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ABSTRACT 
 

Estimation of error-invariable models is a specific problem in different fields such as medicine, economics, 

industry, and biostatistics. The main different between classical regression and error-in-variable models is that 

explanatory variables involve random error terms. Therefore, classical estimation methods that do not include the 

necessary adjustments for the contaminated explanatory variables give biased results. Regarding the error-in 

variables, there are important studied in the literature such as [1], [2], [3], [4], [5] and [6].  In this paper, 

nonparametric regression with measurement error is considered and estimated by kernel smoothing estimator 

which is studied detailed by [6]. This paper differs from their study with the idea of using two different kernel 

functions to compared them on quality of estimations. These functions are suitable for different error behaviors 

(see [7]).  The goal of the paper is encouraged by a Monte Carlo simulation study and results are presented. 
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1. INTRODUCTION 
 

The regression models are used in a number of science fields such as economics, medicine, biostatistics 

and so on. Usually, in classical regression models, explanatory variables are assumed as measured 

without errors. However, in in the real world, this assumption is not always ensured since variables are 

contaminated by error. In this paper, two different approaches are introduced to estimate a nonparametric 

regression model with errors-in-variables (EIV) based on kernel deconvolution method. There are 

different kinds of kernel functions that used in the deconvolution process. This study aims to show the 

effects of two common kernel functions to the estimation of the nonparametric model. Suppose that we 

are interested in relationship between a response variable 𝑌 ∈ 𝑅+ and a covariate 𝑋 ∈ 𝑅. In the classical 

nonparametric regression problem, the purpose is to estimate a regression function 𝑚(. ), using a sample 
{𝑌𝑖, 𝑋𝑖}𝑖=1

𝑛  : 

 𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜀𝑖,   𝑎 = 𝑋1 < ⋯ < 𝑋𝑛 = 𝑏   (1.1) 

 

where the 𝜀𝑖~𝑁(0, 𝜎2)    and variance 𝜎𝜀
2, and m(.) is an unknown smooth regression function to be 

estimated. Therefore, we observe a new updated dataset ( 𝑌1, 𝑊1), … . , ( 𝑌𝑛, 𝑊𝑛), where 

 

     𝑊𝑖 = 𝑋𝑖 + 𝑈𝑖  
 𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜀𝑖,   𝐸(𝜀𝑖|𝑋𝑖) = 0.                               (1.2) 

 

Here 𝑋𝑖 ′s have measurement error,  𝑌𝑖  and 𝑊𝑖′s are the observed variables, and 𝜀𝑖 ′s are the model or 

regression errors, while 𝑈𝑖′s are the so called-measurement errors.  
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The key idea of this study is to estimate  𝑚(. ) in a nonparametric regression model with when the 

covariate is subject to measurement error. Figure 1 shows the data with measurement error. Black dots 

denote the covariate with errors and red dots Show the covariate without errors. The main problem can 

be said as the presence of measurement errors leads to biased and inconsistent parameter estimates. This 

paper aims to introduce two modified estimators for estimation of the nonparametric regression that 

solve the EIV problem.  

 
 

Figure 1. Generated dataset with measurement error 

 

This estimation problem based on model (1.2), referred to as an errors-in-variables problem, has 

attracted great attention in the literature. Examples of these works include [1], [2], [3], [8], [4], [9], [5], 

[6]. 

 

Remain of the paper is organized as follows: In Section 2, derivation of the estimators is introduced. 

Section 3 presents some statistical properties of the method. Section 4 involves the simulation study and 

conclusions are given in Section 5.  

 

2. DERIVATION of THE ESTIMATORS for EIV MODEL 

In the regression analysis with measurement error, one needs first to make some identification 

assumptions on variables and their dependence relationships.  The following assumptions to assure that 

the model is identifiable. 

Assumptions: 

A1. The random error vector 𝑈 has a known distribution, and it is mutually independent of 𝑋, and 𝑌. 

A2.The measurement error 𝑈, the model error 𝜀, and the covariate 𝑋 are independent mutually and 

satisfy  𝐸(𝑈) = 0, 𝑉𝑎𝑟(𝑈) = 𝜎𝑢
2, 𝐸( 𝜀) = 0, 𝑉𝑎𝑟( 𝜀) = 𝜎 𝜀

2. 

A3. The random error vector 𝑈 has a known distribution, and it is mutually independent of 𝑋 and 𝑌. 

 

Let 𝑊𝑖 = 𝑋𝑖 + 𝑈𝑖, 𝑖 = 1,2, … , 𝑛 be a random sample from the distribution of 𝑊𝑖 = 𝑋𝑖 + 𝑈𝑖. One of the 

main problems in errors in variable regression is to estimate the density function 𝑓𝑋 (. ) of a random 

variable 𝑋. From A3 we see that the distribution of 𝑈 is known, and that 𝑋 and 𝑈 are independent. We 
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assume that the unobservable 𝑋𝑖 ′s have probability distribution function 𝐹𝑋 and probability density 

function 𝑓𝑋, and the 𝑈𝑖 ′s have a known density function 𝑓𝑈. Then the observations from random variable 

𝑊𝑖 = (𝑋𝑖 + 𝑈𝑖  ) have the probability density function, given by 

𝑓𝑊(𝑤) = ∫ 𝑓𝑋(𝑤 − 𝑥)𝑓𝑈(𝑥)𝑑𝑥 = 𝑓𝑋 ∗ 𝑓𝑈        (2.1) 

 

where "∗" indicates convolution of the two density functions. Supposing 𝑓𝑈  is known we consider 

estimating 𝑓𝑋 from a set of independent data points {𝑊𝑖, 𝑖 = 1, … , 𝑛} with ordinary probability density 

function 𝑓𝑊. Since the variables 𝑋1, … , 𝑋𝑛 are not directly observable due to the measurement error, 

𝑓𝑋(.) will be estimated from the data 𝑊𝑖 = 𝑋𝑖 + 𝑈𝑖. This procedure, the problem of estimating the 

density 𝑓𝑋 from the values 𝑊𝑖 by using the convolution density 𝑓𝑊 (2.1), is often referred to as a non-

parametric deconvolution problem. 

 

In the deconvolution problem, the first operation is to estimate the density 𝑓𝑊 of the values 𝑊𝑖. 

Therefore, we consider a problem of density estimation that can be solved by different methods. But we 

see that the focus at this stage is on the Fourier transform and kernel smoothing. Let 𝜙𝑋(. ) =

𝐸(𝑒𝑖𝑡𝑥),  𝜙𝑊(. ) = 𝐸(𝑒𝑖𝑡𝑤), 𝑎𝑛𝑑 𝜙𝑈(. ) = 𝐸(𝑒𝑖𝑡𝑢)  indicate the characteristic functions of 𝑋,  𝑊 and 

𝑈, respectively. Suppose that 𝜙𝑈(𝑡) ≠ 0 and for all 𝑡 ∈ 𝑅. An inverse Fourier transform provides that 

the density function 𝑓𝑋 of random variable 𝑋  which is defined as follows 

 

𝑓𝑋(𝑥) = (2𝜋)−1 ∫ 𝑒−𝑖𝑡𝑥𝜙𝑋

+∞

−∞

(𝑡)𝑑𝑡 = (2𝜋)−1 ∫ 𝑒−𝑖𝑡𝑥
𝜙𝑊(𝑡)

𝜙𝑈(𝑡)

+∞

−∞

𝑑𝑡                    (2.2) 

 

Since that 𝑋 and 𝑈 are assumed to be independent, 𝜙𝑋(𝑡) =
𝜙𝑊(𝑡)

𝜙𝑈(𝑡)
 . Note that a naive estimator of the 

density 𝑓𝑋 can be computed by using the equation (2.2). However, in practice, this estimator is unstable 

because the sample characteristic function has large variations at its tails. To avoid this problem, the 

estimation of 𝑓𝑋 can be expressed by its kernel estimator:  

 

𝜙̂𝑊(𝑡) = (2𝜋)−1 ∫ 𝑒𝑖𝑡𝑤𝑓𝑊(𝑤)
+∞

−∞

𝑑𝑤 =  (2𝜋)−1 ∫ 𝑒𝑖𝑡𝑤
1

𝑛ℎ
∑ 𝐾 (

𝑤 − 𝑊𝑖

ℎ
) 

𝑛

𝑖=1

+∞

−∞

𝑑𝑤         (2.3) 

 

where 𝑓𝑊(𝑤) is the ordinary kernel probability density estimator of the density function 𝑓𝑊, ℎ >  0 is 

a bandwidth or smoothing parameter.  

 

𝐾(. ) is a measurable function (or kernel function) that satisfies the following properties: 

∫ 𝐾(𝑥)𝑑𝑥 = 1 , ∫ 𝑥𝐾(𝑥)𝑑𝑥 = 0 , 𝜇2 = ∫ 𝑥2𝐾(𝑥)𝑑𝑥 < ∞ , 𝐾(𝑥) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑎𝑛𝑑  𝐾(𝑥) = 𝐾(−𝑥) 

 

These properties denote that a kernel function needs to be symmetric, and continuous probability density 

function with mean zero and constant variance. It is also noted that the smoothing parameter ℎ should 

be chosen optimally in kernel estimation. A large ℎ > 0 provides an extremely smooth estimate, while 

a small ℎ > 0 produces a wiggly function curve. In this context, the generalized cross validation (GCV) 

method is used to determine the parameter h that gives the required amount of smoothness. If 𝐾(𝑥) is a 

kernel function, then 𝐾(𝑥) = 𝐾(𝑥/ℎ) is also a kernel function based on h, a positive bandwidth 

parameter.  Note that the resulting deconvolution kernel estimator for the density 𝑓𝑋 based on 𝜙̂𝑊(𝑡) in 

(2.3), discussed by [10] is defined by    

𝑓𝑋(𝑥) = (𝑛ℎ)−1 ∑ 𝐾𝑈 (
𝑥 − 𝑊𝑖

ℎ
)     

𝑛

𝑖=1

                                                   (2.4) 
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The main difference of the study from the others is to use two types of 𝐾𝑈(. ) that are introduced in [6] 

obviously;  

𝐾𝑈
1(𝑡) =

1

√2𝜋 (1 −
𝜎2

ℎ2)

𝑒

−
𝑡2

2(1−
𝜎2

ℎ2)
,   𝐾𝑈

2(𝑡) =
1

√2𝜋
𝑒−

𝑡2

2 (1 + (
𝜎

ℎ
)

2

(1 − 𝑡2))                 (2.5) 

 

Note that  𝐾𝑈
1(𝑡) provides satisfying estimates when the magnitude of the error variance is small. 𝐾𝑈

2(𝑡) 

works under general cases.  This study aims to put forward their behaviours under EIV model estimation 

in nonparametric setting. 

 

2.1. Nonparametric Kernel Estimator with EIV 

After the sloution of the deconvolution problem, nonparametric regression model is estimated by using 

any smoothing method in the literature such as Local Polynomial smoothing, Kernel smoothing, 

smoothing splines etc…In this study, Kernel smoothing is determined to estimate the model. Thus, 

difference between kernel functions used in deconvolution process can be inspected more easily.  

Because other smoothing techniques have additional parameters to be selected. Let 

(𝑋1,  𝑍1), … , (𝑋𝑛,  𝑍𝑛) show a random sample from a pair of random variables (𝑋, 𝑍) and let 𝐾(. ) present 

a kernel function. To describe the deconvolution kernel approach, we first consider a classical 

nonparametric regression model in which 𝑋𝑖 ′s are not contaminated. 

 

The kernel estimator of the regression function in model (1.1) is obtained as follows 

 

                                         𝑚̂(𝑥) = ∑ 𝐾 (
𝑥−𝑋𝑖

ℎ
)  𝑍𝑖  𝑛

𝑖=1  ∑ 𝐾 (
𝑥−𝑋𝑖

ℎ
)𝑛

𝑖=1⁄       

= (𝑛ℎ)−1 ∑ 𝐾 (
𝑥 − 𝑋𝑖

ℎ
)  𝑍𝑖 

𝑛

𝑖=1

𝑓𝑋(𝑥) =
𝑔(𝑥)

𝑓𝑋(𝑥)
⁄                                     (2.6) 

 

where 𝑓𝑋(𝑥) denotes the kernel estimator of the marginal probability density function 𝑓𝑋 of covariate 𝑋, 

whereas  𝑔(𝑥) shows the kernel estimator of the joint density function 𝑔(𝑋, 𝑍) of  (𝑋, 𝑍).  Note that the 

estimator in (2.6) expressed as the ratio of two density functions is known as the Nadaraya-Watson 

estimator proposed by [11-12]. Now we consider the right censored nonparametric regression model 

with measurement errors.  

 

Since the variables 𝑋1, … , 𝑋𝑛 are not directly observable, the kernel estimator 𝑓𝑋(𝑥) given in (2.4) is 

constructed by the deconvolution method (2.1). Based on this idea, we replace the estimators of 

denominator of the equation (2.6) with the deconvolution kernel estimator (2.4). Note also that the 

estimator of the numerator in the same equation should be constructed from the contaminated 

observations 𝑊𝑖
′𝑠. In keeping with the spirit of deconvolution kernel density estimator, we propose to 

replace 𝑔(𝑥) in (2.6) with  

𝑔(𝑥) = (𝑛ℎ)−1 ∑ 𝐾𝑈 (
𝑥 − 𝑊𝑖

ℎ
) 𝑌𝑖  

𝑛

𝑖=1

                                               (2.7) 

 

Accordingly, the estimate of 𝑚(. ) at fixed 𝑥 (expressed by 𝑚̂𝐷𝐾𝐸  (𝑥; ℎ)) can be computed as 

 

𝑚̂𝐷𝐾𝐸(𝑥; ℎ) =
𝑔(𝑥)

𝑓𝑋(𝑥)
∑ 𝐾𝑈 (

𝑥 − 𝑊𝑖

ℎ
) 𝑌𝑖

𝑛

𝑖=1

 ∑ 𝐾𝑈 (
𝑥 − 𝑊𝑖

ℎ
) = ∑ 𝑊𝑖

𝑛

𝑖=1

(𝑥, 𝑊𝑖)𝑌𝑖 = 𝑌̂𝑖     

𝑛

𝑖=1

⁄      (2.8) 
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where 𝑓𝑋(𝑥) and 𝐾𝑈’𝑠 are defined by (2.5). Note that the deconvoluted kernel regression estimator 

(denoted by 𝒎̂ℎ
𝐷𝐾𝐸 ) can be rewritten in the following matrix and vector form 

 

𝑚̂ℎ(𝑥) = (𝑚̂ℎ(𝑋1), … , 𝑚̂ℎ(𝑋𝑛))
′

= 𝒎̂ℎ
𝐷𝐾𝐸 = 𝑺ℎ

𝐷𝐾𝒀 = 𝒀̂𝐷𝐾𝐸       (2.9) 

 

where 𝒀 = (𝑌1, … , 𝑌𝑛)′ is the vector of the censored response observations and 𝑺ℎ
𝐷𝐾 is a deconvoluted 

kernel (DK) smoother matrix defined by kernel weights multiplied with (𝑛ℎ)−1: 

 

𝑊𝑖(𝑥, 𝑊𝑖) =  𝐾𝑈 (
𝑥 − 𝑊𝑖

ℎ
)  ∑ 𝐾𝑈 (

𝑥 − 𝑊𝑖

ℎ
) = 𝐾𝑈  ∑ 𝐾𝑈⁄

𝑛

𝑖=1

⁄                           (2.10) 

 

with a smoothing parameter ℎ, which is a nonnegative scaler determining the degree smoothness of 

curve obtained by 𝒎̂ℎ
𝐷𝐾𝐸. 

 

Based on the ideas of [7], the smoothness of distribution of a random variable 𝑋 is described in terms 

of the function 𝜙𝑋(𝑡)𝑎𝑠 𝑡 → ∞.  Note that the optimal rates of convergence for the deconvoluted 

estimator given in this study depends on the degree (b) of smoothness of the error distributions. The 

optimal rates of convergence for these estimators also depend on the smoothness of function 𝑚(𝑥) and 

the regularity conditions on the marginal density function. Essentially, these conditions are based on the 

following assumptions: 

 

Assumptions: 

B1. The marginal density 𝑓𝑋(. ) of the unobserved variable 𝑋 is bounded away from on 0 on [𝑎, 𝑏], 
where 𝑎 < 𝑏, and has a bounded 𝑘𝑡ℎ derivative, where 𝑘 is a positive scaler.  

B2. The characteristics function of error distribution 𝜙𝑈(. ) does not vanish 

B3. The nonparametric regression function 𝑚(𝑥) has a continuous 𝑘𝑡ℎ derivative on [𝑎, 𝑏] 
B4. The second moment 𝐸(𝑌2|𝑋 = 𝑥) is continuous on [𝑎, 𝑏] and also, 𝐸(𝑌2) < ∞. 

B5. The distribution of the measurement error variable 𝑈 is ordinary smooth or super smooth 

 

3. STATISTICAL PROPERTIES OF ESTIMATOR 

 

In this section, some statistical properties are introduced with Definition 2.1-2.2. 

 

Definition 5.1: The distribution of random variable 𝑈 is stated to be super smooth of degree 𝑏: if the 

characteristic function of the error distribution 𝜙𝑈(. ) satisfies 

 

𝑑0|𝑡|𝑏0𝑒𝑥𝑝 (−
|𝑡|𝑏

𝛾
) ≤ |𝜙𝑈(𝑡)| ≤ 𝑑1|𝑡|𝑏1𝑒𝑥𝑝 (−

|𝑡|𝑏

𝛾
)  𝑎𝑠 𝑡 → ∞                 (3.1) 

where 𝑑0, 𝑑1, 𝑏 and γ are nonnegative constants and 𝑏0, 𝑏1 are constants. 

 

Definition 5.2: The distribution of random variable 𝑈 is expressed to be ordinary smooth of degree 𝑏: 

if the tail of the characteristic function 𝜙𝑈(. ) satisfies 𝜙𝑈(𝑡) ≠ 0 for all 𝑡 ∈ 𝑅, and if there are 

nonnegative constants 𝑑0, 𝑑1, 𝑏 such that  

 

𝑑0|𝑡|−𝑏 ≤ |𝜙𝑈(𝑡)| ≤ 𝑑1|𝑡|−𝑏 𝑎𝑠 𝑡 → ∞    (3.2) 

 

The typical examples of super smooth distributions are normal 𝑁(0,1) distribution with 𝑏 = 2, Cauchy 

([𝜋(1 + 𝑥)]−1) distribution with 𝑏 = 1, and their mixtures. The examples of ordinary smooth 
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distributions are gamma distribution (
𝛼𝑝𝑥𝑝−1𝑒𝑥 𝑝(−𝛼𝑥)

𝛤(𝑝)
) of degree p with 𝑏 = 𝑝 and Laplace or double 

exponential (2−1𝑒𝑥𝑝(−|𝑥|)) distributions with 𝑏 = 2, symmetric gamma and their mixtures (see, for 

example, [7], [1] and [13]).  

 

3.1. Bandwidth Selection 

 

It is useful to denote the deconvoluted estimators evaluated at the design point (𝑚̂ℎ(𝑋1), … . , 𝑚̂ℎ(𝑋𝑛)) 

as a linear operator: 

𝒎̂ℎ = 𝑺ℎ𝒀∗ = 𝒀̂ 

 

where 𝑺ℎ: 𝑅𝑛 → 𝑅𝑛 is a smoother matrix. The considered kernel estimator in this paper need a choice 

of bandwidth parameter ℎ. In this context, the aforementioned parameter ℎ can be selected by 

minimizing the generalized cross validation (GCV) criterion (see [14]), defined by 

 

𝐺𝐶𝑉(ℎ) =
1

𝑛
‖(𝑰 − 𝑺ℎ)𝒀∗‖2  [

1

𝑛
𝑡𝑟(𝑰 − 𝑺ℎ)]

2

⁄ =
𝑛[𝑅𝑆𝑆(ℎ)]

[𝐸𝐷𝐹(ℎ)]2
                                   

 

where 𝑅𝑆𝑆(. ) means the residual sum of squares while 𝐸𝐷𝐹(. ) refers to the equivalent degrees of 

freedom. Our task in this section is to choose the optimum value of ℎ. The optimum ℎ can be achieved 

by using the mean summed squared error (MSSE), given by 

 

𝑀𝑆𝑆𝐸(𝒎̂ℎ , 𝒎) = ‖(𝑺ℎ − 𝑰)𝒎‖2 + 𝜎𝜀
2𝑡𝑟(𝑺ℎ𝑺′

ℎ)                               (3.3) 
 

Since the optimal 𝑀𝑆𝑆𝐸(𝒎̂ℎ)  in (3.3) depends on the unknown amount of 𝜎𝜀
2, it cannot be directly 

applied in practice. In this case, as in classical linear regression, the variance 𝜎𝜀
2 can be estimated by the 

sum of residual squares; 

𝜎̂2 =
𝑅𝑆𝑆(ℎ̂)

𝐸𝐷𝐹(ℎ̂)
=

‖(𝑰 − 𝑺ℎ̂)𝒀∗‖2

𝑡𝑟(𝑰 − 𝑺ℎ̂)
                                                     (3.4) 

 

4. Simulation Study 

 

Data generation:  

Regarding to model (1.2), 𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜀𝑖 with 𝑊𝑖 = 𝑋𝑖 + 𝑈𝑖, each variable is obtained as:  

𝑋𝑖~𝑈𝑛𝑖𝑓(0,3) ;   𝜀𝑖~𝑁(𝜇𝜀 = 0, 𝜎𝜀
2 = 0.5),   𝑈𝑖~𝑁(𝜇𝑈 = 0, 𝜎𝑈

2);   𝑚(𝑋𝑖) = −𝑊𝑖𝑠𝑖𝑛−𝑊𝑖) 

 

Simulation Design:  

• Simulation experiments are performed for three samples of size 𝑛 = 50, 150 and  300, and all 

simulation combinations are repeated 1000 times.   

• Also, three values of 𝜎𝑈(𝑖. 𝑒. , 𝜎𝑈 = 0.05, 0.2, 0.5) are examined to understand how the methods 

work at different levels of variance. 

 

Bandwidth selection is made by GCV in simulation and it is shown in the Figure 1. The «ℎ» value is 

determined as an optimal bandwidth which minimizes the GCV criterion. 
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Figure 1. Bandwidth selection with GCV for KS 

 

Then, outcomes of the estimated nonparametric models with measurement errors can be given. To 

measure the risk and performance of the mentioned methods, MSSE is used. Also, to evaluate risk of 

the methods, relative efficiency (RE) is used that is defined before. From that Table 1 involves the MSSE 

and RE values are given below for all simulation configurations. Results show that 𝐾𝑈
1(. ) and 𝐾𝑈

2(. ) 

give close scores for lower variance values. However, when the variance is getting larger, 𝐾𝑈
1(. ) gives 

better scores which ensures our claim.   

 
Table 1. MSSE and RE scores 

 
  𝐾𝑈

1(. ) 𝐾𝑈
2(. ) 

 𝜎𝑈 MSSE RE MSSE RE 

50 

0.05 0.306 0.939 0.326 1.065 

0.20 1.015 0.979 1.037 1.022 

0.50 1.104 0.745 1.481 1.341 

150 

0.05 0.284 1.229 0.231 0.813 

0.20 0.789 1.467 0.538 0.682 

0.50 0.840 0.815 1.031 1.227 

300 

0.05 0.121 0.786 0.154 1.273 

0.20 0.672 0.908 0.740 1.101 

0.50 0.739 0.624 1.185 1.604 

 

Figure 2 shows the fitted curves based on different scenarios. The two plots at the top denote the 

estimated functions based on the first kernel deconvolution function 𝐾𝑈
1(. ) and the two at the bottom 

represent the 𝐾𝑈
2(. ). If plots are inspected in detail, it can be seen that 𝐾𝑈

1(. ) gives better in general. 

However, two functions are highly close to each other when 𝜎𝑢 = 0.05.     
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Figure 2. Fitted functions with KS under EIV 

 

5. CONCLUSIONS 

 

This paper focused on the estimation of the data with measurement error by using two different kernel 

deconvolution methods that are notated 𝑎𝑠 𝐾𝑈
1(. ) and 𝐾𝑈

2(. ). Note that 𝐾𝑈
2(. ) Works well for lower 

variance of error of nonparametric covariate 𝑈, 𝜎𝑢 and 𝐾𝑈
1(. ) is used in general cases. Accorndingly, 

two nonparametric estimators are introduced based on kernel smoothing approach. To show estimation 

performances of the mentioned methods practically, a simulation study is carried out. Based on the 

results, as we claimed, 𝐾𝑈
1(. ) gives better scores in terms of  MSSE and RE measures. However, 𝐾𝑈

2 (.) 

shows itself when variance is low.  Also, the comparative results from numerical studies and Figure 2 

show that Kernel smoothing gives satisfying fitted curves that can be recommended to estimate 

nonparametric model with measurement error.  
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