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ABSTRACT

In this paper, we use the structure of the standard two-sided power distribution to implement a
new version of the hyperbolic secant distribution. This new distribution is more flexible than
the hyperbolic secant distribution when it comes to interpreting data presenting an abrupt
change in values. In the first part of the paper, we show some of its properties, such as the shape
behavior of the probability density and hazard rate functions, and the analysis of moment-type
measures. Then, the statistical side of the underlying model is explored. We provide the
maximum likelihood estimates for the model parameters, as well as an efficient algorithm to
calculate them. After this, to demonstrate the potential of the proposed modeling strategy, we
present three real data applications. The beta-normal, power-normal, Kuramaswamy-normal
and two-sided generalized normal distribution models are considered as competitors. The

results are favorable to the proposed model.
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GERCEK VERi UYGULAMALARI VE MODEL
KARSILASTIRMALARI ILE iKi YONLU GENELLESTIRILMIS
HIiPERBOLIK SEKANT DAGILIMI

oz

Bu calismada, hiperbolik sekant dagiliminin yeni bir versiyonunu elde etmek i¢in standart iki
yonlii kuvvet dagilim yapist kullanilmistir. Bu yeni dagilim, degerlerde ani bir degisiklik
gosteren verilerin yorumlanmasi s6z konusu oldugunda, hiperbolik sekant dagilimindan daha
esnektir. Makalenin ilk boliimiinde, olasilik yogunlugu ve tehlike orani fonksiyonlarinin bigim
davranisi ve moment Ol¢limlerin analizi gibi baz1 6zelliklerine deginilmistir. Sonrasinda, baz
aliman modelin istatistiksel yonii arastirilmistir. Model parametreleri i¢in en ¢ok olabilirlik
tahmin yonteminin yani sira bunlari hesaplamak icin kullanigh bir algoritma saglanmstir.
Tahminlerin ardindan, 6nerilen modelleme stratejisinin potansiyelini gostermek i¢in ii¢ gercek
veri uygulamasi sunulmustur. Beta-normal, kuvvet-normal, Kuramaswamy-normal ve iki
tarafli genellestirilmis normal dagilim modelleri rakip olarak kabul edilmis olup, elde edilen

sonuglarin 6nerilen model i¢in daha uygun oldugu goriilmiistiir.

Anahtar Kelimeler: Uygulamalar, Dagilimlarin Genel Ailesi, Model Karsilastirmalari,

Standart iki Yénlii Giig Dagilimi

1. INTRODUCTION

This paper deals with a new modeling strategy for the analysis of data that present an
abrupt change in terms of values, breaking a certain monotonic tendency. In order to fully
motivate the findings, a retrospective on the standard two-sided power (STSP) distribution is
necessary. To begin, the STSP distribution was introduced by van Dorp and Kotz (2002a). It is
mathematically defined by the cumulative distribution function (cdf) and probability density

function (pdf) given as
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0 forx <0
ﬂ(%)a for0<x<p

F(x;a,f) = na (1)
1—(1—,8)(§) forp<x<1
1 forx>1
and
a (%)a_l for0<x<p
fOsap) = (2)

a(i_;;)a_l forp<x<71

0 otherwise

respectively. It is supposed that @ > 0 and 0 < f < 1. The parameter a shapes the distribution,
whereas f can be viewed as the distributional change-point, called the reflection point (or
corner point). As a basic but important comment, the STSP distribution is very flexible. It can
be unimodal, U-shaped, uniform or triangular. The distribution corresponds to the power
distribution when f§ = 1. The corresponding model is designed to analyze data with values in
(0,1), corresponding to proportional or percentage-type data, that also present a sudden change
in values (abrupt decay, peaks, etc.). When it comes to the analysis of financial data, where
peaked shapes are more common, the STSP model is particularly helpful (see van Dorp and
Kotz (2002a) and Pérez et al. (2005)). An extension of the STSP distribution to four parameters
has been developed by van Dorp and Kotz (2002b) for more perspectives on applications.
Further, with the idea of combining the change-point strategy with any parental distribution, a
new family of continuous distributions was proposed in Korkmaz and Genc (2017), providing
an alternative to the beta generated Eugene et al. (2002) and Kumaraswamy generated Cordeiro

and Castro (2011) families, among others. The cdf and pdf of this family can be expressed as

0 for x < G71(0; ¢)
F(x; C(,ﬁ, S) — ) ﬁll__: [G(X, 5)]“ fOT' G_:r(O; S) < iC1< f;_l(ﬁ; 5) n (3)
—(A =P %(x;)[1 = G(x;8)]* forG™1(B;e) <x <G (1;¢)
1 forx>1
and

93



Nicel Bilimler Dergisi / Cilt: 3, Sayi: 2, Aralik 2021
Journal of Quantitative Sciences / Volume: 3, Issue: 2, December 2021

afl~%g(x; &)[G(x; e)]* ! for G71(0;8) <x < G 1(B;¢)
foa,Be) ={a(l—B) " %g(x; )1 — G(x; )]*? forf<x<1 4)
0 otherwise

respectively, where G(x;¢e) and g(x;¢) are the cdf and pdf of the baseline distribution,
respectively, with & a certain parameter vector, and G ~1(f; €) is the quantile function (qf) of
the baseline model taken at the reflection parameter. In fact, this family consists of a mixture
distribution structure based on the two components, one of which is a truncated exponentiated
family and the other one is a truncated Kumaraswamy family. Authors have studied the basic
distributional properties, estimation procedure, and real data application of this family with a
detailed example of the normal distribution, called the TSGN distribution. Other members have
been studied in the literature. We cite the two-sided generalized exponential distribution by
Korkmaz and Gence (2015b), two-sided generalized Weibull distribution by Korkmaz and Gene
(2015a) and two-sided generalized Gumbel distribution by Korkmaz (2015). It may be seen

Korkmaz and Genc (2017) for other examples of two-sided distributions and models.

Secondly, always for motivational reasons, we need to present the fundamentals of the
hyperbolic secant (HS) distribution. It was introduced by Perks (1932), and was recently
reviewed by Fischer (2013). It is mathematically defined by the cdf and pdf given as

G(x) = %arctan (e%), X ER, (5)
and
glx) = %sech Gx), X ER, (6)

respectively, where "sech" denotes the hyperbolic secant function defined by sech(x) =

12
cosh (x) - (eX+e~%)

. As for the normal distribution, the HS distribution is symmetric and bell-

shaped but has the feature of being leptokurtic. As a matter of fact, there are a few
generalizations of the HS distribution in the literature. The most popular are those created by
Harkness and Harkness (1968) and Morris (1982). More recently, Vaughan (2002) introduced

a new generalized HS distribution which showed nice properties but didn't take into account
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different levels of skewness. This was reworked by Fischer and Vaughan (2002) to correct it.
Later, Fischer and Vaughan (2004) introduced the beta HS (BHS) distribution, which was

shown to be quite flexible.

In the light of the above information, the main aim of the paper is to propose an
alternative unbounded distribution with two-sided structure using the HS distribution. The
name of this distribution is the two-sided generalized hyperbolic secant (TSGHS) distribution.
It is intended to generate a flexible model specified over the entire real line that is suitable for
dealing with data that has a sudden change in terms of values, thereby breaking a monotonic
trend. Furthermore, it provides a new extension of the hyperbolic secant distribution, which

remains rare enough for a thorough investigation.

In the first part, we highlight the flexible aspect of the TSGHS distribution by showing some
plots of the pdf and hazard rate function (hrf) of the newly defined distribution. We also study
the gf and various moment measures. The second part of the paper is about the modeling

capability of the TSGHS model.

We consider the maximum likelihood estimates of the parameters and prove their
efficiency via a complete simulation study. We end this paper with a comparison between the
TSGHS model and other existing models, like the beta-normal model (see Eugene et al. (2002)),
power-normal model (see Gupta and Gupta (2008)), Kumaraswamy-normal model (see
Cordeiro and Castro (2011)), TSGN model (see Korkmaz and Genc (2017)) and BHS model
(see Fischer and Vaughan (2004)) with three real data applications.

The precise organization of the paper is as follows: Section 2 focuses on the main
functions of the TSGHS distribution. The quantile and moment properties are examined in
Section 3. The inference on the TSGHS model parameter is the subject of Section 4.

Applications to real data are given in Section 5. Finally, Section 6 concludes the paper.
2. THE TSGHS DISTRIBUTION

In this section, we define the two-sided generalized HS distribution by its main functions,

and study their shape behavior.
2.1. Main functions

From Equations (3) and (4) on the one hand, and Equations (5) and (6) with the use of

a central parameter 4 € R and a scale parameter ¢ > 0 on the other hand, by applying the
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method described in Korkmaz and Genc (2017), the cdf and pdf of the TSGHS distribution are

obtained as

F(x;a,B,u,0) =
( Earctan(e (XZ—U#)> ¢
Bl - 5 for—OOSxSu+ailn[tan(§ﬂ)]
| 5 =\ & ’ (7)
1——arctan(e 20 )
1-(1-p) = for,u+a%ln[tan(§,8)]<xs+oo
\
and
fOsa,B,u0) =
( %arctan(en(xl_dﬂ)> i
%sech E(%)] 5 for — SxS,u+a%ln [tan(gﬁ)]
1—£arctan(en(x2_6m “! ' (8)
%sech E(%)] il -y for,u+a%ln [tan (g,b’)] <x < 400

\

respectively. To specify the parameters, we will sometimes denote the proposed distribution by
TSGHS(a, B, u,0). When a = 1, the cdf and pdf given in Equations (6) and (7), respectively,
represents the HS distribution. So the TSGHS distribution is a generalization of the HS

distribution. The pdf changes of defintion in function of the position of x with the reflection

point: u + a%ln [tan (gﬁ)] When x < u + a%ln [tan (gﬁ)], a truncated exponentiated

version of the HS distribution is activated, whereas when x > u + a%ln [tan (g ,8)], a

truncated Kumaraswamy version of the HS distribution is considered. The shape behavior of
this pdf is of importance to understand the modeling capability of the TSGHS distribution. Due
to its high level of complexity, we prefer to perform a graphical study. Thus, Figures 1 and 2

display f(x; @, B, i, o) for some combinasions of the parameters.
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Figure 1. Curves of the pdf of the TSGHS distribution with (a) # = 0.5 and a changes, and
(b) a = 2 and S changes
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Figure 2. Curves of the pdf of the TSGHS distribution with (a) « = 0.25 and 8 changes, and
(b) a = 0.5 and f changes

The curves in Figure 1(a) are symmetric as § = 0.5 with any a. We can also note that
when a < 1, the distribution is bimodal. The bimodality is more apparent when a gets closer
to 0. Figure 1(b) shows the possible right and left skewness of the distribution with @ = 2 and
p varying. When = 0.5, the pdf is symmetric and has a sharp peak, which can be useful for
modeling some data (see section 6). Figures 2(a) and (b) show interesting plots with the corner

point (¢ = 0.25 and a_0.5, respectively).
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2.2. Hazard rate function

The hrf is an important tool in survival analysis, and may be of interest for distribution
defined on the whole real line. Its shape behavior is informative on the model capacity. In a

condensed form, the hrf of the TSGHS distribution is indicated as

B s "
e a, B, 0) =4° ﬁal[G(xa#]a for SxS,u+ann[tan(zﬁ)], o

—hHS( ”) foru+a%ln [tan(gﬁ)] Sx< 4o

where g(x) and G (x) are the pdf and cdf of the HS distribution as given in Equations (5) and
(6), respectively, and hyg(x) is the hrf of the HS distribution defined as follows:

% sech (% x)

" x € R.
1-— Earctan (eT)

hys(x) =

Similarly to the pdf of the TSGHS distribution, the hrf is two-sided with the changing point
being u + o % In [tan (g B )] However, the complexity level of this function is too high for an

analytical study; we prefer to give plots of it to understand its shape behavior. Figures 3 and 4

are made in this regard.
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Figure 3. Curves of the hrf of the TSGHS distribution with (a) § = 0.5 and a changes, and
(b) @ = 2 and S changes
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Figure 4. Curves of the hrf of the TSGHS distribution with (a) « = 0.25 and £ changes, and
(b) @ = 0.5 and S changes

Figure 3 shows increasing hrf first and then it stays constant. As for Figure 4, for some
parameter values, the hrf increases then decreases before the changing point. Then it increases
again to stay constant after. For the other parameter values (lower ) the hrf is increasing or

slightly increasing up to the changing point where it sharply increases to then stay constant.
3. QUANTILE AND MOMENTS

Quantile and moment analyses of the TSGHS distribution are now examined.
3.1. Quantile

The qf of a distribution is as useful as its cdf. It can be used to generate random numbers
from the distribution, among other things. We may refer to the book by Gilchrist (2000) for a
complete overview of the role of the qf in probability and statistics. In our setting, the qf of the

TSGHS distribution is defined by

p+oGt ((qﬁ“_l)i) for0<g<§p

F~'(q;a B, p,0) = 1
u+ oGt (1 — (- - ﬁ)“‘l)“) forB<q<1

: (10)

where G ~1(x) is the gf of the HS distribution defined as follows:
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2
G 1(x) = ;log (tan (gx)>, 0<x<l1.

To generate values from a random variable X with the TSGHS distribution, we can use
this function. The following result may be used: For any uniform random variable U defined
on (0,1), the random variable X = F~Y(U; a, 8, u, o) follows the TSGHS distribution. This

technique will be used later for simulation purposes.
3.2. Moments

We now explore the moments of the TSGHS distribution. Let X be a random variable
with the TSGHS distribution. Then, for any integer r, the rth non central moment of X is

specified by

+ 0o

E(X™) = f x"f(x;a, B, 1, 0)dx

— 00

= T g () [ ()

g o

e s o ()1 -6 () ax

where g(x) and G (x) are the pdf and cdf of the HS distribution as given in Equations (5) and
(6), respectively.

From Korkmaz and Genc (2017) and with the change of variable u = G((x — p)o™1),
we get

B
fu“‘l[aG‘l(u) + ul"du

0

E(X") =

a
ﬂa—l
1

+#§(—ni ("7 ﬁf w062 () + plrdu
j=0
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Using the classical binomial expansion of (6G~1(u)+ u)", and expressing G~ 1(u) =
%log (tan (g u)), we obtain

r i

E(XT) = ﬁf_lz () ur-iol (;) S(a —1,0,B,0)

S e D o
j=0 i=0

where 3(y, a, b, i) denotes the integral operator defined by

b

3, a,b,i) = qu llog (tan (gu)ﬂl du.

a

This integral has no closed form expression, to our knowledge, but can be computed
quite easily with the help of any mathematical software. As an illustration, in Table 1, numerical

work on the moments of X is performed. More precisely, we determine the mean, variance,

-3 +2u . -4 +6uu?-3ut
skewness §; = Wand kurtosis §, = (ko= ptasty ’;Zfl ”1), where u, = E(X"), for
(nz-ui) (u2-u?)

selected values of the parameters of the TSGHS distribution. We fixed ¢4 = Oand ¢ = 1.
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Table 1. Mean, variance, skewness and kurtosis of the TSGHS distribution for some values of

aand fwithy=0ando =1

B a Mean Variance Skewness Kurtosis
ol 1.5 -02317 0.5854 -0.0181 4.1140
: 2 -0.3661 0.4154 0.0168 3.5986

5 -0.6906 0.1549 0.3168 2.8459

1.5 -0.1639 0.5284 0.0471 4.4035

0.2 2 -0.2563 0.3438 0.1135 4.0420
5 -0.4659 0.0934 0.4639 3.5664

1.5 -6.0871e-17  0.4795  -2.6998¢-15  4.7905

0.5 2 -49021e-17 02867  -6.8582e-16  4.6793
5 -6.9645e-17  0.0563  2.2525e-16  4.6522

1.5 0.1340 0.5114 -0.0536 4.5225

0.75 2 0.2088 0.3235 -0.1196 4.2334
5 0.3752 0.0791 -0.4552 3.8825

1.5 0.2734 0.6385 0.1150 3.9887

0.95 2 0.4358 0.4871 0.1288 3.4235
5 0.8489 0.2349 -0.0866 2.5291

According to Table 1, the distribution is near symmetrical when f = 0.5. When f <
0.5is fixed and @ > 1, a increases, the mean, variance and kurtosis decrease and the skewness
increases. When 8 > 0.5 is fixed and @ > 1 increases, the mean increases as well as the
variance, but the kurtosis decreases. For the HS distribution, when a = 1, the mean, variance,
skewness, and kurtosis values are 0, 1, 0 and 5 respectively. We can see that the distribution

can be right-skewed, left-skewed, or symmetrical and usually has a heavy tail.

We illustrate the skewness and kurtosis of the TSGHS distribution in Figure 5 for f =
0.1, y=0and o = 1.
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Figure 5. Curves of the (a) skewness and (b) kurtosis of the TSGHS distribution for selected

parameters value

Figure 5(a) shows that, for 1 < a < 2, the distribution is slightly left-skewed, it
becomes fairly symmetrical near @ = 2 and then becomes right-skewed. It is worth noting that,
when f = 0.9, it is the opposite, the distribution is slightly right-skewed but becomes left-
skewed when a exceeds 2. In Figure 5(b), the distribution is leptokurtic at first but is closer to
the normal kurtosis, mesokurtic, when a approaches 5. When a > 5, the kurtosis of the

distribution gradually increases.
4. ESTIMATION

The inference of the TSGHS model is the main line of this section.
4.1. Maximum Likelihood Estimates

Let X4, X5, ..., X, be independent random variables following the TSGHS(, 5, u, o)
distribution, with unknown parameters. Let x4, x5, ..., X,, be observations of these variables and
X(1), X(2)» -1 X(n) denote the corresponding order values. From Korkmaz and Gene (2017), the

log-likelihood function of the TSGHS model is defined by

£(a,B,u,0) =£(a, B, u,0,7) = nlog(a) —nlog(c) + X, log [g (%)] + (a—

1o () T (1-6 ()

11
BT(1-B)"T ’ (1

1Dlog

103



Nicel Bilimler Dergisi / Cilt: 3, Sayi: 2, Aralik 2021
Journal of Quantitative Sciences / Volume: 3, Issue: 2, December 2021

where Xy S u+ G~ (B) < x(pyqy for ¥ =1,2,...,m, x(g) = =00, X(n41) = +00, g(x) and
G (x) are the pdf and cdf of the HS distribution as given in Equations (5) and (6), respectively.

Then, the maximum likelihood estimates (MLEs) of @, 8, i and o, say, &, 8, i and & are given
by

(@B8.4.6) = Gpumtla B ua)

Based on van Dorp and Kotz (2002a) and Korkmaz and Genc (2017), provided that 4 and o are
fixed, the MLEs of a and £ are

n

g=—-—7"
log[M (7 u.0)]

and
X~ p
A 2 i
f = =arctan (e" 20 ),
s

respectively, where , 79" M (T, 4, o) with

M(T‘ I O') — 1r-1 G(Xi;u) n 1_G(xi;ﬂ)

To find the estimates of the parameters 4 and @, we can use an algorithm described as follows:

Step 1: Set k = 0 and put initial values 2(® and 6@ for u and o in the log-likelihood function.

Step 2: Compute the following estimates:

Xy~
A(k+1) 2 T 2e®
p = —arctan| e
m

n

&(k+1) —
log[M (700, 410, 5 ()]

where 9™ M (r, 4%, 6®) with
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) a0
-1 G xl/\—ﬂ n 1—G xlA—M
© A~ 500 500
M(r,p%,6 )=ﬂ X, — 0 1_[ X, — 0
o (D) L1 ()

5

(a0 g 1y 5 #(K)
Step 3: Update u and o by using the following system of equations: 24a0p au'“’” ) = 0 and

97(a®,p00 1 g 7))

— = 0 to find A%*V and 6*+V also giving #*+D.

Step 4: If |z(&(k+1)’ﬂ“(k+1)'ﬁ(k+1), 6(k+1)’7'>(k+1)) _ ?(&(k+1)“é(k+1)“a\(k)' 6(k)’1'>(k))| is less
than a given tolerance, 102 for example, then stop, and consider @®), 9, 109 and & ® as

the MLEs of &, 3, /i and 6.
Else k = k + 1 then go back to Step 2.

4.2, Simulation Study

In this section, empirical results are given to see the performance of the established MLE:s.
The simulation study is summarized via graphics.

To begin, N = 1000 samples of size n = 20,30, ...,1000 from a random variable following
the TSGHS distribution are generated. The true values of the parameters are taken as @ = 5,
B =0.5 u=0 and ¢ = 1. The gf described in Equation (10) is used for the generation of
random numbers. For evaluating the performance of the estimates, the empirical mean, bias,
and mean square error (MSE) are obtained for comparisons. By setting € = «, 5, u or o, the

related empirical mean, bias, and MSE are calculated by

N

N N
1 1 1
En(€) =5 ) & Bias,(&) =5 ) (€&, MSE(e) =3 > (e é)?,
i=1 i=1

i=1

respectively, where €; denotes the MLE of € obtained at the i sample.
Figure 6, 7, 8 and 9 give a visualization of the results of the simulation studies related

to a, 5, i or o, respectively.
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Figure 6. Graphical results of the parameter a for the simulation study: (a) empirical mean,
(b) bias and (c) MSE
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Figure 7. Graphical results of the parameter f for the simulation study: (a) empirical mean,

(b) bias and (c) MSE

106



Nicel Bilimler Dergisi / Cilt: 3, Sayi: 2, Aralik 2021
Journal of Quantitative Sciences / Volume: 3, Issue: 2, December 2021

Ul oAl !
|||\l‘ “l H fu“ || ||| | 1"‘“‘ '|' l ||’ ‘

[l :"‘.r'w i
Ihik \"\H\ ||u W e | I “ it mhk L
1T ol \“,"""‘J H | )
|Lj |h \‘l ‘\ | u‘ \ | ”“ \| |

‘i I'H ‘” ‘H “1 ‘\ Illylul“',

\1\

'; ’

P

(a) (b) (c)
Figure 8. Graphical results of the parameter u for the simulation study: (a) empirical mean,
(b) bias and (c) MSE
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Figure 9. Graphical results of the parameter o for the simulation study: (a) empirical mean,
(b) bias and (c) MSE

These figures show that the expected result with increasing sample size n is that
empirical means are close to true values, MLEs are asymptotically unbiased, and all MSEs go

to zero. At the same time, the empirical results are close, when the sample size increases.
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5. REAL DATA APPLICATIONS
This section is devoted to the applicability of the TSGHS model for data analysis.

5.1. Method

We fit three data sets using the TSGHS model, and compare it to other existing models,
namely the beta-normal (BN), power-normal (PN), Kuramaswamy-normal (KwN) and two-
sided generalized normal (TSGN) models. To compare them, the unknown parameters of the
models are estimated by the maximum likelihood method, and we use the Akaike information
criterion and its correction (AIC and CAIC), the Bayesian information criterion (BIC) and the

Hannan-Quinn information criterion (HQIC).
5.1.1. First Application: Time to Failure of Turbochargers

The data are made up of 40 measurements of the time to failure of turbochargers diesel
engine. These data were used by Noor and Mundher (2020) and Nasir et al. (2019). The data
are Data = (1.6, 3.5,4.8,5.4,6.0,6.5,7.0,7.3,7.7, 8.0, 8.4, 2.0, 3.9, 5.0, 5.6, 6.1, 6.5, 7.1, 7.3,
7.8,8.1,84,2.6,4.5,5.1,5.8,6.3,6.7,7.3,7.7,7.9, 8.3, 85, 3.0, 4.6, 5.3, 6.0, 8.7, 8.8, 9.0).
We report the estimates found using R program and criterions of the TSGHS model and other

competitors in Table 2.

Table 2. MLEs, AIC, CAIC, BIC and HQIC values related to the TSGHS model and other

models
a B U o AIC CAIC BIC HQIC
TSGHS | 38.1109 | 0.9687 | -6.6773 | 8.0658 | 164.0750 | 165.2179 | 170.8305 | 166.5176
BN | 38.6150 | 0.0333 | 10.1861 | 0.5534 | 165.0574 | 166.2003 | 171.8129 | 167.5000
PN 0.0060 - 9.5288 | 0.2113 | 165.8376 | 166.5043 | 170.9042 | 167.6695
KwN | 0.0121 | 99.9305 | 21.7733 | 0.5376 | 169.6174 | 170.7603 | 176.3730 | 172.0600
TSGN | 19.6023 | 0.9423 | -6.0820 | 9.3878 | 165.1690 | 166.3119 | 171.9245 | 167.6116
BHS | 0.3212 | 12.3274 | 9.8663 | 0.6817 | 167.8785 | 169.0213 | 174.6340 | 170.3211

Table 2 indicates that our model is the better fit regarding the criteria used, although

very close to the other competitors.

Figure 10 shows the fit of the estimated pdf and cdf of the TSGHS model to the data.
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Figure 10. Graphical representations of the time to failure of turbochargers data set with (a)

the estimated pdf and (b) the estimated cdf of the TSGHS model

In particular, from Figure 10(a), we see that the estimated pdf of the TSGHS model
captures both the left skewness of the data and the sudden drop in values around x = 9.
For a visual comparison with the other models, Figure 11 presents the corresponding

estimated pdfs.
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Figure 11. Graphical representation of the time to failure of turbochargers data set and the

estimated pdfs of the TSGHS, TSGN, PN, BN, KwN and BHS models
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Based on Figure 11, the PN, BN, KwN, and BHS models can’t seem to adjust well to
the sharp fall of the data. The TSGN model, which comes from a generalized normal
distribution using the two-sided distribution as a generator, looks very similar to the fitting
behavior of our model. This example of application shows that our distribution has some

potential to fit data.
5.1.2. Second Application: Remission Times (in months) of 128 Bladder Cancer Patients

The considered data set is a random sample of 128 bladder cancer patients with their
remission times (in months).

The data set comes from Lee and Wang (2003) and has been used by Reyes et al. (2017).
The data are Data = (0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97,
9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47,
14.24,25.82,0.51,2.54,3.70,5.17,7.28,9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06,
14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,
15.96,36.66, 1.05,2.69,4.23,5.41,7.62,10.75,16.62,43.01, 1.19, 2.75,4.26, 5.41, 7.63, 17.12,
46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36,
1.40, 3.02, 4.34,5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50,
6.25,8.37,12.02,2.02,3.31,4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07,
3.36, 6.93, 8.65, 12.63, 22.69).

The results of the criteria used to compare models are reported in Table 3.

Table 3. MLEs, AIC, CAIC, BIC and HQIC values related to the TSGHS model and other

models
a B U o AIC CAIC BIC HQIC
TSGHS | 264.3606 0.0689 | 399.5727 | 282.0842 | 841.1545 | 841.4797 | 852.5626 | 845.7896
BN 0.5154 17.7705 | -17.1429 | 11.7873 | 907.0064 | 907.3316 | 918.4145 | 911.6415
PN 1.6016e+11 - 258.1246 | 38.9431 | 876.5680 | 876.7616 | 885.1241 | 880.0444
KwN 1.5108 0.5635 1.4179 9.5096 952.6799 | 953.0051 | 964.0880 | 957.3151

TSGN 133.1274 0.1110 | 310.5948 | 252.7084 | 843.5995 | 843.9247 | 855.0076 | 848.2347

BHS 13.7641 0.3056 | -3.6112 2.3304 | 843.4384 | 843.7636 | 854.8465 | 848.0736
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Table 3 exposes that our proposed model has the best fit, with a very small AIC for these data:
AIC = 341.1545. Figure 12 isolates the fit of the TSGHS model via complementary graphical

approaches.
o |
o _ =
o
o |
[o0] M o
D. -
o
w— - ©
g g 5 S
o © °
£ e
E < g X
S A =}
o
9 %ﬁ\ﬁm_u 3
o o
e - - o |
° ' ' ’ ' s I I I I
0 20 40 60 80 0 20 40 60 80
X
X
(a) (b)

Figure 12. Graphical representations of the remission times of bladder cancer patients data set

with (a) the estimated pdf and (b) the estimated cdf of the TSGHS model

Figure 12(a) shows right skewed data with a heavy tail and the fit of the TSGHS model
which captures quite well the sharp peak of the data. In Figure 12(b), we can see that the
estimated cdf of our model has also a good fit.

Visual comparisons with the other models are given in Figure 13.
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Figure 13. Graphical representation of the remission times of bladder cancer patients data set

and the estimated pdfs of the TSGHS, TSGN, PN, BN, KwN and BHS models

When we look at the other competitors in Figure 13, we can see that the PN, BN, and
KwN models struggle to adjust to the fairly-peaked data. The BHS model goes higher than the
three models, but not as high as the TSGHS model. As 112ort he TSGN model, it looks very
similar to our model. Indeed, the HS distribution, which is the basecline of the TSGHS
distribution, is a bell-shaped distribution like the normal distribution, which is the base
distribution of the TSGN distribution. Both distributions are very flexible when it comes to data

fitting, especially high-peaked data.
5.1.3. Third Application: Repair Lifetimes of an Airborne Transceiver

The data set represents 46 repair times in hours for an airborne communication
transceiver from Chhikara and Folks (1977). The data are Data = (0.2, 0.3, 0.5, 0.5, 0.5, 0.5,
0.6,0.6,0.7,0.7,0.7,0.8,0.8,1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7,
3.0,3.0,3.3,3.3,4.0,4.0,4.5,4.7,5.0,5.4,5.4,7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5).

Table 3 reports the results of the criteria used to compare models.
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Table 4. MLEs, AIC, CAIC, BIC and HQIC values related to the TSGHS model and other

models
TSGHS a B U o AIC CAIC BIC HQIC
BN 159.0335 0.0758 106.9668 78.7840 | 220.5556 | 221.5312 | 227.8702 | 223.2957
79.083
PN 2.9437 9 -30.6061 18.3417 | 274.1300 | 275.1056 | 281.4446 | 276.8701
1.1564e+1
KwN 5 - -123.9995 17.8545 | 244.8911 | 245.4625 | 250.3770 | 246.9461
TSGN 63.1287 0.2995 -8.4773 4.0249 | 250.8490 | 251.8246 | 258.1636 | 253.5891
BHS 89.6610 0.0603 67.0336 42.8625 | 224.2761 | 225.2518 | 231.5907 | 227.0162
TSGHS 76.0448 0.2356 -2.8074 0.7683 | 225.6571 | 226.6327 | 2329716 | 228.3972

When we compare the criteria of the TSGHS model with those of the other competitors in Table

4, we can see that our model has the best fit. This fit is illustrated in Figure 14.
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Figure 14. Graphical representations of the repair lifetimes of an airborne transceiver data set

with (a) the estimated pdf and (b) the estimated cdf of the TSGHS model

The data set is similar to the previous one, right skewed with a heavy tail as we can see
on Figure 14(a). The estimated pdf of the TSGHS model fits the data quite well as the estimated
cdf plotted in Figure 14(b). Figure 15 performs a visual estimated model comparison based on
the fitted pdf.
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Figure 15. Graphical representation of the repair lifetimes of an airborne transceiver data set

and the estimated pdfs of the TSGHS, TSGN, PN, BN, KwN and BHS models
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From Figure 15, it is clear that the PN, BN, KwN, and BHS models can’t reach the peak
of the data, unlike the TSGHS and TSGN models. This example shows that the TSG-G family

allows the creation of more flexible models for such a data analysis scenario.
6. CONCLUSION

In this paper, we introduced a generalized hyperbolic secant distribution using the
standard two-sided power distribution as a generator. The corresponding model is made to fit
data that has an abrupt change in values. We studied some of its properties and estimated the
parameters using the maximum likelihood estimation procedure. In this regard, an efficient
algorithm is given, and a simulation study showing the behavior of the estimates is performed.
The obtained distribution is very flexible as it can be unimodal, right or left skewed, symmetric
or bimodal with equal or different heights. This flexibility is illustrated for the analysis of three
different data sets of importance, with fair comparison to important models of the literature. As
a result, we contribute to the evolution of the so-called two-sided family of distributions,

demonstrating that its members have a lot of modeling potential.
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