
Avrupa Bilim ve Teknoloji Dergisi

Özel Sayı 28, S. 1469-1475, Kasım 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

Special Issue 28, pp. 1469-1475, November 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 1469

Turkish Traffic Sign Recognition: Comparison of Training Step

Numbers and Lighting Conditions

Kaan Kocakanat1*, Tacha Serif1

1* Yeditepe University, Faculty of Engineering, Department of Computer Engineering, Istanbul, Turkey, (ORCID: 0000-0002-5906-7969, 0000-0003-1819-4926),

kaan.kocakanat@std.yeditepe.edu.tr, tserif@cse.yeditepe.edu.tr

(1st International Conference on Applied Engineering and Natural Sciences ICAENS 2021, November 1-3, 2021)

(DOI: 10.31590/ejosat.1015972)

ATIF/REFERENCE: Kocakanat, K. & Serif, T. (2021). Turkish Traffic Sign Recognition: Comparison of Training Step Numbers and

Lighting Conditions. European Journal of Science and Technology, (28), 1469-1475.

Abstract

With the ever increasing number of vehicles on the roads, traffic signs are becoming more and more important every passing day.

Despite the fact that traffic signs are simple and easy to understand, in congested traffic drivers may miss them. Considering that even

milliseconds can make a huge difference in preventing accidents, it would make a big help if a system could assist the driver with traffic

signs. In order to achieve this, a traffic sign recognition system needs to be implemented. Accordingly, this study aims to develop a

Turkish traffic sign detection and recognition system using the Faster R-CNN algorithm. The proposed solution utilizes TensorFlow

framework and specifically makes use of the Faster R-CNN Inception-v2-COCO to train the object detection model. For training

purposes, indigenous dataset is created containing 54 classes and 10842 Turkish traffic sign images. The training process of the model

is carried out twice with step numbers 51,217 and 200,000, respectively. Then, these two models are used to detect 10 Turkish traffic

sign images taken both daytime and nighttime. The results indicate that the proposed system’s average precision is 67.2% and average

recall is 78.3% when trained with 51,217 steps; on the other hand, the average precision increases to 76% and average recall to 82.8%

when trained with 200,000 steps.

Keywords: Turkish Traffic Signs, Traffic Sign Recognition, Faster R-CNN, Object Detection, TensorFlow.

Türk Trafik İşareti Tanıma: Eğitim Adım Sayıları ve Aydınlatma

Koşullarının Karşılaştırılması

Öz

Yollardaki araç sayısının her geçen gün artmasıyla birlikte trafik işaretleri her geçen gün daha da önem kazanmaktadır. Trafik işaretleri

basit ve anlaşılması kolay olmasına rağmen, sıkışık trafikte sürücüler bunları gözden kaçırabilir. Milisaniyelerin bile kazaları önlemede

büyük fark yarattığını göz önünde bulundurarak, sürücüye trafik işaretleri konusunda yardımcı olacak bir sistemin olmasının büyük bir

fayda sağlayacağı oldukça açıktır. Bunun için bir trafik işareti tanıma sisteminin geliştirilmesi gerekmektedir. Bu makalede, Daha Hızlı

R-CNN algoritması kullanılarak bir Türk trafik işareti tespit ve tanıma sisteminin geliştirilmesi amaçlanmaktadır. Önerilen çözüm,

TensorFlow çerçevesi ile nesne algılama modelini eğitmek için Daha Hızlı R-CNN Inception-v2-COCO'yu kullanır. Modelin eğitilmesi

için 54 sınıf ve 10842 adet Türk trafik işareti görüntüsünü içeren yeni bir veri seti oluşturulmuştur. Modelin eğitimi sırasıyla 51.217 ve

200.000 eğitim adım numaraları ile iki kez gerçekleştirilir. Daha sonra bu iki model kullanılarak gündüz ve gece çekilen 10 adet Türk

trafik işareti görüntüsü tespit edilmeye çalışılmıştır. Sonuçlar, önerilen modellerin 51.217 eğitim adımıyla eğitildiğinde ortalama

hassasiyetin %67,2 ve ortalama hatırlamanın %78,3 olduğunu göstermektedir; Öte yandan, model 200.000 eğitim adımıyla eğitildiğinde

ortalama hassasiyet %76'ya ve ortalama hatırlamanın da %82,8'e yükselir.

Anahtar Kelimeler: Türk Trafik İşaretleri, Trafik İşareti Tanıma, Daha Hızlı R-CNN, Nesne Algılama, TensorFlow.

* Corresponding Author: kaan.kocakanat@std.yeditepe.edu.tr

http://dergipark.gov.tr/ejosat
mailto:kaan.kocakanat@std.yeditepe.edu.tr
mailto:tserif@cse.yeditepe.edu.tr
mailto:kaan.kocakanat@std.yeditepe.edu.tr

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 1470

1. Introduction

Undeniably, there is a rapid growth in the number of vehicles

globally (Davis & Boundy, 2020). As the number of vehicles in

traffic increases, so does the level of uncertainty in the traffic

environment. To eliminate this uncertainty and manage traffic

flow, traffic signs are placed on the roads. They are designed to

be easy to understand to inform drivers about the current situation

and other important information on the road. However, accidents

can still occur when drivers do not pay attention to the traffic signs

(Bucsuházy et al., 2020). For this very reason, a traffic sign

recognition (TSR) system needs to be implemented in order to

prevent accidents. Even though there are many studies on TSR

systems, very few of these studies do not evaluate real-life driving

conditions, such as at night or adverse weather conditions.

Furthermore, designing a TSR system for a specific country is

challenging because of a lack of public datasets - i.e even though

multiple TSR studies were undertaken for various countries in the

literature, most of them have based their work on the German

traffic sign datasets (Stallkamp et al., 2011), (Houben et al., 2013).

In addition, while traffic signs in most countries may seem to be

similar, there are actually major differences between country

traffic signs even within the same economical regions - e.g.

Europe, United Kingdom, Americas, Asia and Australia. Hence,

this study aims to utilize TensorFlow to implement a Turkish TSR

system and evaluate it both at daytime and nighttime conditions.

Therefore, as part of this work a Turkish Traffic Sign Dataset

containing 54 different traffic signs is created and the Faster R-

CNN Inception v2 COCO model is trained within the TensorFlow

framework.

Accordingly, this paper is structured as follows; section II

describes the previous work undertaken in TSR, section III

highlights the methods used for TSR are reviewed and elaborated

upon, section IV analyzes the requirements for the proposed

system and explains in detail the tools selected for the proposed

solution. Section V describes the development of the prototype

and the creation of the Turkish Traffic Sign Dataset for the

proposed system, as well as the essential steps taken for training

the model. As a follow up, section VI highlights the evaluation

methods used and elaborates on their outcomes and findings. Last

but not least, Section VII draws the conclusion and discusses

possible future venues for improvement.

2. Background

Traffic signal detection and recognition is a popular topic in

computer vision with a wide range of applications. Since it is

challenging to develop a system approach capable of identifying

various types of traffic signs, this topic has been the focus of

several research.

Yaliç and Can’s TSR prototype is one of the earliest examples

of Turkish TSR prototypes in the literature. (Yaliç and Can, 2011).

In this work, the authors develop a system for the automatic

recognition of 52 signs in Turkish roads. Their proposed system

first detects probable sign regions in previously recorded videos

of roads from a moving car, and then matches each identified

region to an existing sign in the database or classifies it as a non-

sign region. The prototype system achieves this by utilizing the

Scale-invariant feature transform technique for feature extraction,

and applying the normalized correlation approach for some traffic

signs with the same shape but different angles. To create an

evaluation content, the authors have recorded 164 traffic signs

from a moving car at the speeds ranging between 30 to 70 km/h.

Then this content is fed to the proposed system and it was able to

identify 154 of the traffic signs, which sets the success rate of the

system to around 94%.

A novel method is proposed for detecting circular traffic

signals (Gündüz et al., 2013). This study is unique because it uses

a combination of the two algorithms. The proposed system

utilizes a newly developed circle detection algorithm for circular

TSR alongside histograms of oriented gradients (HOG)-based

features. Thus, by estimating the circular actual borders of the

traffic signs, an unnecessary background image can be eliminated.

During the evaluation stage, two model classifiers, Support Vector

Machine (SVM) and Random Forest (RF), are used on 13,541

images containing 13 classes of German Traffic Sign Recognition

Benchmark (GTSRB) to evaluate the performance of the

proposed method. When only HOG-based features are used, the

highest correct classification rate is 96.46%. On the other hand,

when the proposed algorithm is combined with the HOG-based

features, this rate increases to 97.17%. The most successful results

obtained using the SVM classifier.

Another study, which utilizes feature extraction and

recognition of traffic sign images, is carried out by Cinar et al.

(Cinar et al., 2020). In this study, convolutional neural networks

(CNN) are used to extract the image features and then the obtained

image features are classified using the RF method. As part of this

study, a dataset created by authors containing 1500 images of 14

Turkish traffic signs to extract 1000 features. The evaluation of

the system resulted with a 93.7% success of the proposed

classifier.

Irfan and Galip used the TensorFlow framework to detect and

recognize traffic signs in Turkey (Kilic & Aydin, 2020). To

achieve this, the authors created a Turkish Traffic Sign Dataset

with 1250 pictures under diverse traffic and weather conditions,

containing 41 distinct traffic signs. The dataset is trained on the

Faster R-CNN Inception V2 COCO model using the TensorFlow

framework and the model is trained with 200,000 steps. In the

evaluation of the proposed system, 313 images were used and the

system detected 447 traffic signs. It has been noted that when the

threshold value is greater than 0.50, the model detects 423 signals

with a 94.63% accuracy.

Çetinkaya and Acarman conducted a study on the detection

of traffic signs using a novel image pre-processing technique to

enhance the performance of a traffic sign detector (Çetinkaya &

Acarman, 2021). In this study, the Faster R-CNN Inception

Resnet V2 COCO model is used and the model is trained on

German Traffic Sign Detection Benchmark dataset (GTSDB).

The proposed image pre-processing method is based on filtering

unimportant regions of images and emphasizing the more useful

ones, reducing noise and allowing more effective detector

training. Accordingly, the model is trained with 250,000 steps and

training is repeated twice in the context of main experiments; first

using original images and second time using pre-processed

images. Precision, recall, and F-measure values for pre-processed

images were 94.53 %, 91.91 %, and 93.2 %, respectively, when

the threshold value was set to 0.7. As a result, the suggested image

preprocessing approach improved the object detector's

performance.

3. Methodology

Many different techniques and algorithms are used for TSR

systems in the literature. In particular, techniques based on color

and shape features have become popular, and these are referred to

as traditional methods. Examples of some traditional methods are

European Journal of Science and Technology

e-ISSN: 2148-2683 1471

the HOG feature descriptor, color segmentation and the Hough

transform (De La Escalera et al., 2004), (Dalal & Triggs, 2005),

(Garcia-Garrido et al., 2006), (Maldonado-Bascón et al., 2007).

Many detection methods have been developed with traditional

methods in the past decades.

In recent years, one of the most commonly used techniques

is deep learning-based methods such as CNN. With the

introduction of AlexNet (Krizhevsky et al., 2012) in 2012, CNN

models and deep learning became popular. This CNN architecture

won the ImageNet LargeScale Visual Recognition Challenge

(ILSVRC) and performed substantially better when compared to

the traditional approaches. Hence, CNN has been widely used for

TSR problems (Girshick et al., 2014), (Girshick, 2015), (Ren et

al., 2015), (Cinar et al., 2020), (Kilic & Aydin, 2020), (Çetinkaya

& Acarman, 2021).

3.1. Convolutional Neural Networks (CNN)

CNN is the one of the most popular deep learning algorithms,

which achieved very significant results in some complex visual

tasks. CNN consists of multiple layers placed one after the other

for feature extraction of curves and edges and builds them up to

more abstract concepts (Figure 1). The continuation of these

layers is a trainable classifier.

Figure 1. Different representations of the object on different

layers in the network (Khan et al., 2018).

In CNN, after the input data is received, the training process

is carried out layer-by-layer. Finally, it gives a final output to

compare with the correct result. As a result of the comparison, an

error occurs equal to the difference between the produced result

and the desired result. By updating the weights at every iteration,

the error is reduced.

Figure 2. A basic diagram of a CNN architecture (Phung &

Rhee, 2018).

As seen in Figure 2, a typical CNN is constructed by input

layer, output layer and the repetition convolutional layers, pooling

layers and fully connected layers. Each layer has its own function.

The input layer is the first layer of the whole CNN. In this layer,

data is given raw to the network. The input layer in CNN should

contain image data, and the image data is usually represented by

a matrix that holds the pixel values of the image. A convolutional

layer is the fundamental component of a CNN. In the

convolutional layer, the input to the convolution layer is

convolved with what is called a kernel, a convolution matrix, or a

filter to generate an output feature map. Convolution process is

based on the process of sliding a filter over the input image

(Figure 3).

Figure 3. A convolution process with a 2x2 filter applied to a

4x4 input image (Khan et al., 2018).

Pooling layer is another layer that is often added between

successive convolutional layers in the CNN. A pooling layer

operates on blocks of the input feature map and combines the

feature activations. The task of this layer is to reduce the spatial

size of the data representation, the parameters within the network,

and the number of computations. Thus, it also controls overfitting.

3.2. Faster R-CNN

Region-based convolutional neural networks (R-CNN) are

introduced by Girshick et al., and it is a foundation method for all

modern object detection networks (Girshick et al., 2014). This

study is unique since it is the first to combine region proposals

with CNN. In this proposed method, the system receives an input

image and extracts around 2000 region proposals from the

bottom-up with Selective Search (Uijlings et al., 2013).

After R-CNN, Girshick proposed a new approach for object

detection called Fast R-CNN to solve the difficulties of R-CNN

(Girshick, 2015). The approach is similar to the R-CNN algorithm

but Fast R-CNN uses a main CNN with multiple convolutional

layers to detect features in the picture before proposing regions.

In this model, the input image is given to CNN to generate a

convolutional feature map. Thus, there is no need to use a separate

CNN for each region proposal. In R-CNN and Fast R-CNN

models, the performance of the network is slow as selective search

is used to find region proposals. In order to solve this problem,

Ren et al. abandoned the selective search method completely and

developed the Region Proposal Network (RPN) algorithm (Ren et

al., 2015). When RPN and the Fast R-CNN object detector are

combined, a new model called Faster R-CNN is developed. Using

a RPN algorithm in Faster R-CNN instead of selective search cuts

down on the number of proposed regions while also ensuring

accurate object detection. RPN is a deep convolutional neural

network that is used to generate proposal regions.

The Faster R-CNN can be evaluated in two stages (Figure 4).

In the first stage, RPN instructs the second stage of Faster R-CNN

where to search for the object. RPN takes images of any size as

input and produces a set of rectangular objects which are proposed

as the locations of the object based on the object score. It makes

these proposals by sliding a small spatial window over the feature

map that is generated by the convolutional layer.

Figure 4. The architecture of Faster R-CNN model (Ren et al.,

2015)

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 1472

The Fast R-CNN object detector is the second stage of the

Faster R-CNN. It takes the feature maps that the initial CNN

generated and performs RoI pooling on them. With the

introduction of the RPN, Faster R-CNN eliminates the region

proposal limitations inherited by Fast R-CNN. Thus, Faster R-

CNN is better than Fast R-CNN in terms of speed.

3.3. Evaluation Methodology

Since it is widely used to benchmark the performance of

object detection, the COCO metrics are utilized as evaluation

criteria for the detection accuracy in this study. As shown in Fig.

5, Average Precision (AR) and Average (Recall) are averaged over

multiple Intersections over Unity (IoU) values. In COCO

evaluation metric, the IoU threshold ranges from 0.50 to 0.95 with

a step size of 0.05 represented as AP@[.5:.05:.95]. This is known

as "mean average precision" (mAP) in the object detection field.

Figure 5. COCO evaluation metrics (COCO, 2015)

 On the other hand, Figure 6 describes the precision, recall

and UoI calculation formulas, where TP, FP, and FN indicate true

positive, false positive, and false negative, respectively. Hence, it

can be clearly seen that the higher the precision and recall, the

better the accuracy. In this formula, the object is the area of the

correct object and the detected box is the predicted candidate area.

IoU is obtained by dividing the overlap area by the union area.

Figure 6. The Formula of Precision, Recall and IoU

4. Dataset Creation And Implementation

 This section describes the steps taken to process the creation

of the Turkish Traffic Sign Dataset and the necessary processes

applied to train the model.

4.1. Turkish Traffic Sign Dataset

In order to create a successful model, a new indigenous

dataset is created since previous studies mostly used the German

dataset. This approach is taken because, even though the German

and Turkish traffic signs are similar, there are also distinct signs

that are only available in Turkey. As part of this study, Turkish

traffic sign images are collected to train the model, which are

obtained from Google maps. While gathering the pictures, it was

taken into consideration that an equal amount of pictures were

collected for each class to ensure balance in the dataset. The

images are stored in PNG and JPEG formats in various

resolutions. The proposed dataset includes 11353 labeled images

in a total of 10842 images containing 54 traffic signs. Figure 7

illustrates the proposed Turkish Traffic Sign Dataset classes.

Figure 7. Examples of Turkish Traffic Signs in 54 categories

A total of 10842 images are divided into 80% train data and

20% test data. Two versions of test data are collected to compare

the accuracy of the model during day and nighttime.

4.2. Implementation

During the prototype system creation process, the proposed

model is trained on Google Colab (Bisong, 2019) with

TensorFlow Object Detection API (Huang et al., 2017). The pre-

trained Faster R-CNN Inception V2 COCO (Szegedy et al., 2016)

model is used to retrain the model using the proposed Turkish

Traffic Signs Dataset.

Table. 1 Pre-Trained Models for TensorFlow (Tensorflow, 2018)

 Table. 1 compares the pre-trained models. For the COCO

mAP column, the higher the value, the more successful the model

is. Considering the speed and COCO average precision (mAP)

values, it is decided to utilize the Faster R-CNN Inception V2

COCO model in this study. The training of the model is conducted

twice with step numbers (num_step value) 51,217 (Model-A) and

200,000 (Model-B). 8672 pictures with 9114 class labels are used

as train data, and 2170 pictures with 2241 class labels are used as

test data. The steps of the implementation process are shown in

Figure 8.

Figure 8. The steps of the implementation process

European Journal of Science and Technology

e-ISSN: 2148-2683 1473

The labeling process, indicated in Figure 8, involves the

creation of an xml formatted file that stores the location of the

signs in the image. LabelImg is used to label the images in this

process (Tzutalin, 2015). Since the model used in the training

requires tfrecord formatted files as input, xml files are first

converted to csv and then csv files are converted to tfrecord. After

this process, a labelmap is created containing the name and id

information of each class to be detected and recognized by the

model. After the label map is created, the num_steps value in the

model's config file is set. Accordingly, after the required pre-

processing is undertaken, the model is trained on a Nvidia Tesla

K80 graphic card, using Python programming language and

TensorFlow version 1.15.2. In order to use the model after training

is carried out, a frozen inference graph is created. After this

process is done, the model is ready to be used for classification of

traffic signs.

5. Testing and Evaluation

After the model training is carried out with the proposed

Turkish Traffic Sign Dataset using the Faster R-CNN Inception

V2 COCO model, the newly trained models are evaluated. In

order to conduct the evaluation of models, day and night pictures

of Turkish traffic signs are collected. Some of these signs are

specifically selected since they are exclusively seen in Turkish

traffic signs and are not included in the datasets of GTSDB and

GTSRB. Stop and one-way traffic signs are examples of these.

Test images are taken throughout the day and nighttime. In order

to perform the test with more accuracy, extreme attention is paid

so that the images are taken at the same place and at the same

angle. The test code for testing the models was written using

Python and executed on Colab.

Figure 9. Model-A: Recognition trials of the B-14a and the TT-2

traffic signs in daytime and nighttime

Model-A is evaluated with stop (B-14a) and pedestrian

crossing (TT-2) traffic signs in daytime and nighttime. The both

traffic signs are recognized by the Model-A as can be seen in

Figure 9. Model-A recognized the B-14a with 99% accuracy and

the TT-2 with 97% accuracy in the nighttime. Also, it recognized

the B-14a with 99% accuracy and the TT-2 with 95% accuracy in

the daytime.

Figure 10. Model-B: Recognition trials of the B-14a and the TT-

2 traffic signs in daytime and nighttime

When Model-B is evaluated with the same traffic signs and

under the same conditions, it recognizes both traffic signs with

high accuracy, as can be seen in Figure 10. Model-B recognized

the B-14a with 100% accuracy and the TT-2 with 99% accuracy

in the nighttime. It recognized the B-14a and TT-2 with 99%

accuracy in the daytime.

Figure 11. Model-A: Recognition trials of the B-16 traffic sign in

daytime and nighttime

Model-A is evaluated for another traffic sign, one-way (B-16)

in Figure 11. Since B-16 contains Turkish character, it is critical

for evaluation. Model-A recognized the B-16 with 97% accuracy

in the daytime. However, it could not recognize the B-16 in the

nighttime.

Figure 12. Model-B: Recognition trials of the B-16 traffic sign in

daytime and nighttime

Unlike the Model-A, the Model-B recognized the B-16 both

in the daytime and nighttime when evaluated with the same traffic

sign under the same conditions in Figure 12. Model-B recognized

the B-16 with 92% accuracy in the nighttime and 99% accuracy

in the daytime.

Figure 13. Model-A: Recognition trials of the B-38 and the TT-

29-70 traffic signs in daytime and nighttime

On the side of a vehicle road, the Model-A is examined with

a 70 km speed limit (TT-29-70) and priority road (B-38) traffic

signs in Figure 13. It recognized the B-38 both in the daytime and

nighttime. However, it could only recognize the TT-29-70 in the

daytime. Model-A recognized the B-38 with 84% accuracy in the

nighttime. It recognized the B-38 with 97% accuracy and the TT-

29-70 with %84 accuracy in the daytime.

Figure 14. Model-B: Recognition trials of the B-38 and the TT-

29-70 traffic signs in daytime and nighttime

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 1474

On the other hand, during the evaluation of Model-B, it

recognized the B-38 and the TT-29-70 traffic signs both daytime

and nighttime as can be seen Figure 14. Model-B recognized the

B-38 with 97% accuracy and the TT-29-70 with 99% accuracy in

the nighttime. Also, it recognized the B-38 with 100% accuracy

and the TT-29-70 with 100 % accuracy in the daytime.

Figure 15. Average Precision and Average Recall values of the

model-A

Figure 16. Average Precision and Average Recall values of the

model-B

The COCO metrics are used to compare the AP and AR

values of the models that as a result of the training. Model-A and

Model-B achieved the results in Figure 15 and in Figure 16,

respectively. These two models are evaluated on 2170 test data.

In order to measure the success of the model during the

evaluation, AP and AR values are found and averaged for 10

different threshold values, starting from 0.5 and going up to 0.95

with 0.05 increments. As can be seen in Figure 15 and Figure 16,

AP is 67.2% for Model-A and 76% for Model-B. AR is 78.3% for

Model-A and 82.8% for Model-B. As a result of the comparison,

it is obtained that Model-B is more successful than Model-A.

6. Conclusion and Future Work

This paper proposed a Faster R-CNN Inception V2 COCO

based Turkish traffic sign recognition system. As part of this

study, the Turkish Traffic Sign Dataset is created by collecting

images of Turkish traffic signs. The training of the model is

conducted twice with two different step numbers. Models were

evaluated with pictures taken in daytime and nighttime. During

the evaluation phase, the two models are compared and it is

observed that the Model-B is much more successful than the

Model-A. In future work, it is aimed to increase the success values

of the model for more classes by increasing the number of

collected data.

References

Davis, S., & Boundy, R. G. (2020). Transportation Energy Data

Book: Edition 38.2 (No. ORNL/TM-2019/1333). Oak Ridge

National Lab.(ORNL), Oak Ridge, TN (United States).

Bucsuházy, K., Matuchová, E., Zůvala, R., Moravcová, P.,

Kostíková, M., & Mikulec, R. (2020). Human factors

contributing to the road traffic accident occurrence.

Transportation research procedia, 45, 555-561.

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2011, July).

The German traffic sign recognition benchmark: a multi-class

classification competition. In The 2011 international joint

conference on neural networks (pp. 1453-1460). IEEE.

Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., & Igel, C.

(2013, August). Detection of traffic signs in real-world

images: The German Traffic Sign Detection Benchmark.

In The 2013 international joint conference on neural

networks (IJCNN) (pp. 1-8). Ieee.

Yaliç, H. Y., & Can, A. B. (2011, September). Automatic

recognition of traffic signs. In 2011 7th International

Symposium on Image and Signal Processing and Analysis

(ISPA) (pp. 361-366). IEEE.

Gündüz, H., Kaplan, S., Günal, S., & Akınlar, C. (2013, April).

Circular traffic sign recognition empowered by circle

detection algorithm. In 2013 21st Signal Processing and

Communications Applications Conference (SIU) (pp. 1-4).

IEEE.

CINAR, I., TASPINAR, Y. S., SARITAS, M. M., & KOKLU, M.

(2020). FEATURE EXTRACTION AND RECOGNITION

ON TRAFFIC SIGN IMAGES. Selçuk-Teknik Dergisi, 19(4),

282-292.

Kilic, I., & Aydin, G. (2020, September). Traffic Sign Detection

And Recognition Using TensorFlow’s Object Detection API

With A New Benchmark Dataset. In 2020 International

Conference on Electrical Engineering (ICEE) (pp. 1-5).

IEEE.

Çetinkaya, M., & Acarman, T. (2021, May). Traffic Sign

Detection by Image Preprocessing and Deep Learning.

In 2021 5th International Conference on Intelligent

Computing and Control Systems (ICICCS) (pp. 1165-1170).

IEEE.

De La Escalera, A., Armingol, J. M., Pastor, J. M., & Rodríguez,

F. J. (2004). Visual sign information extraction and

identification by deformable models for intelligent

vehicles. IEEE transactions on intelligent transportation

systems, 5(2), 57-68.

Garcia-Garrido, M. A., Sotelo, M. A., & Martin-Gorostiza, E.

(2006, September). Fast traffic sign detection and recognition

under changing lighting conditions. In 2006 IEEE Intelligent

Transportation Systems Conference (pp. 811-816). IEEE.

Maldonado-Bascón, S., Lafuente-Arroyo, S., Gil-Jimenez, P.,

Gómez-Moreno, H., & López-Ferreras, F. (2007). Road-sign

detection and recognition based on support vector

machines. IEEE transactions on intelligent transportation

systems, 8(2), 264-278.

Dalal, N., & Triggs, B. (2005, June). Histograms of oriented

gradients for human detection. In 2005 IEEE computer

society conference on computer vision and pattern

recognition (CVPR'05) (Vol. 1, pp. 886-893). Ieee.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet

classification with deep convolutional neural

networks. Advances in neural information processing

systems, 25, 1097-1105.

Khan, S., Rahmani, H., Shah, S. A. A., & Bennamoun, M. (2018).

A guide to convolutional neural networks for computer

vision. Synthesis Lectures on Computer Vision, 8(1), 1-207.

Phung, V. H., & Rhee, E. J. (2018). A deep learning approach for

classification of cloud image patches on small

datasets. Journal of information and communication

convergence engineering, 16(3), 173-178.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich

feature hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 580-587).

Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A.

W. (2013). Selective search for object

recognition. International journal of computer

vision, 104(2), 154-171.

European Journal of Science and Technology

e-ISSN: 2148-2683 1475

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE

international conference on computer vision (pp. 1440-

1448).

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn:

Towards real-time object detection with region proposal

networks. Advances in neural information processing

systems, 28, 91-99.
COCO (Common Objects in Context). (2015) Retrieved August

29, 2021, from https://cocodataset.org/#detection-eval.
Tensorflow (2018) TensorFlow 1 Detection Model Zoo. Retrieved

August 30, 2021, from

https://github.com/tensorflow/models/blob/master/research/

object_detection/g3doc/tf1_detection_zoo.md.
Bisong, E. (2019). Building machine learning and deep learning

models on Google cloud platform: A comprehensive guide for

beginners. Apress.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A.,

... & Murphy, K. (2017). Speed/accuracy trade-offs for

modern convolutional object detectors. In Proceedings of the

IEEE conference on computer vision and pattern

recognition (pp. 7310-7311).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z.

(2016). Rethinking the inception architecture for computer

vision. In Proceedings of the IEEE conference on computer

vision and pattern recognition (pp. 2818-2826).
Tzutalin. (2015) LabelImg. Git code. Retrieved August 30, 2021,

from https://github.com/tzutalin/labelImg.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md

