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ABSTRACT 
Android operating system has been widely used in mobile phones, televisions, smart watches, cars and other 

Internet of Things applications with its open source structure and wide application market. This widespread use 

and open-source nature make this operating system and its devices easy and lucrative targets for cyber attackers. 

One of the most used methods often preferred by attackers is to install malware applications on user devices. As 

the number of malware programs is increasing, the traditional methods can be insufficient in detecting. Machine 

learning-based and deep learning-based methods have achieved promising results in malware detection and 

classification. Deep learning-based methods have an increasing use in malware detection, thanks to the low need 

for domain expertise and their feature extracting capabilities. Convolutional neural networks (CNN) are popular 

deep learning methods that are widely used in visual analysis of malware by transforming them to images. In this 

study, a batch fine-tune transfer learning method was proposed and used on popular CNN models, Xception, 

ResNet, VGG, Inception, MobileNet, DenseNet, NasNet, EfficientNet. According to the results, the models were 

analyzed and compared with metrics like accuracy, specificity, recall, precision, F1-score. 
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Derin Öğrenmeyle Android Kötücül Yazılım Analizi ve Kıyaslanması 

 

ÖZ 
Android işletim sistemi, açık kaynak olan yapısı, geniş uygulama marketiyle telefonlarda, televizyonlarda, 

saatlerde, arabalarda ve diğer nesnelerin interneti uygulamalarında yaygın olarak kullanılmaktadır. Bu yaygın 

kullanım ve açık kaynak yapısı, kötücül niyet barındıran saldırganlar için bu işletim sistemini ve sahip olduğu 

cihazları kolay ve kazançlı hedefler haline getirmektedir. Saldırganlar tarafından sıklıkla tercih edilen bir yöntem 

de kötücül yazılım uygulamalarının kullanıcı cihazlarına yüklenmesidir. Bu yazılımların sayıları gün geçtikçe 

artmakta, kötücül yazılımları tespitinde geleneksel yöntemler yetersiz kalabilmektedir. Kötücül yazılım 

tespitinde makine öğrenmesi ve derin öğrenme tabanlı yöntemler umut veren sonuçlar elde etmişlerdir. Özellikle 

derin öğrenme tabanlı yöntemler, alan uzmanlık bilgisi gereksiniminin azlığı ve kendi kendine özellik 

çıkarabilen yapıları sayesinde, kötücül yazılım tespitinde artan bir kullanıma sahiptirler. Kötücül yazılımların 

görsel imajlara dönüştürülerek bu imajlar üzerinde CNN tabanlı derin öğrenme modelleriyle görsel kötücül 

yazılım analizleri gerçekleştirilmektedir. Çalışmada, popüler CNN modelleri olan Xception, ResNet, VGG, 

Inception, MobileNet, DenseNet, NasNet, EfficientNet sunulan toplu ince ayar öğrenim aktarma yöntemiyle 

eğitilmiş ve elde edilen sonuçlara göre modeller doğruluk, kesinlik, geri çağırma, hassaslık, F1 skoru 

metriklerine göre kıyaslanmıştır. 
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Anahtar Kelimeler: Derin öğrenme, Android kötücül yazılım analizi, Görsel analiz 

 

I. INTRODUCTION 

 
Android mobile operating system since 2008 its debut with the HTC Dream, has been in development 

and change. This change has been also changing the World with the advent of smartphones. The 

fact that smartphones can be more useful by installing applications, the emergence of new 

applications targeting mobile phones, especially communication (like chatting, social media etc.). The 

creation of billion-dollar economies by these applications makes smartphones an integral part of daily 

life, both at the level of personal and corporate users. As the devices become more connected to the 

network, the users become more connected to their devices. All these developments have caused 

newly established enterprises and old companies to want to take part in the mobile application 

markets, thus wanting to be in constant contact with their users, and for this reason, they have changed 

their digital representations, which will serve their customers, from a web-first approach to a mobile-

first approach. These may be indicators of a paradigm shift to a mobile-centric life. The Android 

operating system, which started its journey with smartphones, continues with cars, televisions, 

watches, tablet computers and other Internet of Things applications, and today it is called the Android 

ecosystem. 

This change should also be followed and evaluated in terms of cybersecurity and information 

security. While the increasing use of mobile services in private and public institutions makes user lives 

easier, a large amount of personal and sensitive data is generated during the process. While banking 

applications were very few in the first years of smartphones, the term “mobile banking” is being 

highly used today. Banks are shifting their services to mobile. Especially with the ongoing Covid-19 

pandemic that started in 2019, it becomes less preferable to receive and provide services from physical 

branches. As the emergence of new technologies brings new concepts such as blockchain and 

cryptocurrency into our lives, mobile wallets are the places where these new commodities are 

stored. Similarly, concepts such as in-app purchases, mobile payments, and near-field contactless 

payments have taken a place in our lives. These developments lead mobile devices to become the 

center of economic activities, and along with the communication capabilities of the devices, they can 

also become the center of our lives depending on the situation. This situation makes mobile 

environments a lucrative and attractive target for cyber attackers. 

Although it took 2 years for the first known malware, FakePlayer [3], to appear in the Android 

operating system, after made its debut in 2008, today it takes its place in hundreds of new malware 

systems every year. In a recent report published by Malwarebytes in 2021 [4], stated that over the 

years, the detection of malware is become more difficult and silent, and trickier. In the same report, the 

amount of detection of the adware named “HiddenAds” in 2019 is increased nearly 2.5 times, from 

288,704 to 704,418. The report shows that adware programs are still quite easy and lucrative 

“business” areas for cyber attackers. Another point that draws attention in the report is the huge 

increase in fake banking applications. While the amount of BankBot malware detected is 5,025 in 

2019, it has increased to 198,031 in 2020. In Covid19 pandemic, it’s clear that new business 

opportunities are emerging for cyber attackers. It would not be wrong to think that with the banking 

services changing to mobile, more people will be affected by these attacks. The threat of Risk 

software, a new category that has emerged in recent years, is getting worse and worse, as stated in the 

same report. Threats that remain on the device despite the factory reset are indicated in the 

report. Also, it is stated that there is cooperation among the malware programs. If a malware has 

infected a device, it installs other malware programs to the device over time. The report states that the 

panic and fear caused by the Covid-19 pandemic is used by attackers for social engineering 

attacks. This shows that attackers develop new methods and techniques according to new events and 

1 The part of this study was presented as an oral presentation in ICAIAME 2021. 
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trends and strengthens the claim that the mobile ecosystem is attractive to attackers and worth 

investing in. 

Android is unrivaled on its own. It’s an open-source operating system which is used by many 

manufacturers all around the world. There are more than 3 billion Android devices worldwide by 

2021[5]. But this freedom creates another security problem, because the devices in the ecosystem 

cannot get security updates from the manufacturer. The Android operating system is being updated 

frequently, announcing a new version almost every year. As of the date of this article, the latest 

version is Android 11 operating system, Android 12 will be released soon, but only a small of number 

of devices are lucky enough to get this new update. With the Google support policy to suspend “old” 

versions of Android operating systems for nearly three years periods, billions of devices will be 

insecure and easy targets for attackers. The Google Transparency Report [6] confirms this. According 

to this report published by Google, which reports the status of current roaming devices, the rate of 

devices that came out and received updates in the last 90 days in the last two years was announced as 

62% in January 2019, and 90% in June 2021 [Figure 1]. Although there has been an increase in the 

rates, it should be noted that these rates only cover the devices released in the last two years.  

 

Figure 1. Percentage of models with 90-day security updates [6]. 

According to the data obtained from Statista [7], the operating system distributions of the current 

devices are Android 11 17.73%, Android 10 36.47%. Considering that the oldest version released in 

the last two years is Android 10, almost half of the 3 billion devices will not get security updates from 

Google in the future. Even if supported versions get security updates, it’s up to the manufacturers to 

deliver updates to devices. As the number of unsupported devices increase, these insecure devices will 

continue to exist in the Android ecosystem and remain as potential danger in the cyber world with 

their security vulnerabilities.  When all these issues are evaluated, mobile devices that do not receive 

updates threaten cyberspace, just as garbage thrown into space or old satellites threaten real space.   

With the increase in threats, many solutions have been proposed to solve these problems, but the most 

promising are machine learning and deep learning applications. Especially, deep learning models as 

most of them have self-feature-extracting capabilities. Convolutional neural networks (CNN) are 

popular deep learning methods that have been widely used in visual analysis. By transforming 

malware to images, it’s possible to use CNNs for detection and classification of malware applications. 

The main purpose of this paper is comparing the performance of the CNN models in Android malware 

analysis. For this reason, a new method is proposed. As researchers present new CNN models, the 

number of publicly available pre-trained models are increasing. While using a fine-tune transfer 

learning approach manually on a small number of CNN models may not be challenging, as the number 

of the models increase, using the manual approach could be a challenge. The proposed method offers a 
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solution to this problem by training models in a batch instead of manual approach. The method also 

gives insight into models' fine-tune transfer learning performance in the problem domain, which could 

be useful for researchers and developers for selecting the right CNN pre-trained model for the 

problem. We couldn’t find any batch fine-tune transfer learning approach in the literature. To the best 

of our knowledge, the proposed method is one of the first, if not the first. In this paper, the proposed 

method is used for benchmarking popular CNN models’ fine-tune transfer learning performance of 

Android malware detection and classification.  The results show the best possible models for different 

problem settings, which could be useful for domain researchers and developers.  

The contributions of this study are as follows: 

● DroidMalImg visual dataset was created from the CICMalDroid2020 [1] dataset and made 

available for open access. [2] 

● Popular convolutional neural network models were trained with our proposed batch fine-tune 

transfer learning method and their performances were compared. 

 

II. RELATED WORKS 

 
Malware analysis is the study of detecting and classifying malware. Detection studies include a binary 

classification as malicious, benign, while classification studies are studies of various classes, such as 

categorical, familial. Malware analysis is performed manually or with the help of various tools by 

people with domain knowledge and expertise. This slows down the analysis work considerably and 

delays the rapid and on-site response to increasing threats. In recent years, with technological 

developments, especially with the increasing processing capacity of computers and the development of 

calculation methods based on graphics processing units, machine learning and deep learning studies 

have gained momentum and become popular in many fields. With AlexNet[8] a convolutional neural 

network which surpassed its machine learning rivals in the ImageNet[9] a competition on image 

classification, deep learning applications have gained more popularity in many fields and applications. 

These new methods and approaches also find their place in Android malware analysis studies. 

Convolutional neural networks (CNN), which is a deep learning approach also used in static analysis 

malware analysis studies, started with LeNeT[10], which was first developed by Yann LeCun et al. In 

a simple ESA architecture, the image to be introduced is transformed into a matrix, which passes 

through the convolution layers where the convolution operation is applied. In convolution layers, the 

features of the image are extracted automatically. The extracted features pass through a s down 

sampling or up sampling layers. These processes are continued throughout the convolutional layers 

and differ from architecture to architecture. The resulting feature maps are vectorized in the flatten 

layer and generate the input values of the fully connected layer. The output layer is a neuron layer with 

proper activation function to the problem. The visual classification success of CNN algorithms has 

enabled them to be used not only in visual classification, but also in malware analysis. 

In Deep4MalDroid[11], authors extracted smali formatted files from the application files and applied 

the CNN model on the opcode sequences. In the study, 3 different data sets, 1,260 malicious, 863 

benign and 2,475 malicious, 3,627 benign and 9,902 malicious, 9,268 benign were used, and the 

model obtained 98%, 80%, 87% accuracy, respectively. In MalDozer[12], API call sequences obtained 

from the “.dex” file were used. Word2vec algorithm was used in the creation of the sequences, and the 

CNN model was trained with the obtained vector. The model achieved an F1 score of 96.29% on a 

dataset which contains 37,066 malicious, 37,627 benign samples.  

People, who are visual creatures, have transformed the signals they obtained from nature into visual 

stimuli with various tools. When we think of sound waves, we often think of visual waves that appear 

on the screen of a music player. Similarly, in oscilloscopes, it provides visualization of electrical 

signals. Visualization of signals and data in a way that the human eye can perceive with various ways 

and methods and applying analysis processes on these called visual analysis. Visual analysis studies 
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are carried out on Android applications by creating images from the whole or part of the application 

file. CNN models are preferred mostly in the analyzes made on these images because of their proven 

performance on the image classification and detection. In the study named R2-D2[13] carried out in 

2018, classes.dex files extracted from applications which were collected between January 2017 and 

August 2017. Approximately, 2 million malicious and benign samples were converted into RGB 

channeled, color images. For coloring the images, the authors used a mapping method that assigns 

color based on pixel value. In the study, the authors tried the popular CNN models at that time, 

AlexNet, VGG, GoogleNet, Inception-V3, and achieved the best result with Inception-V3, with 93% 

accuracy. 

Transfer learning approach, which is based on the use of success in one field in another related field, 

shortens the time spent in the development of new methods and models, and increases the success 

achieved. In transfer learning, it is aimed to transfer the experience and learning (model weights) 

gained by the model in a similar problem to a new problem with a little adaptation. With the increase 

in the number of pre-trained models and the ease of access, transfer learning methods are becoming 

more preferred in today's studies. In the study conducted in 2020[14], the authors applied the transfer 

learning method with DenseNet121, DenseNet169, EfficientNetB7, InceptionV3, MobileNet, 

MobileNetV2, ResNet50, VGG16, VGG19, Xception and their proposed CNN model by converting 

all application files to grayscale images. The authors, who prepared two types of datasets, used the 

CICMalDroid2020 dataset to create the dataset. In the data set, which they called balanced which 

consisted of 10,878 benign and 10,878 malware samples, the CNN model they proposed obtained the 

highest accuracy with 74%. Although the study used the most CNN models, it was not specified 

whether models were fine-tuned or not. Model performances can be further increased by fine tuning. 

Fine-tuning is a method that is applied at the point where the learning performance of the model does 

not increase any more. After the model has trained with transfer learning, fine-tuning can help the 

model to get even better results. In a study called IMCFN[15] conducted in 2020, the authors trained 

proposed CNN on the ImageNet dataset and then applied transfer learning with fine-tuning method on 

the datasets consisting of malware images. Both the MalImg dataset, which consists of images of 

Windows malware, and the Android-IOT dataset, which consists of Android malware, were used for 

training and testing and samples were classified with 98.82% and 97.35% accuracy, respectively.  

 

III. MATERIALS AND PROPOSED METHOD 

 
A. LAB ENVIRONMENT 

 
All experiments were performed in the Google Colab environment. Google Colab is a Google service 

that allows interactive software development with a tool like Jupyter Notebooks. Although Colab 

distributes hardware resources according to availability, experiments were mostly carried out in an 

environment which has an Nvidia V100-SXM2 graphics processing unit with 16GB VRAM, 51GB 

system memory and 8 core virtual processor. Models were created with the Tensorflow/Keras v2.6.0 

framework. On Tensorflow version 2 and above, the Keras library is now default for creating models. 

AndroGuard v3.5.5 was used for reverse engineering of Android applications. While preparing the 

dataset, NumPy v1.19.5 was used for data processing, and Python Image Library (PIL) was used for 

creating and sizing the images. Seaborn and MatPlotLib were used to visualize the test results and 

draw plots. In order to compare the test outputs and epoch times, the benchmarking software called 

AI-Benchmark[16] was run in the experimental environment, and a total score of 34,196 was obtained, 

this value is 35,086 for the same graphics processing unit in the tool’s own rankings. For this reason, 

we estimate that the epoch times will be close to the physical environment. 
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B. DATASET 

 
In this study, we used the CICMalDroid2020 dataset to create our own image dataset. The dataset is 

one of the most up to date datasets in the time of this study. In the dataset's paper, authors claimed that 

all the applications have been collected between 2017 to 2018. It has raw application files open to the 

public which make it better for preprocessing. In the dataset, there are a total of 17,247 applications, 

including 1,515 Adware, 2,506 Banking, 4,362 Riskware, 4,822 SMS, 4,042 Benign. 

CICMalDroid2020 dataset is a categorical dataset and categorizes can be summarized as following: 

● Riskware programs are malicious applications and will not show their malicious intentions 

when they are first installed. Through remote commands from their developers, they can 

install Trojan, ransomware, or use social engineering to force device users to behave as 

expected. This unknown and dangerous nature makes them difficult to detect. 

● Banking programs are fake versions of real banking applications which try to empty out users' 

accounts. By imitating banking applications, they try to gain access to victims' bank accounts. 

As stated in the dataset paper, most of them are based on Trojan horses that can steal sensitive 

information and send it to the attacker's command and control server. 

● SMS malware uses mobile phone SMS services to read, write, or intercept SMS traffic.  They 

can send messages from the victims' device, so can subscribe to premium services without 

victims’ knowledge or consent. Since two-factor authentication or online payment methods 

mostly use SMS as the second factor of verification, these malwares are one of the most 

troublesome ones. 

● Adware programs are malicious software that forces user devices to display unwanted 

advertisements around the interface. Adware can also be part of a legitimate freemium 

application. At first, they may seem less malicious when compared to other malware 

programs, but as recent security reports show that they can download and install other types of 

malware to users’ mobile phones. 

● Benign applications are the legitimate applications that can be downloaded from the official 

Android market or third-party stores. As stated in the dataset paper, all benign applications 

were scanned with VirusTotal by authors.  

 

To use in CNN models, the selected dataset must be transformed to image based one. The steps for 

transforming dataset to image based one can be summarized as following: 

1. First, classes.dex files of applications were extracted from raw APK files with Androguard 

reverse engineering tool. Dex files are dalvik executable files that have the main logic and 

codes of the applications. 

2. With Numpy, classes.dex files were read byte by byte, as each byte becomes a pixel. Square 

root of the size of the .dex file was used for the one dimension of the square shaped image 

matrices. If the square root of file size is smaller than 224, then the minimum dimension is set 

to 224. Empty cells in the matrices filled by zeros.  

3. By using the Python Image Library tool, raw byte matrices were saved as three-channels 

(RGB) .jpeg files. In this step, all the applications in the dataset were transformed to grayscale 

jpeg images. The main reason for images to be grayscale is that this method copies one 

channel (for example red) to others (green, blue). 

4. Lastly, because dex files sizes differ from each other, images are in different sizes too. To be 

used in CNN models, Lanczos algorithm was used to down sample images to 224x224 image 

sizes.  

 

Examples of final images of the dataset have shown in Figure 2. It’s hard for the human eye to 

recognize the patterns. But benign application patterns seem to be clearer to others. There were 464 

corrupted application files in the CICMalDroid2020 dataset which cannot be extracted with the 

Androguard tool. After preprocessing, 16,783 grayscale images have been created. We named this 

image dataset as DroidMalImg and made it public[2]. Dataset has been divided into three parts: train, 

validation, and test. We have randomly sampled 80% of the images for each category and created a 
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train set, 20% for the validation set and 20% of the validation set sampled for the test set. The 

distribution of the data set is summarized in Table 1.  

 

Figure. 2. Example images of dataset. 

Table 1. DroidMalImg dataset distribution. 

Category Train Set Validation Set Test Set Total 

Adware 1,211 242 61 1,514 

Banking 2,003 400 101 2,504 

Riskware 3,124 624 157 3,905 

SMS 3,856 772 193 4,821 

Benign 3,231 646 162 4,039 

Total 13,425 2,684 674 16,783 

 

C. PROPOSED METHOD: BATCH FINE-TUNE TRANSFER LEARNING 

CNN models are one of the popular research areas in deep learning applications. Many of them are 

publicly available, pre-trained and their numbers are increasing as new models have been proposed. At 

the time of this writing, there are 25 models publicly available in Tensorflow/Keras library. As the 

numbers increase it could be useful in some situations to apply the same fine-tune transfer learning 

method on them, instead of one model. One example for this is comparison, benchmarking of fine-

tune transfer learning capabilities of models in the research area. As the number of models increases, it 

will be better to see which model can do better before investing more time. Another usage could be 



296 

 

ensemble of models, fine-tuned models can be fused together to get even better performance. For these 

reasons, a method for applying fine-tune transfer learning on more than one model was proposed. The 

method has two stages, transfer learning and fine-tuning. 

C.1. Transfer Learning 

Transfer learning is widely used in deep learning applications today. It depends on transferring one 

domain knowledge to other similar domains. Also transforming one domain to another is a useful 

method which we use in this paper. By transforming applications to images, malware classification 

problem turns into an image classification problem. 

To use our proposed method, first, we randomly selected a model from the model list which is 

Xception. We do basic hyper-parameter tuning and customization in this model. Important thing is that 

tuning and customization should not overfit the model randomly selected. We loaded weights which 

were pre-trained in ImageNet to the model. Pre-trained base model’s weights were frozen which 

means training can’t change them. We remove the top layer (output) of the model then replace it with 

our customized layers (Global average layer, dense layers and dropouts) as shown in Figure 3. ReLU 

activation function used for fully connected layer neurons and softmax activation function used for 

output layer. Nadam, which is Adam with Nesterov momentum, was used as model optimizer.  

Learning rate was set to 0.001. Between neuron layers, a dropout layer was used to avoid overfitting. 

All image inputs have been preprocessed according to the model needs using Tensorflow. This basic 

customization and hyper-parameter values applied to all the models in the list. In this stage, only 

custom added layers are trainable. All the models in the list were trained for 999 epoch with a batch 

size of 32. Validation accuracy was monitored for early stopping and if not increased in 20 epochs, 

training was stopped. 

 

Figure 3. Customized model architecture. 

C.2. Fine-Tuning 

 

In the fine-tuning stage, some of the frozen layers of pre-trained models unfreeze. This makes layers 

trainable again. Main problem in batch fine-tuning is how to unfreeze layers in all models without 

doing it by hand. If we set a rule to unfreeze the last 5 layers of a pre-trained base model, small models 

may have a big impact, but other large models may not. To overcome this issue, we proposed a new 

hyper-parameter value specific to this method which is unfreeze rate. The layers to be unfreeze are 

determined by multiplying the number of layers of the model by the unfreeze rate. In this paper, the 

unfreeze rate was set to 15% which means If a model has 100 layers, the last 15 layers will be 

unfreeze. If the number isn’t an integer, we ceil it to an integer. After unfreezing layers of the models, 

we trained all the models with the same settings as stage one, 999 epoch, 20 epoch early stopping and 

batch size is 32. Same optimizer (Nadam) in stage one was used but the learning rate was lowered 

0.0001. The number of layers and parameters that are trained in this stage is shown in Table 2.  
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Table 2. Base models and fine tune information. 

Base Model Total 

Layers 

of Base 

Model 

Trainable 

Layers of 

Base 

Model 

Total 

Parameters 

of Base 

Model 

Total 

Parameters 

(with custom 

layers) 

Fine-tuned 

total 

parameters 

(with 

custom 

layers) 

Xception[17]  132 20 20,861,480 22,259,693 8,724,589 

VGG16[18]  19 3 14,714,688 15,326,469 5,331,397 

VGG19  22 4 20,024,384 20,636,165 7,691,205 

ResNet50V2[19]

  

190 29 23,564,800 24,963,013 13,482,437 

InceptionV3[20]

  

311 47 21.,802,784 23,200,997 7,719,557 

InceptionResNetV2[21] 780 117 54,336,736 55,472,805 19,508,325 

MobileNet[22]  86 13 3,228,864 4,102,789 2,467,781 

DenseNet121[23] 427 65 7,037,504 7,911,429 2,220,933 

NASNetMobile[24]

  

769 116 4,269,716 5,160,025 2,486,453 

EfficientNetB1[25] 339 51 6,575,239 7,580,236 4,507,509 

 

IV. MATERIALS AND PROPOSED METHOD 

 
In this section, models have been evaluated by two different approaches. The first approach is to 

evaluate the categorical classification performance of the models. Since the basis of the study was 

categorical classification, the sparse categorical accuracy metric was used as the evaluation parameter. 

The difference from the categorical accuracy metric is that its calculations are not one-hot encoded but 

use integer output values. The second approach we follow is the adaptation of categorical 

classification to binary classification which is malware detection. For malware detection, the main 

issue is whether the analyzed application software is malicious or benign. Riskware, banking, SMS, 

Adware applications are collected in one class as malware and benign ones in another class. In this 

way, detection performances of categorical classification models can also be understood. It should be 

considered that these detection performances are transformations and different results can be obtained 

if the model is trained for detection from the beginning. Also models fine-tune performance with the 

proposed method has been evaluated in this section. 

A. FINE-TUNE PERFORMANCE OF MODELS 

 

On Figure 4, the point where the fine-tuning training starts is shown with a green line. As seen, the 

effect of this method on each model is different from each other. The two most positively affected 

models were InceptionResNetV2 and DenseNet121, with increases of 5.9% and 5% on validation 

dataset accuracy. On the other hand, the result of the method on MobileNet, VGG16 models was 

destructive and negatively affected the performance of the models. To avoid this situation, the best 

model values obtained so far were saved as model weights, and these saved weights were not changed 
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unless the model reached a better point. In this way, the models were not affected by the destructive 

effect of the method, so they can only benefit from the positive effect in the fine-tune stage. Another 

way could be tuning the unfreeze rate of the method. As a result of the training, the models are shown 

in Table 3 in order, according to the categorical classification accuracy on the validation data set. In 

the same table, test dataset accuracies are also shown. If the test set wasn’t used the best model seems 

to be Xception with the validation accuracy of 93.62%, but the best model on the test dataset is 

DenseNet121 with 94.51% accuracy. For better decision, malware detection performance of the 

models could be checked. The detection performances of the models are shown in Table 4,5. In 

malware detection, DenseNet121 has clearly shown better performance on both test and validation 

datasets. As the problem changes, the best model for the problem seems to be changed. 

 

 

Figure 4. Fine-tune effect on performance of models. 

Table 3. Categorical classification performance of models on validation and test dataset. 

Model Transfer 

Learnin

g 

Validati

on 

Accurac

y (%) 

Fine-

Tune 

Validati

on 

Accurac

y (%) 

Fine-

Tune 

Test 

Accura

cy (%) 

Transf

er 

Learni

ng 

Total 

Epoch

s 

Transf

er 

Learni

ng 

Epoch 

Time 

(sec) 

Fine 

Tune 

Epoc

hs 

Fine 

Tun

e 

Epo

ch 

Tim

e 

(sec) 

Xception 92.06 93.62 93.91 120 25 81 30 

EfficientNetB1 89.41 93.36 93.91 127 19 91 24 

VGG19 89.49 93.25 93.17 89 25 162 28 

DenseNet121 88.74 93.18 94.51 104 21 121 27 

ResNet50V2 91.35 93.10 93.91 94 19 94 24 

InceptionResNe

tV2 

87.59 92.80 92.13 71 39 57 48 

InceptionV3 88.52 92.43 91.24 94 18 62 21 

NASNetMobile 90.64 92.25 92.58 129 20 62 29 

MobileNet 90.64 90.64 90.94 81 10 240 11 

VGG16 89.23 89.23 90.65 71 21 29 23 
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Table 4. Malware detection performance on validation dataset. 

Model F1 

score 

 

(%) 

Accuracy 

 

 

(%) 

Precision 

 

 

(%) 

Recall 

 

(%) 

True 

Negative 

Rate 

(%) 

False 

Negative 

Rate 

(%) 

False 

Positive 

Rate 

(%) 

Xception 98.50 97.72 98.47 98.52 95.20 1.47 4.79 

EfficientNetB1 98.45 97.65 98.38 98.52 94.89 1.47 5.10 

VGG19 98.52 97.76 98.76 98.28 96.13 1.71 3.86 

DenseNet121 98.57 97.83 98.86 98.28 96.43 1.71 3.56 

ResNet50V2 98.30 97.42 98.28 98.33 94.58 1.66 5.41 

InceptionResNetV2 98.38 97.54 98.38 98.38 94.89 1.61 5.10 

InceptionV3 98.41 97.57 98.09 98.72 93.96 1.27 6.03 

NASNetMobile 98.00 96.98 98.32 97.69 94.73 2.30 5.26 

MobileNet 97.94 96.90 98.65 97.25 95.82 2.74 4.17 

VGG16 97.81 96.68 97.69 97.93 92.72 2.06 7.27 

 

Table 5. Malware detection performance on test dataset. 

Model F1 

score 

 

(%) 

Accuracy 

 

 

(%) 

Precision 

 

 

(%) 

Recall 

 

(%) 

True 

Negative 

Rate 

(%) 

False 

Negative 

Rate 

(%) 

False 

Positive 

Rate 

(%) 

Xception 97.85 96.73 97.66 98.04 92.59 1.95 7.40 

EfficientNetB1 97.76 96.58 97.10 98.43 90.74 1.56 9.25 

VGG19 98.05 97.03 97.49 98.63 91.97 1.36 8.02 

DenseNet121 98.05 97.03 97.85 98.24 93.20 1.75 6.79 

ResNet50V2 97.57 96.29 97.09 98.04 90.74 1.95 9.25 

InceptionResNetV2 97.46 96.14 97.27 97.65 91.35 2.34 8.64 

InceptionV3 97.66 96.43 97.28 98.04 91.35 1.95 8.64 

NASNetMobile 97.56 96.29 97.46 97.65 91.97 2.34 8.02 

MobileNet 96.65 94.95 97.42 95.89 91.97 4.10 8.02 

VGG16 97.17 95.69 96.89 97.46 90.12 2.53 9.87 

 

 

 



300 

 

V. CONCLUSION 

 
The number of devices using the Android operating system is increasing day by day, the security 

update support of the devices lasts for about 3 years for each Android version, but even if the relevant 

version receives a security update, these updates are not offered by the device manufacturers or are 

offered late. All these devices are seen as profitable targets for attackers. As stated in the study, these 

vulnerable devices pose a potential threat in cyberspace, just as old satellites threaten space. Against 

these threats, studies using machine learning and deep learning are becoming widespread. Deep 

learning applications, with their ability to extract features, may be more suitable solutions. 

As public and pre-trained deep learning models increase, selecting a model for a problem becomes 

harder. To overcome this issue, we proposed a batch fine-tune transfer learning method which can be 

used to compare models for their fine-tune transfer learning capabilities in that domain. This method 

can give researchers, developers insight about overall performance of the models in the problem 

domain. Before investing more time to model, seeing overall performance could be a good start. In our 

domain as Android malware analysis, with the proposed method, we trained and compared popular 

pre-trained CNN models. Both Xception and DenseNet121 got high accuracy results in categorical 

classification and detection on validation and test datasets.  
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