
Avrupa Bilim ve Teknoloji Dergisi 

Özel Sayı 28, S. 1469-1475, Kasım 2021 

© Telif hakkı EJOSAT’a aittir 

Araştırma Makalesi 
 

 

 

 
www.ejosat.com ISSN:2148-2683 

 

European Journal of Science and Technology 

Special Issue 28, pp. 1469-1475, November 2021 

Copyright © 2021 EJOSAT 

Research Article 

 

 

http://dergipark.gov.tr/ejosat   1469 

Turkish Traffic Sign Recognition: Comparison of Training Step 

Numbers and Lighting Conditions 

Kaan Kocakanat1*, Tacha Serif1 

1* Yeditepe University, Faculty of Engineering, Department of Computer Engineering, Istanbul, Turkey, (ORCID: 0000-0002-5906-7969, 0000-0003-1819-4926), 

kaan.kocakanat@std.yeditepe.edu.tr, tserif@cse.yeditepe.edu.tr  
  

(1st International Conference on Applied Engineering and Natural Sciences ICAENS 2021, November 1-3, 2021) 

(DOI: 10.31590/ejosat.1015972) 

 

ATIF/REFERENCE: Kocakanat, K. & Serif, T. (2021). Turkish Traffic Sign Recognition: Comparison of Training Step Numbers and 

Lighting Conditions. European Journal of Science and Technology, (28), 1469-1475. 

Abstract 

With the ever increasing number of vehicles on the roads, traffic signs are becoming more and more important every passing day. 

Despite the fact that traffic signs are simple and easy to understand, in congested traffic drivers may miss them. Considering that even 

milliseconds can make a huge difference in preventing accidents, it would make a big help if a system could assist the driver with traffic 

signs. In order to achieve this, a traffic sign recognition system needs to be implemented. Accordingly, this study aims to develop a 

Turkish traffic sign detection and recognition system using the Faster R-CNN algorithm. The proposed solution utilizes TensorFlow 

framework and specifically makes use of the Faster R-CNN Inception-v2-COCO to train the object detection model. For training 

purposes, indigenous dataset is created containing 54 classes and 10842 Turkish traffic sign images. The training process of the model 

is carried out twice with step numbers 51,217 and 200,000, respectively. Then, these two models are used to detect 10 Turkish traffic 

sign images taken both daytime and nighttime. The results indicate that the proposed system’s average precision is 67.2% and average 

recall is 78.3% when trained with 51,217 steps; on the other hand, the average precision increases to 76% and average recall to 82.8% 

when trained with 200,000 steps. 

Keywords: Turkish Traffic Signs, Traffic Sign Recognition, Faster R-CNN, Object Detection, TensorFlow. 

Türk Trafik İşareti Tanıma: Eğitim Adım Sayıları ve Aydınlatma 

Koşullarının Karşılaştırılması 

Öz 

Yollardaki araç sayısının her geçen gün artmasıyla birlikte trafik işaretleri her geçen gün daha da önem kazanmaktadır. Trafik işaretleri 

basit ve anlaşılması kolay olmasına rağmen, sıkışık trafikte sürücüler bunları gözden kaçırabilir. Milisaniyelerin bile kazaları önlemede 

büyük fark yarattığını göz önünde bulundurarak, sürücüye trafik işaretleri konusunda yardımcı olacak bir sistemin olmasının büyük bir 

fayda sağlayacağı oldukça açıktır. Bunun için bir trafik işareti tanıma sisteminin geliştirilmesi gerekmektedir. Bu makalede, Daha Hızlı 

R-CNN algoritması kullanılarak bir Türk trafik işareti tespit ve tanıma sisteminin geliştirilmesi amaçlanmaktadır. Önerilen çözüm, 

TensorFlow çerçevesi ile nesne algılama modelini eğitmek için Daha Hızlı R-CNN Inception-v2-COCO'yu kullanır. Modelin eğitilmesi 

için 54 sınıf ve 10842 adet Türk trafik işareti görüntüsünü içeren yeni bir veri seti oluşturulmuştur. Modelin eğitimi sırasıyla 51.217 ve 

200.000 eğitim adım numaraları ile iki kez gerçekleştirilir. Daha sonra bu iki model kullanılarak gündüz ve gece çekilen 10 adet Türk 

trafik işareti görüntüsü tespit edilmeye çalışılmıştır. Sonuçlar, önerilen modellerin 51.217 eğitim adımıyla eğitildiğinde ortalama 

hassasiyetin %67,2 ve ortalama hatırlamanın %78,3 olduğunu göstermektedir; Öte yandan, model 200.000 eğitim adımıyla eğitildiğinde 

ortalama hassasiyet %76'ya ve ortalama hatırlamanın da %82,8'e yükselir. 

 

Anahtar Kelimeler: Türk Trafik İşaretleri, Trafik İşareti Tanıma, Daha Hızlı R-CNN, Nesne Algılama, TensorFlow.
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1. Introduction 

Undeniably, there is a rapid growth in the number of vehicles 

globally (Davis & Boundy, 2020). As the number of vehicles in 

traffic increases, so does the level of uncertainty in the traffic 

environment. To eliminate this uncertainty and manage traffic 

flow, traffic signs are placed on the roads. They are designed to 

be easy to understand to inform drivers about the current situation 

and other important information on the road. However, accidents 

can still occur when drivers do not pay attention to the traffic signs 

(Bucsuházy et al., 2020). For this very reason, a traffic sign 

recognition (TSR) system needs to be implemented in order to 

prevent accidents. Even though there are many studies on TSR 

systems, very few of these studies do not evaluate real-life driving 

conditions, such as at night or adverse weather conditions. 

Furthermore, designing a TSR system for a specific country is 

challenging because of a lack of public datasets - i.e even though 

multiple TSR studies were undertaken for various countries in the 

literature, most of them have based their work on the German 

traffic sign datasets (Stallkamp et al., 2011), (Houben et al., 2013). 

In addition, while traffic signs in most countries may seem to be 

similar, there are actually major differences between country 

traffic signs even within the same economical regions - e.g. 

Europe, United Kingdom, Americas, Asia and Australia. Hence, 

this study aims to utilize TensorFlow to implement a Turkish TSR 

system and evaluate it both at daytime and nighttime conditions. 

Therefore, as part of this work a Turkish Traffic Sign Dataset 

containing 54 different traffic signs is created and the Faster R-

CNN Inception v2 COCO model is trained within the TensorFlow 

framework.  

Accordingly, this paper is structured as follows; section II 

describes the previous work undertaken in TSR, section III 

highlights the methods used for TSR are reviewed and elaborated 

upon, section IV analyzes the requirements for the proposed 

system and explains in detail the tools selected for the proposed 

solution. Section V describes the development of the prototype 

and the creation of the Turkish Traffic Sign Dataset for the 

proposed system, as well as the essential steps taken for training 

the model. As a follow up, section VI highlights the evaluation 

methods used and elaborates on their outcomes and findings. Last 

but not least, Section VII draws the conclusion and discusses 

possible future venues for improvement. 

2. Background 

Traffic signal detection and recognition is a popular topic in 

computer vision with a wide range of applications. Since it is 

challenging to develop a system approach capable of identifying 

various types of traffic signs, this topic has been the focus of 

several research.  

Yaliç and Can’s TSR prototype is one of the earliest examples 

of Turkish TSR prototypes in the literature. (Yaliç and Can, 2011). 

In this work, the authors develop a system for the automatic 

recognition of 52 signs in Turkish roads. Their proposed system 

first detects probable sign regions in previously recorded videos 

of roads from a moving car, and then matches each identified 

region to an existing sign in the database or classifies it as a non-

sign region. The prototype system achieves this by utilizing the 

Scale-invariant feature transform technique for feature extraction, 

and applying the normalized correlation approach for some traffic 

signs with the same shape but different angles. To create an 

evaluation content, the authors have recorded 164 traffic signs 

from a moving car at the speeds ranging between 30 to 70 km/h. 

Then this content is fed to the proposed system and it was able to 

identify 154 of the traffic signs, which sets the success rate of the 

system to around 94%. 

A novel method is proposed for detecting circular traffic 

signals (Gündüz et al., 2013). This study is unique because it uses 

a combination of the two algorithms. The proposed system 

utilizes a newly developed circle detection algorithm for circular 

TSR alongside histograms of oriented gradients (HOG)-based 

features. Thus, by estimating the circular actual borders of the 

traffic signs, an unnecessary background image can be eliminated. 

During the evaluation stage, two model classifiers, Support Vector 

Machine (SVM) and Random Forest (RF), are used on 13,541 

images containing 13 classes of German Traffic Sign Recognition 

Benchmark (GTSRB) to evaluate the performance of the 

proposed method. When only HOG-based features are used, the 

highest correct classification rate is 96.46%. On the other hand, 

when the proposed algorithm is combined with the HOG-based 

features, this rate increases to 97.17%. The most successful results 

obtained using the SVM classifier. 

Another study, which utilizes feature extraction and 

recognition of traffic sign images, is carried out by Cinar et al. 

(Cinar et al., 2020). In this study, convolutional neural networks 

(CNN) are used to extract the image features and then the obtained 

image features are classified using the RF method. As part of this 

study, a dataset created by authors containing 1500 images of 14 

Turkish traffic signs to extract 1000 features. The evaluation of 

the system resulted with a 93.7% success of the proposed 

classifier. 

Irfan and Galip used the TensorFlow framework to detect and 

recognize traffic signs in Turkey (Kilic & Aydin, 2020). To 

achieve this, the authors created a Turkish Traffic Sign Dataset 

with 1250 pictures under diverse traffic and weather conditions, 

containing 41 distinct traffic signs. The dataset is trained on the 

Faster R-CNN Inception V2 COCO model using the TensorFlow 

framework and the model is trained with 200,000 steps. In the 

evaluation of the proposed system, 313 images were used and the 

system detected 447 traffic signs. It has been noted that when the 

threshold value is greater than 0.50, the model detects 423 signals 

with a 94.63% accuracy. 

Çetinkaya and Acarman conducted a study on the detection 

of traffic signs using a novel image pre-processing technique to 

enhance the performance of a traffic sign detector (Çetinkaya & 

Acarman, 2021). In this study, the Faster R-CNN Inception 

Resnet V2 COCO model is used and the model is trained on 

German Traffic Sign Detection Benchmark dataset (GTSDB). 

The proposed image pre-processing method is based on filtering 

unimportant regions of images and emphasizing the more useful 

ones, reducing noise and allowing more effective detector 

training. Accordingly, the model is trained with 250,000 steps and 

training is repeated twice in the context of main experiments; first 

using original images and second time using pre-processed 

images. Precision, recall, and F-measure values for pre-processed 

images were 94.53 %, 91.91 %, and 93.2 %, respectively, when 

the threshold value was set to 0.7. As a result, the suggested image 

preprocessing approach improved the object detector's 

performance. 

3. Methodology 

Many different techniques and algorithms are used for TSR 

systems in the literature. In particular, techniques based on color 

and shape features have become popular, and these are referred to 

as traditional methods. Examples of some traditional methods are 
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the HOG feature descriptor, color segmentation and the Hough 

transform (De La Escalera et al., 2004), (Dalal & Triggs, 2005), 

(Garcia-Garrido et al., 2006), (Maldonado-Bascón et al., 2007). 

Many detection methods have been developed with traditional 

methods in the past decades. 

In recent years, one of the most commonly used techniques 

is deep learning-based methods such as CNN. With the 

introduction of AlexNet (Krizhevsky et al., 2012) in 2012, CNN 

models and deep learning became popular. This CNN architecture 

won the ImageNet LargeScale Visual Recognition Challenge 

(ILSVRC) and performed substantially better when compared to 

the traditional approaches. Hence, CNN has been widely used for 

TSR problems (Girshick et al., 2014), (Girshick, 2015), (Ren et 

al., 2015), (Cinar et al., 2020), (Kilic & Aydin, 2020), (Çetinkaya 

& Acarman, 2021). 

3.1. Convolutional Neural Networks (CNN) 

CNN is the one of the most popular deep learning algorithms, 

which achieved very significant results in some complex visual 

tasks. CNN consists of multiple layers placed one after the other 

for feature extraction of curves and edges and builds them up to 

more abstract concepts (Figure 1). The continuation of these 

layers is a trainable classifier. 

 

Figure 1. Different representations of the object on different 

layers in the network (Khan et al., 2018). 

In CNN, after the input data is received, the training process 

is carried out layer-by-layer. Finally, it gives a final output to 

compare with the correct result. As a result of the comparison, an 

error occurs equal to the difference between the produced result 

and the desired result. By updating the weights at every iteration, 

the error is reduced. 

 

Figure 2. A basic diagram of a CNN architecture (Phung & 

Rhee, 2018). 

As seen in Figure 2, a typical CNN is constructed by input 

layer, output layer and the repetition convolutional layers, pooling 

layers and fully connected layers. Each layer has its own function. 

The input layer is the first layer of the whole CNN. In this layer, 

data is given raw to the network. The input layer in CNN should 

contain image data, and the image data is usually represented by 

a matrix that holds the pixel values of the image. A convolutional 

layer is the fundamental component of a CNN. In the 

convolutional layer, the input to the convolution layer is 

convolved with what is called a kernel, a convolution matrix, or a 

filter to generate an output feature map. Convolution process is 

based on the process of sliding a filter over the input image 

(Figure 3). 

 

Figure 3. A convolution process with a 2x2 filter applied to a 

4x4 input image (Khan et al., 2018). 

Pooling layer is another layer that is often added between 

successive convolutional layers in the CNN. A pooling layer 

operates on blocks of the input feature map and combines the 

feature activations. The task of this layer is to reduce the spatial 

size of the data representation, the parameters within the network, 

and the number of computations. Thus, it also controls overfitting.  

3.2. Faster R-CNN 

Region-based convolutional neural networks (R-CNN) are 

introduced by Girshick et al., and it is a foundation method for all 

modern object detection networks (Girshick et al., 2014). This 

study is unique since it is the first to combine region proposals 

with CNN. In this proposed method, the system receives an input 

image and extracts around 2000 region proposals from the 

bottom-up with Selective Search (Uijlings et al., 2013).  

After R-CNN, Girshick proposed a new approach for object 

detection called Fast R-CNN to solve the difficulties of R-CNN 

(Girshick, 2015). The approach is similar to the R-CNN algorithm 

but Fast R-CNN uses a main CNN with multiple convolutional 

layers to detect features in the picture before proposing regions. 

In this model, the input image is given to CNN to generate a 

convolutional feature map. Thus, there is no need to use a separate 

CNN for each region proposal. In R-CNN and Fast R-CNN 

models, the performance of the network is slow as selective search 

is used to find region proposals. In order to solve this problem, 

Ren et al. abandoned the selective search method completely and 

developed the Region Proposal Network (RPN) algorithm (Ren et 

al., 2015). When RPN and the Fast R-CNN object detector are 

combined, a new model called Faster R-CNN is developed. Using 

a RPN algorithm in Faster R-CNN instead of selective search cuts 

down on the number of proposed regions while also ensuring 

accurate object detection. RPN is a deep convolutional neural 

network that is used to generate proposal regions.  

The Faster R-CNN can be evaluated in two stages (Figure 4). 

In the first stage, RPN instructs the second stage of Faster R-CNN 

where to search for the object. RPN takes images of any size as 

input and produces a set of rectangular objects which are proposed 

as the locations of the object based on the object score. It makes 

these proposals by sliding a small spatial window over the feature 

map that is generated by the convolutional layer. 

 

Figure 4. The architecture of Faster R-CNN model (Ren et al., 

2015) 
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The Fast R-CNN object detector is the second stage of the 

Faster R-CNN. It takes the feature maps that the initial CNN 

generated and performs RoI pooling on them. With the 

introduction of the RPN, Faster R-CNN eliminates the region 

proposal limitations inherited by Fast R-CNN. Thus, Faster R-

CNN is better than Fast R-CNN in terms of speed. 

3.3. Evaluation Methodology 

Since it is widely used to benchmark the performance of 

object detection, the COCO metrics are utilized as evaluation 

criteria for the detection accuracy in this study. As shown in Fig. 

5, Average Precision (AR) and Average (Recall) are averaged over 

multiple Intersections over Unity (IoU) values. In COCO 

evaluation metric, the IoU threshold ranges from 0.50 to 0.95 with 

a step size of 0.05 represented as AP@[.5:.05:.95]. This is known 

as "mean average precision" (mAP) in the object detection field. 

 

Figure 5. COCO evaluation metrics (COCO, 2015) 

 On the other hand, Figure 6 describes the precision, recall 

and UoI calculation formulas, where TP, FP, and FN indicate true 

positive, false positive, and false negative, respectively. Hence, it 

can be clearly seen that the higher the precision and recall, the 

better the accuracy. In this formula, the object is the area of the 

correct object and the detected box is the predicted candidate area. 

IoU is obtained by dividing the overlap area by the union area. 

 

Figure 6. The Formula of Precision, Recall and IoU 

4. Dataset Creation And Implementation 

 This section describes the steps taken to process the creation 

of the Turkish Traffic Sign Dataset and the necessary processes 

applied to train the model. 

4.1. Turkish Traffic Sign Dataset 

In order to create a successful model, a new indigenous 

dataset is created since previous studies mostly used the German 

dataset. This approach is taken because, even though the German 

and Turkish traffic signs are similar, there are also distinct signs 

that are only available in Turkey. As part of this study, Turkish 

traffic sign images are collected to train the model, which are 

obtained from Google maps. While gathering the pictures, it was 

taken into consideration that an equal amount of pictures were 

collected for each class to ensure balance in the dataset. The 

images are stored in PNG and JPEG formats in various 

resolutions. The proposed dataset includes 11353 labeled images 

in a total of 10842 images containing 54 traffic signs. Figure 7 

illustrates the proposed Turkish Traffic Sign Dataset classes. 

 

Figure 7. Examples of Turkish Traffic Signs in 54 categories 

A total of 10842 images are divided into 80% train data and 

20% test data. Two versions of test data are collected to compare 

the accuracy of the model during day and nighttime. 

4.2. Implementation 

During the prototype system creation process, the proposed 

model is trained on Google Colab (Bisong, 2019) with 

TensorFlow Object Detection API (Huang et al., 2017). The pre-

trained Faster R-CNN Inception V2 COCO (Szegedy et al., 2016) 

model is used to retrain the model using the proposed Turkish 

Traffic Signs Dataset. 

Table. 1 Pre-Trained Models for TensorFlow (Tensorflow, 2018) 

 

 Table. 1 compares the pre-trained models. For the COCO 

mAP column, the higher the value, the more successful the model 

is. Considering the speed and COCO average precision (mAP) 

values, it is decided to utilize the Faster R-CNN Inception V2 

COCO model in this study. The training of the model is conducted 

twice with step numbers (num_step value) 51,217 (Model-A) and 

200,000 (Model-B). 8672 pictures with 9114 class labels are used 

as train data, and 2170 pictures with 2241 class labels are used as 

test data. The steps of the implementation process are shown in 

Figure 8. 

 

Figure 8. The steps of the implementation process 
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The labeling process, indicated in Figure 8, involves the 

creation of an xml formatted file that stores the location of the 

signs in the image. LabelImg is used to label the images in this 

process (Tzutalin, 2015). Since the model used in the training 

requires tfrecord formatted files as input, xml files are first 

converted to csv and then csv files are converted to tfrecord. After 

this process, a labelmap is created containing the name and id 

information of each class to be detected and recognized by the 

model. After the label map is created, the num_steps value in the 

model's config file is set. Accordingly, after the required pre-

processing is undertaken, the model is trained on a Nvidia Tesla 

K80 graphic card, using Python programming language and 

TensorFlow version 1.15.2. In order to use the model after training 

is carried out, a frozen inference graph is created. After this 

process is done, the model is ready to be used for classification of 

traffic signs. 

5. Testing and Evaluation 

After the model training is carried out with the proposed 

Turkish Traffic Sign Dataset using the Faster R-CNN Inception 

V2 COCO model, the newly trained models are evaluated. In 

order to conduct the evaluation of models, day and night pictures 

of Turkish traffic signs are collected. Some of these signs are 

specifically selected since they are exclusively seen in Turkish 

traffic signs and are not included in the datasets of GTSDB and 

GTSRB. Stop and one-way traffic signs are examples of these. 

Test images are taken throughout the day and nighttime. In order 

to perform the test with more accuracy, extreme attention is paid 

so that the images are taken at the same place and at the same 

angle. The test code for testing the models was written using 

Python and executed on Colab.  

 

Figure 9. Model-A: Recognition trials of the B-14a and the TT-2 

traffic signs in daytime and nighttime 

Model-A is evaluated with stop (B-14a) and pedestrian 

crossing (TT-2) traffic signs in daytime and nighttime. The both 

traffic signs are recognized by the Model-A as can be seen in 

Figure 9. Model-A recognized the B-14a with 99% accuracy and 

the TT-2 with 97% accuracy in the nighttime. Also, it recognized 

the B-14a with 99% accuracy and the TT-2 with 95% accuracy in 

the daytime. 

 

Figure 10. Model-B: Recognition trials of the B-14a and the TT-

2 traffic signs in daytime and nighttime 

When Model-B is evaluated with the same traffic signs and 

under the same conditions, it recognizes both traffic signs with 

high accuracy, as can be seen in Figure 10. Model-B recognized 

the B-14a with 100% accuracy and the TT-2 with 99% accuracy 

in the nighttime. It recognized the B-14a and TT-2 with 99% 

accuracy in the daytime. 

 

Figure 11. Model-A: Recognition trials of the B-16 traffic sign in 

daytime and nighttime 

Model-A is evaluated for another traffic sign, one-way (B-16) 

in Figure 11. Since B-16 contains Turkish character, it is critical 

for evaluation. Model-A recognized the B-16 with 97% accuracy 

in the daytime. However, it could not recognize the B-16 in the 

nighttime. 

 

Figure 12. Model-B: Recognition trials of the B-16 traffic sign in 

daytime and nighttime  

Unlike the Model-A, the Model-B recognized the B-16 both 

in the daytime and nighttime when evaluated with the same traffic 

sign under the same conditions in Figure 12. Model-B recognized 

the B-16 with 92% accuracy in the nighttime and 99% accuracy 

in the daytime. 

 

Figure 13. Model-A: Recognition trials of the B-38 and the TT-

29-70 traffic signs in daytime and nighttime 

On the side of a vehicle road, the Model-A is examined with 

a 70 km speed limit (TT-29-70) and priority road (B-38) traffic 

signs in Figure 13. It recognized the B-38 both in the daytime and 

nighttime. However, it could only recognize the TT-29-70 in the 

daytime. Model-A recognized the B-38 with 84% accuracy in the 

nighttime. It recognized the B-38 with 97% accuracy and the TT-

29-70 with %84 accuracy in the daytime. 

 

Figure 14. Model-B: Recognition trials of the B-38 and the TT-

29-70 traffic signs in daytime and nighttime 
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On the other hand, during the evaluation of Model-B, it 

recognized the B-38 and the TT-29-70 traffic signs both daytime 

and nighttime as can be seen Figure 14. Model-B recognized the 

B-38 with 97% accuracy and the TT-29-70 with 99% accuracy in 

the nighttime. Also, it recognized the B-38 with 100% accuracy 

and the TT-29-70 with 100 % accuracy in the daytime. 

 

Figure 15. Average Precision and Average Recall values of the 

model-A 

 

Figure 16. Average Precision and Average Recall values of the 

model-B 

The COCO metrics are used to compare the AP and AR 

values of the models that as a result of the training. Model-A and 

Model-B achieved the results in Figure 15 and in Figure 16, 

respectively. These two models are evaluated on 2170 test data. 

In order to measure the success of the model during the 

evaluation, AP and AR values are found and averaged for 10 

different threshold values, starting from 0.5 and going up to 0.95 

with 0.05 increments. As can be seen in Figure 15 and Figure 16, 

AP is 67.2% for Model-A and 76% for Model-B. AR is 78.3% for 

Model-A and 82.8% for Model-B. As a result of the comparison, 

it is obtained that Model-B is more successful than Model-A. 

6. Conclusion and Future Work 

This paper proposed a Faster R-CNN Inception V2 COCO 

based Turkish traffic sign recognition system. As part of this 

study, the Turkish Traffic Sign Dataset is created by collecting 

images of Turkish traffic signs. The training of the model is 

conducted twice with two different step numbers. Models were 

evaluated with pictures taken in daytime and nighttime. During 

the evaluation phase, the two models are compared and it is 

observed that the Model-B is much more successful than the 

Model-A. In future work, it is aimed to increase the success values 

of the model for more classes by increasing the number of 

collected data.  
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