
   
Bingol University Journal of Technical Science

Cilt:2 Sayfa: 8-15, 2021
Makalesi

Volume:2, Number: 1, Page: 8-15, 2021
Research  Article

 

8 
 

* Ricci Solitons and Symmetries of Type D Gravitational Fields in 
Spacetime Manifolds 

 Mohd. Danish Siddiqi* 

*Jazan University Faculty of Science Department of Mathematics. Jazan, Kingdom of Saudi Arabia. 
e-mails: msiddiqi@jazanu.edu.sa  

 
 (Arrival: 02.06.2021, Acceptance: 01.07.2021, Published: 09.07.2021) 

Abstract 

In the present research paper we study * Ricci solitons with a physical interpretation of the 
notion of the vector field associated with * Ricci solitons. We investigate the geometrical 
symmetries of Petrov type D gravitational fields along the vector field also associated with * 
Ricci solitons. 
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1. INTRODUCTION 

In general theory of relativity, the curvature tensor describing the gravitational field mainly 
consists of two parts viz, the matter part and the free gravitational part. The interaction between 
these two parts is described through Bianchi identities. For a given distribution of matter, the 
construction of gravitational potent
of all studies in gravitational physics and this has often been achieved by imposing symmetries 
on the geometry compatible with the dynamics of the chosen distribution of matter. The 
geometrical symmetries of the space time are expressible through the vanishing of the Lie 
derivative of certain tensors with respect to a vector. 

In differential geometry and theoretical physics, the Petrov classification (also known as 
Petrov Pirani Penrose classification) describes the possible algebraic symmetries of the Weyl 
tensor at each event in a Lorentzian manifold. 

It is most often applied in studying exact solutions of Einstein's field equations, but strictly 
speaking the classification is a theorem in pure mathematics applying to any Lorentzian 
manifold, independent of any physical interpretation. The classification was found in 1954 
by A. Z. Petrov and independently by Felix Pirani in 1957. 

The following Figure 1 show the Penrose diagram of the possible degeneration of the Petrov 
type of the Weyl tenosr. 
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Figure: 1. Penrose Diagram 

The nature of the gravitational radiation from a bounded source is an important physical 
problem. Even reasonably far from the source, however, twisting type D solutions of the 
vacuum field equations are required for an exact description of that gravitation. It is well known 
fact that Petrov type D solutions of the Einstein vacuum equations are among the most 
interesting of all empty spacetime metrics [15]. The physical importance, they represent 
spacetime with gravitational radiation while mathematically they form a class of solution of 
Einstein equations which should be possible to be determined explicitly. 

Recently geometric flows have become important tools in Riemannian geometry and general 
relativity.  In [8] B. List has studied a geometric flow whose fixed points corresponds to static 
Ricci flat spacetime which is nothing but Ricci flow pullback by a certain diffeomorphism. The 
association of each Ricci flat spacetime gives notion of local Ricci soliton in one higher 
dimension. The importance of geometric flow in Riemannian geometry is due to Hamilton who 

sapcetime for static metric [8]. He has given system of flow equations whose fixed points solve 
the Einstein free-scalar field system [8]. This observation is useful for the correspondence of 
solutions of system i.e., Ricci soliton and symmetry property of sapcetime, that how 
Riemannian space (or spacetime) with Ricci Soliton deals different kind of symmetry 
properties. 

Ricci solitons generate self-similar solutions to Ricci flow. Ricci solitons is the generalization 
of Einstein metrics 

           (1.1) 

In 1959, S. Tachibana [17] introduced the notion of * Ricci tensor 

( ( , ))ijR trace R X Y
          (1.2) 

Definition. A pseudo Riemannian merric g on M is called * Ricci solitons if 

2 2 0V ij ijL g R g           (1.3)
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Now, we have following lemma[18] 

Lemma. [18] In a pseudo Riemannian manifold  a (0, 2) symmetric tensor is 

a generalized  *R tensor [18] 

ii ij ijR R g            (1.4) 

scalar function.
 

The role of symmetries in general theory of relativity has been introduced by Katzin, Levine 
and Davis in a series of papers [10,12]. These symmetries, also known as collineations, were 
further studied by Ahsan [1-4], Ahsan and Ali [5,6]. The perfect fluid spacetime including 
electromagnetic field which admit symmetry mapping belonging to the family of contracted 
Ricci colloneation, have been studied by Norris et al. [13].  The role of geometrical symmetries 
in the study of fluid spacetime, with an empgasis on conformal collineation has been studied 
by Duggal [11] and others. The different types of symmetries of Petrov type D gravitational 
fields has been subject of interest since last few decades (cf,[4]). 

Motivated by the role of symmetries and Einstein solitons, a study of vector field involved in 
the definition of Einstein solitons and symmetries of spacetime is made. The main results on 
the relation between the symmetries of Petrov type D gravitational fields and * Ricci solitons 
has been studied.  

2. PRELIMINARIES 

(a) *Ricci Solitons. A family  of the Riemannian metrics on a n-dimensional  

3n  smooth manifold M with parameter  ranging in the time interval  including 

zero Equation (1.3) of  Ricci  flow  for  and the * Ricci tensor  and curvature tensor 

 of the  satisfied. Corresponding to self similar solution of equation (1.3) is the notion of 

the local * Ricci soliton, defined as a metric  satisfying equation 

          (2.1)  

For vector field  on  and a constant . The * Ricci solitons is said to be steady (static) if 

 , shrinking  and expanding if .  The metric  is called a gradient * Ricci 

solitons if   i.e., gradient of some function . Schwarzschild metric, Akbar and Woolger 
[7] have derived the expressions around this notion; while Ali and Ahsan [6] have studied this 
concept for obtaining the Gaussian curvature of Schwarzschild solitons ad we have. 

For n-dimensional Riemannian manifold   equation (2.1) a can be written in general as 

1

2ij ij ijR L g g           (2.2) 

So far more than twentyseven different types of collineations have been studied and the 
literature on such collineations is very large abd still with results of elegance (see [4]). However, 
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here we shall mention only those symmetry assumptions that are required for subsequent 
investigation and we have 

(b)  Motion.  A spacetime is said to admit motion if there exist a vector field  such that 

           (2.3) 

equation (2.3) is known as Killing equation and vector   is called a Killing vector field [16]. 

(c) Conformal Motion. If  

            (2.4) 

Where  is a scalar, then the spacetime is said to admit conformal motion and vector field 

is called a conformally Killing vector field. 

(d) Special Conformal Motion.  A spacetime admits if special conformal motion 
 

          (2.5) 

(e) Curvature Collineation.  A spacetime admits curvature collineation if there is a vector field 

 such that 

            (2.6) 

Where  is the Riemannian curvature tensor. 

(f) Ricci Collineation.  A spacetime is said to admit Ricci collineation if there is a vector filed 
 such that 

0ijL R             (2.7) 

Where  is the Ricci tensor. 

(g) Affine Collineation. If 

         (2.8) 

Then spacetime is said to admit an affine collineation. 

(h) Weyl Projective Collineation.  A symmetry property of a spacetime is called Weyll 
projective collineation if and only if 

         (2.9) 

Where  is Weyl tensor. 
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3. MAIN RESULTS 

In this section, we shall discuss the role of * Ricci solitons in the study of Einstein spaces and 
Petrov type D gravitational fields. In 4-dimensioanl spacetime, the Weyl tensor is related to the 
Riemannian and Ricci tensors through the equation 

      (3.1) 

In NP-formalism (cf. [15]), the components of Weyl tensor are expressed by five complex 
scalars    and . Through these components the gravitational field has been 

classified into six categories type I, II, D, III and O (cf [15]).  The Weyl scalar along with 
Goldberg-Sachs theorem declares type N pure radiation field follow the conditions 

         (3.2) 

         (3.3) 

where are the spin-coefficients [15].  Ali and Ahsan [6] have obtained symmetries 

for Weyl conformal tensor. Using equations (3.1) to (3.3) and the definitions (b)-(c), we can 
write the following: 

Lemma 3.1. In type D pure gravitational fields every conformal motion, special conformal 
motion and homothetic motion, all degenerate to motion. 

From equations (1.3), (1.4)  (2.1) and (2.2), we have 

        3.4) 

         (3.5) 

Contracting this equation with ijg , we get 

        (3.6) 

Which can be expressed as 

        (3.7) 

where   is the scalar curvature. From equations (3.3) and (3.7), we get 

       (3.8) 

Now for  to be Einstein metric i.e.,   where  can be chosen as ,  equation 

(3.3) together with the definition of conformal motion gives the following results: 
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Lemma 3.2.   [14] The vector field  associated with * Ricci solitons  is conformally 
Killing if and only if  is an Einstein manifold of dimension . 

Now, using Lemmas 3.1 and 3.2, we can state the following theorem: 

Theorem 3.3.  Type D pure gravitational field admit motion along a vector field  associated 
to * Ricci solitons  if and only if M is an Einstein space. 

For Killing vector field , equation (1.4) reduces to 

ij ijR g             (3.9) 

Taking Lie derivative with respect to vector field  

0
2ij ij ij ij

R
L R L g                              (3.10) 

Thus, we have the following theorem: 

Theorem 3.4. A vector field  associated to Einstein solitons is Ricci collineation 
vector field in Type N pure radiation field if  is Einstein metric. 

Taking the Lie derivative of Christoffel symbol  

along the vector field , after the calculation we get 

                    (3.11) 

Now if  is Killing vector field, then  

                    (3.12) 

Where 

                (3.13) 

is the Riemannian curvature tensor. 

Using (3.11) and (3.12) along with the definition of affine collineation, we can have the 
following result: 

Theorem 3.5. Type N pure radiation field admit affine collineation along a Killing vector field 
 associated to Einstein solitons  if and only if M is an Einstein space. 

By the definition of Lie derivative  
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                 (3.14) 

Using the definition of Christoffel symbol and Killing vector , we have 

 

which establishes the curvature collineation, so we have. 

Theorem 3.6. A killing vector field   associated to Einstein solitons  is Curvature 
collineation vector field in type N pure radiation field if  is Einstein metric. 

The Weyl projective tensor is given by 

 for             (3.15) 

From equation (1.8) and (3.15), we can easily write. 

Lemma 3.7.  [12] In a Riemannian manifold curvature collineation implies the Weyl projective 
collineation but converse is true for empty spacetimes. 

So, the theorem 3.6 and Lemma 3.7 constitute the following: 

Corollary 3.8. A Killing vector field  associated to Einstein solitons  is Weyl 
Projective collineation vector field in type N pure radiation if  is Einstein metric. 

CONCLUSIONS 

For Einstein space different kind of symmetry properties for N pure radiation fields are 
established with the help of vector field associated with Einstein solitons. There are other 
symmetries for type N which can be obtained through the existence of Killing vectors 
corresponding to Einstein solitons. 
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