediterranean Conference on Control & Automation (pp. 1-6). IEEE. https://doi.
org/10.1109/MED.2007.4433653

Krishen, J., & Becerra, V. M. (2006, October). Efficient fuzzy control of a rotary inverted pendulum based 
on LQR mapping. In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE 
International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent 
Control (pp. 2701-2706). IEEE. https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4777066  

Kuo, T. C., Huang, Y. J., & Hong, B. W. (2009, July). Adaptive PID with sliding mode control for the ro-
tary inverted pendulum system. In 2009 IEEE/ASME International Conference on Advanced Intelligent 
Mechatronics (pp. 1804-1809). IEEE.  http://doi.org/10.1109/AIM.2009.5229784  

Le, T. T. H., Vo, A. K., Van Nguyen, T., Vu, D. H., & Tran, M. S. (2018). FUZZY CONTROLLER FOR 
ROTARY INVERTED PENDULUM. Robotica & Management, 23(2). https://web.p.ebscohost.com/
ehost/pdfviewer/pdfviewer?vid=2&sid=0f28d825-27ec-4362-a82b-dd944bf02a20%40redis

Muñoz-Poblete, C. (2018, October). Pole placement controller applied to a Rotary Inverted Pendulum 
System. A didactic view. In 2018 IEEE International Conference on Automation/XXIII Congress of 
the Chilean Association of Automatic Control (ICA-ACCA) (pp. 1-6). IEEE. http://doi.org/10.1109/
ICA-ACCA.2018.8609824

Nath, K., & Dewan, L. (2017, November). Control of a rotary inverted pendulum via adaptive techniques. 
In 2017 International Conference on Emerging Trends in Computing and Communication Technologies 
(ICETCCT) (pp. 1-6). IEEE. http://doi.org/10.1109/ICETCCT.20178280315 

Nath, K., & Dewan, L. (2018, March). A comparative analysis of linear quadratic regulator and sliding 
mode control for a rotary inverted pendulum. In 2018 International Conference on Recent Tren-
ds in Electrical, Control and Communication (RTECC) (pp. 302-307). IEEE. http://doi.org/10.1109/
RTECC.2018.8625648 

Stimac, A. K. (1999). Standup and stabilization of the inverted pendulum (Doctoral dissertation, Massa-
chusetts Institute of Technology, Dept. of Mechanical Engineering). https://ocw.mit.edu/courses/mec-
hanical-engineering/2-003-modeling-dynamics-and-control-i-spring-2005/study-materials/andrew.pdf 

Sugie, T., & Fujimoto, K. (1998). Controller design for an inverted pendulum based on approximate lineari-
zation. International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, 8(7), 585-597. 
https://doi.org/10.1002/(SICI)1099-1239(199806)8:7<585::AID-RNC331>3.0.CO;2-B 

Sukontanakarn, V., & Parnichkun, M. (2009). Real-time optimal control for rotary inverted pendu-
lum. American journal of applied sciences, 6(6), 1106. http://citeseerx.ist.psu.edu/viewdoc/download?-
doi=10.1.1.1020.5634&rep=rep1&type=pdf 

Wang, W. (2009). Adaptive fuzzy sliding mode control for inverted pendulum. In Proceedings. The 2009 Inter-
national Symposium on Computer Science and Computational Technology (ISCSCI 2009) (p. 231). Academy 
Publisher. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.648.7484&rep=rep1&type=pdf 

Yan, Q. (2003, December). Output tracking of underactuated rotary inverted pendulum by nonlinear control-
ler. In 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475) (Vol. 
3, pp. 2395-2400). IEEE. http://doi.org/10.1109/CDC.2003.1272978 

Yiğit, İ. (2017). Model free sliding mode stabilizing control of a real rotary inverted pendulum. Journal of 
Vibration and Control, 23(10), 1645-1662. https://doi.org/10.1177/1077546315598031 

Young, K. D., Utkin, V. I., & Ozguner, U. (1999). A control engineer’s guide to sliding mode control. IEEE 
transactions on control systems technology, 7(3), 328-342. http://doi.org/10.1109/87.761053 

Zhong, W., & Rock, H. (2001, September). Energy and passivity based control of the double inverted pen-
dulum on a cart. In Proceedings of the 2001 IEEE International Conference on Control Applications 
(CCA’01)(Cat. No. 01CH37204) (pp. 896-901). IEEE. http://doi.org/10.1109/CCA.2001.973983 

Zabihifar, S. H., Yushchenko, A. S., & Navvabi, H. (2020). Robust control based on adaptive neural 
network for Rotary inverted pendulum with oscillation compensation. Neural Computing and Applica-
tions, 32(18), 14667-14679. https://doi.org/10.1007/s00521-020-04821-x 

https://doi.org/10.1109/MED.2007.4433653
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4777066
http://doi.org/10.1109/AIM.2009.5229784
https://web.p.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=2&sid=0f28d825-27ec-4362-a82b-dd944bf02a20%40redis
https://web.p.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=2&sid=0f28d825-27ec-4362-a82b-dd944bf02a20%40redis
http://doi.org/10.1109/ICETCCT.20178280315
http://doi.org/10.1109/RTECC.2018.8625648
http://doi.org/10.1109/RTECC.2018.8625648
https://ocw.mit.edu/courses/mechanical-engineering/2-003-modeling-dynamics-and-control-i-spring-2005/study-materials/andrew.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-003-modeling-dynamics-and-control-i-spring-2005/study-materials/andrew.pdf
https://doi.org/10.1002/(SICI)1099-1239(199806)8:7%3C585::AID-RNC331%3E3.0.CO;2-B
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1020.5634&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1020.5634&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.648.7484&rep=rep1&type=pdf
http://doi.org/10.1109/CDC.2003.1272978
https://doi.org/10.1177/1077546315598031
http://doi.org/10.1109/87.761053
http://doi.org/10.1109/CCA.2001.973983
https://doi.org/10.1007/s00521-020-04821-x

	a227
	a19
	Altinoz
	Awtar
	Aydin
	Bogdanov
	Bugeja
	Chawla
	Cui
	Edwards
	Hassanzadeh
	Hazem1
	Hazem2
	Hong
	Howimanpom
	Khanesar
	Krishen
	Kuo
	Le
	Munoz
	Nath
	Nath2
	Stimac
	Sugie
	Sukontanakarn
	Wang
	Yan
	Yiğit
	Young
	Zhong
	Zabihifar

