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ABSTRACT 
In Diffuse Optical Tomography (DOT), data processing and reconstruction stages are crucial to obtain high-quality 

images. Thus, choosing suitable algorithms for the system is a critical choice. This study aims to determine an 

appropriate reconstruction algorithm for DOT imaging. There are several reconstruction algorithms used in DOT 

systems. Some algorithms have been improved for solving specific cases, and some still need to be improved. In 

this study, we used three algorithms for the reconstruction process: Singular Value Decomposition (SVD), Bi-

Conjugated Gradient (Bi-CG), and Transpose Free Quasi Minimal Residual (TFQMR). In testing the algorithms, 

data of the simulation experiments have been used. The simulation experiments model the tumoral tissue within 

the breast. All three algorithms were produced correct images while the tumor close to the surface.  In the case of 

the tumor that is not close to the breast surface, the tumor location on the images created by Bi-CG and SVD 

algorithms was not its actual location. However, the tumor location in the image created by the TFQMR algorithm 

was close to its actual location. Outcomes of the reconstruction algorithms were evaluated based on correctly 

defining the location of the tumors by using Mean Percentage Error (MPE), Mean Squared Error (MSE), and Mean 

Absolute Error (MAE) metrics. We have demonstrated the TFQMR algorithm is a more appropriate reconstruction 

technique for DOT systems. Thus, we have concluded that TFQMR can have the potential to be used in medical 

imaging systems. 

 

Keywords: Reconstruction Algorithm, Singular Value Decomposition, Bi-Conjugated Gradient, Transpose Free 

Quasi Minimal Residual 

 

Difüz Optik Tomografi’de Modellenmiş Meme Tümörü Benzeri 

Dokuların Teşhisi için Simülasyon Deneyleriyle Geri Çatım 

Algoritmalarının Uygulanması 
 

ÖZ 
Difüz Optik Tomografide (DOT), yüksek kaliteli görüntüler elde etmek için veri işleme ve geri çatım aşamaları 

çok önemlidir. Bu nedenle, sistem için uygun algoritmaların belirlenmesi kritik bir seçimdir. Bu çalışma, DOT 

görüntüleme için uygun bir geri çatım algoritmasını belirlemeyi amaçlamaktadır. DOT sistemlerinde kullanılan 

birçok geri çatım algoritması vardır. Bazı algoritmalar belirli özel durumları çözmek için geliştirilmiştir ve 

bazılarının da hala iyileştirilmesi gerekmektedir. Bu çalışmada, geri çatım işlemi için üç algoritma kullanılmıştır; 

Tekil Değer Ayrışımı (SVD), Bi-Konjuge Gradyan (Bi-CG) ve Transpozesiz Yarı Minimal Rezidüel (TFQMR). 

Algoritmaların test edilmesinde simülasyon deneylerinin verileri kullanılmıştır. Simülasyon deneyleri, meme 

içindeki tümör dokusunu modellemektedir. Her üç algoritma da tümör yüzeye yakınken gerçeğe daha yakın 

1 This study was presented in ICAIAME 2021 and published as summary text. 
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görüntüler üretmiştir. Tümörün meme yüzeyine yakın olmaması durumunda ise, Bi-CG ve SVD algoritmaları ile 

oluşturulan görüntülerdeki tümör konumu gerçek konumu değildir. Ancak TFQMR algoritması ile oluşturulan 

görüntüdeki tümör konumu, gerçek konumuna yakın elde edilmiştir. Geri çatım algoritmalarının sonuçları, 

Ortalama Yüzde Hata (MPE), Ortalama Kare Hata (MSE) ve Ortalama Mutlak Hata (MAE) metrikleri kullanılarak 

tümörlerin lokasyonunun doğru tanımlanmasına dayalı olarak değerlendirilmiştir. TFQMR algoritmasının DOT 

sistemleri için daha uygun bir geri çatım tekniği olduğu gösterilmiştir. Böylece, TFQMR'nin tıbbi görüntüleme 

sistemlerinde kullanılma potansiyeline sahip olabileceği sonucuna varıldı. 

 

Anahtar Kelimeler: Geri Çatım Algoritması, Tekil Değer Ayrışımı, Bi-Konjuge Gradyan, Transpozesiz Yarı 

Minimal Rezidüel 

 

 

 

I. INTRODUCTION 
 

Diffuse Optic Tomography (DOT) is an alternative to other medical imaging systems for imaging 

biological tissues. DOT systems perform in different ways: Time-Domain, Frequency-Domain, 

Continuous-Wave (CW), and Hybrid [1]–[5].  

 

We have designed our system as a Continuous-Wave Diffuse Optic Tomography (CW-DOT) [5]. CW-

DOT systems also emit a constant amplitude of light. It provides to examine a pathological change in 

tissue by measuring the decrease in the amplitude of the incident light.  

 

In CW-DOT, there are three main processes for imaging tissue. Firstly, the CW-DOT probe collects 

light distribution data from each biological tissue having specific optical properties such as absorption 

and scattering coefficients, anisotropy, and refractive indexes [6]. Secondly, Monte Carlo simulations 

produce a weight matrix. In back reflection DOT systems, the trajectory of the detected photons is in 

banana shape (it is not a straight line). Therefore, a simulation is required to create the weight matrix 

[7]. Finally, the reconstruction process is used for solving the linear equation system referring to light 

distribution within a medium. The radiative transfer equation mathematically models the light 

distribution in the tissue [6], but the equation is difficult to calculate. Therefore, diffusion approximation 

can reduce it to the diffusion equation [2]. Furthermore, applying some mathematical approximations to 

the equation linearizes it. The reconstruction process is applied to find the unknown matrix by solving 

the linear equation system, which allows obtaining an image of the tissue [1], [2].  

 

DOT has become one of the alternative diagnostic methods, but it still has many obstacles needed to 

improve. One of them is the reconstruction process affecting image quality significantly. Recently, many 

different reconstruction algorithms have been embedded in the DOT systems [1]–[5]. However, every 

reconstruction algorithm has disadvantages [2], [8], [9]. A reconstruction algorithm cannot solve all 

matrix systems. For example, Conjugated Gradient (CG)-based algorithms can solve symmetric, 

positive definite, large sparse matrix systems, but not non-Hermitian [8], [9]. Each algorithm is specific 

to the system to be used. Therefore, choosing an appropriate reconstruction algorithm for the system is 

crucial.   

 

In this study, we have designed simulations modeling the breast tissue with a tumor and without it. To 

reconstruct the breast phantoms, we have used three different algorithms: Singular Value Decomposition 

(SVD), Bi-Conjugated Gradient (Bi-CG), and Transpose Free Quasi Minimal Residual (TFQMR). We 

have used the SVD algorithm in this study because it is one of the most used algorithms in imaging 

systems in the literature. In addition to SVD, CG-based algorithms are also commonly used in many 

imaging systems. We have used the Bi-CG algorithm among these CG-based algorithms because it was 

developed for non-Hermitian systems. We have determined that TFQMR produces high-quality images 

in a previous study [2]. However, we have never evaluated these algorithms with performance metrics 

before. Therefore, we have evaluated three algorithm with the performance metrics such as Mean 

Percentage Error (MPE), Mean Absolute Error (MAE), and Mean Squared Error (MSE) [11]–[13]. 
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II. MATERIAL AND METHOD 
 

A. SIMULATION EXPERIMENTS 

 
In the simulation experiments, breast and tumoral tissue were modeled with the absorption coefficient 

of breast and tumoral tissue being 0.04 cm-1 and 0.16 cm-1, respectively. We have simulated breast 

tumors at different depths. Also, we have counted the number of photons detected from the breast tissue 

with a tumor and without it separately. Next, we have obtained the perturbation data by subtracting the 

number of photons obtained from the breast tissue without tumor from those with it. Then, we have used 

the perturbation data in the reconstruction algorithms. 

 

B. RECONSTRUCTION ALGORITHMS 

 
In the literature, reconstruction algorithms are used to solve large systems in many fields, including 

medical imaging systems. However, we used three algorithms: SVD, Bi-CG, and TFQMR techniques. 

 

B. 1. Singular Value Decomposition 

 
SVD solves large matrix systems by decomposition. In this algorithm, the coefficients are decomposed 

to form two eigenvectors and one eigenvalue by performing a sort of factorization operation on this 

matrix to invert a coefficient matrix [14]–[16]. 

 

Eigenvector of 𝐴𝑇𝐴 is V, eigenvector of 𝐴𝐴𝑇 is U. Since 𝐴𝐴𝑇 = 𝐴𝑇𝐴, the eigenvalues provided by the 

two eigenvectors are common. 

 

The basis of the algorithm [14]–[16], 

 

𝐴 = 𝑈𝑆𝑉𝑇                                                                                                                                  (1) 

 
𝐴𝑇𝐴 = 𝑉𝑆𝑇𝑈𝑇𝑈𝑆𝑉𝑇 = 𝑉𝑆𝑇𝐼𝑆𝑉𝑇                                                                                                (2) 

 
𝑈𝑇𝑈 = 𝐼                                                                                                                                     (3) 

 
𝐴𝑇𝐴 = 𝑉𝑆𝑇𝐼𝑆𝑉𝑇 = 𝑉𝑆𝑇𝑆𝑉𝑇                                                                                                        (4) 

 
Since S is a diagonal matrix, 𝑆𝑆𝑇 = 𝑆𝑇𝑆 = 𝑆2. Then, Eqn. 4 can be written as the equality 

“𝐴𝑇𝐴 = 𝑉𝑆2𝑉𝑇”. According to the equation, it is found that S2 is eigenvalue and that the vector V is the 

eigenvector. Likewise, when considering 𝐴𝐴𝑇; 

 

𝐴𝐴𝑇 = 𝑈𝑆𝑉𝑇𝑉𝑆𝑇𝑈𝑇 = 𝑈𝑆𝑆𝑇𝑈𝑇 = 𝑈𝑆2𝑈𝑇                                                                                  (5) 

 
According to Eqn. 5, the eigenvalue of 𝐴𝐴𝑇 is S2, and the eigenvector of 𝐴𝐴𝑇 is obtained as U [14]–[16]. 

 

B. 2. Bi-Conjugated Gradient 

 
The Bi-CG is also an improved version of the Conjugated Gradient (CG) for the non-Hermitian system. 

In addition to CG subspaces, there is another subspace of the Bi-CG, which is defined in Eqn. 6 [10], 

[17]. 

 

𝐿𝑖 = 𝑠𝑝𝑎𝑛(𝑤0, 𝐴𝑇𝑤0, (𝐴𝑇)2𝑤0, … , (𝐴𝑇)𝑖−1𝑤0)            (6) 
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Therefore, the Bi-CG does not need an asymmetric coefficient matrix to solve a system. The Bi-CG uses 

extra two vectors being intrinsic to Li subspace to solve a system (Eqn. 7). 

 

𝑟𝑖
∗ = 𝑟𝑖−1

∗ − 𝛼𝑖𝐴𝑇𝑝𝑖
∗ ,        𝑝𝑖

∗ = 𝑟𝑖−1
∗ − 𝛽𝑖𝑝𝑖−1

∗  (7) 
  

where α is a constant of orthogonality relation, and β is the Gram-Schmidt constant. During obtaining a 

solution, the Bi-CG keeps on iterating until it gets a vector meeting the following conditions [10], [17]: 

 

(𝑟𝑖
∗, 𝑟𝑗) = 0, 𝑖 ≠ 𝑗 (8) 

 
(𝑝𝑖

∗, 𝐴𝑝𝑗) = 0, 𝑖 ≠ 𝑗 (9) 

 
The Bi-CG algorithm was improved to solve matrices systems with non-Hermitian matrix. However, it 

is inconsistent due to having a situation called wild oscillation, which causes irregular convergence 

behavior [8], [9]. 

 

B. 3. Transpose Free Quasi Minimal Residual 

 
The QMR was put forward to be able to solve Bi-CG’s irregular convergence behavior problem [9], 

[18], [19]. However, as in Eqn. 11, while the QMR method solves a matrix system, it needs to use 

matrix-vector multiplications with the coefficient matrix (A) and its transpose (AT) [8]. 

 

𝑠𝑝𝑎𝑛{𝑣1, 𝑣2, … , 𝑣𝑛} =  𝐾𝑛(𝑣1, 𝐴) 𝑛 = 1,2, … (10) 
 

𝑠𝑝𝑎𝑛{𝑤1, 𝑤2, … , 𝑤𝑛} =  𝐾𝑛(𝑤1, 𝐴𝑇) 𝑛 = 1,2, … (11) 
 

The nth Krylov subspace of  ∁𝑁 is produced by sequences of vectors 𝑣1, 𝑤1 and the matrices 𝐴 and 𝐴𝑇. 

The QMR produces two sequences of vectors (Eqn. 10, 11). To achieve this, it needs transpose of the 

coefficient matrix. Thus, the TFQMR method was proposed as an alternative method to overcome the 

problem [8]. 

 

In QMR, as in Eqn.12, a nonsingular matrix (S) is used to be able to simplify the Lanczos process, which 

provides to eliminate transpose in TFQMR by rearranging the initial vector 𝒘𝟏 (Eqn. 13) [8], [9], [19].  

 

𝐴𝑇𝑆 = 𝑆𝐴,       𝑆 ∈  ∁𝑁𝑥𝑁,          𝑣1, 𝑤1 ∈  ∁𝑁                                                                                              (12) 

 

𝑤1 ≔
1

‖ 𝑆𝑣1‖
 𝑆𝑣1                                                                                                                        (13) 

 

𝑤𝑛 =
𝛾𝑛

‖ 𝑆𝑣1‖
 𝑆𝑣𝑛 =  

1

‖ 𝑆𝑣𝑛‖
 𝑆𝑣𝑛                                                                                                    (14) 

 
In other words, the TFQMR converges by rearranging vector sequences of the Conjugate Gradient 

Squared (CGS) [9], [19]. This arrangement provides smooth convergence and low computational cost 

[2], [8], [9], [19]. 

 

C. PERFORMANCE EVALUATION 

 
The error metrics define 𝑒𝑡  error as the difference between the actual observed value 𝑦𝑡  and its prediction 

𝑦�̂� at time t. This difference refers to the unpredictable part of the corresponding observation. It can be 

written as Eqn. 15. 

 

𝑒𝑡 = 𝑦𝑡 −𝑦�̂�                                                                                                                               (15) 
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The error metrics used in these processes are explained and compared in Eqn. 15. All error metrics as 

MPE, MAE, MSE used in these processes are explained and compared. MPE measures the percentage 

of the mean difference between predicted values and those observed in Eqn. 16. Therefore, it becomes 

independent of the measurement scale. Near-zero MPE values mean that the model has no specific bias; 

it does not provide information about the accuracy performance of the model and weighs all mistakes 

equally [12]. 

 

𝑀𝑃𝐸 =
100

𝑛
∑ 𝑒𝑡

𝑦𝑡
⁄𝑛

𝑡=1                                                                                                                (16) 

 
The MAE measures the mean absolute difference between predicted values and those observed. Instead, 

it measures the overall error of the estimate. Therefore, the smaller the MAE results, the higher success 

of the model in Eqn. 17 [11]. 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑒𝑡|𝑛

𝑡=1                                                                                                                      (17) 

 
MSE measures the mean square prediction error in Eqn.18. Since the error measure squares the errors, 

the information about the general error direction is lost. For the same reason, MSE highlights gross 

errors to penalize overestimation errors, unlike previous error metrics. MSE is not independent of scale, 

even very sensitive to small-scale differences. Although MSE results are difficult to understand and 

interpret, it is more useful in the prediction model, especially when large errors are not desired [13]. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ 𝑒2𝑛

𝑡=1                                                                                                                     (18) 

 

All performance metrics used in this study are useful for a prediction process. Reconstruction algorithms 

endeavor to solve a matrix system, but they do not provide the exact solution. Therefore, performance 

metrics can provide information about how close the algorithms are to the solution. All performance 

metrics have been embedded into three reconstruction algorithms. Because all algorithms are iterative 

methods, performance metrics are based on the number of iterations that provide the final image. 

 

 

III. RESULTS 
 

A simulation code has been written in MATLAB 2020b to create simulation data. The experimental data 

have been obtained from simulation experiments in the study. Simulation data, which simulates tumoral 

tissue, have been generated at different locations (Figure 1 (a, b) and 2 (a, b)). Figures 1 (b) and 2 (b) 

are the depths at which tumoral tissues have been placed. In addition, the results of performance methods 

such as MPE, MAE, and MSE have been shown in Tables 1 and 2. 

 

In this experiment, a tumor (its size is 0.4×0.6×0.2 cm3, the depth is 0.2 cm) within the breast has been 

simulated in Figure 1 (a, b). Then, images have been reconstructed by three algorithms. Figure 1 (c, d) 

is the x-y and x-z images reconstructed by the SVD algorithm, respectively. Similarly, Figure 1 (e, f) 

are images generated by the Bi-CG algorithm, and Figure 1 (g, h) are images generated by the TFQMR 

algorithm. There seems to be no significant difference between the reconstructed images. However, 

when examining the error parameters of the three algorithms (Table 1), it is seen that there is a slight 

difference. It shows how close the reconstructed images are to the actual simulation image because these 

error parameters have been calculated according to the numerical data of images. Thus, it indicates that 

the TFQMR algorithm provides a better solution than other algorithms.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(h) 

 
(g) 

 
Figure 1. (a) The x-y plane and (b) The x-z plane images are the simulation of the tumoral tissue within the 

breast (1.4 – 2 at y, 0.3 – 0.7 at x, 1.9 – 2.1 at z coordinates), (c) The x-y plane (d) The z-x plane images are 

reconstructed by SVD, (e) The x-y plane (f) The x-z plane images are reconstructed by Bi-CG, (g) is the x-y 

plane image reconstructed by TFQMR, and (h) is the x-z plane image reconstructed by TFQMR. The gray color 

bars refer to the change of absorption coefficient. 
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Table 1. In the first simulation experiment, the mean percentage error, mean absolute error and mean squared 

error of numerical data of the images were reconstructed by each algorithm according to the numerical data of 

real simulation. The error parameters were calculated according to the numerical data of the real simulation 

image and the numerical data of the images reconstructed by algorithms. 

 

Reconstruction 

Algorithm 

Mean Percentage 

Error (MPE) 

(%) 

Mean Absolute Error 

(MAE) 

Mean Squared Error 

(MSE) 

SVD 35.2050 0.020896 0.00055217 

Bi-CG 31.7521 0.020063 0.00052261 

TFQMR 23.0437 0.015721 0.00035844 

 

In this experiment, tumoral tissue within the breast tissue was at a depth of 0.7 cm (Figure 2 (a, b)). As 

like, Figure 2 (c, d) are images reconstructed by the SVD algorithm, Figure 2 (e, f) are images generated 

by the Bi-CG algorithm, and Figure 2 (g, h) are images generated by the TFQMR algorithm. In this 

experiment, there is a substantial difference between the reconstructed images. There is a significant 

difference in appearance between the reconstructed images. Even considering the error parameters, we 

see this more clearly. TFQMR and Bi-CG parameters when the error does not change significantly, but 

the changes SVD parameters (Table 2). Nevertheless, the TFQMR provides the ideal parameters and 

generates the best image for this experiment. 

 
Table 2. In the second simulation experiment, the mean percentage error, mean absolute error and mean 

squared error of numerical data of the images were reconstructed by each algorithm according to the numerical 

data of real simulation. The error parameters were calculated according to the numerical data of the real 

simulation image and the numerical data of the images reconstructed by algorithms. 

 

Reconstruction 

Algorithm 

Mean Percentage 

Error (MPE) 

(%) 

Mean Absolute Error 

(MAE) 

Mean Squared Error 

(MSE) 

SVD 44.7685 0.024262 0.00075688 

Bi-CG 31.8817 0.020342 0.00055855 

TFQMR 23.1503 0.016408 0.00039433 

 

 
(a) 

 
(b) 



174 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(h) 

 
(g) 

 
Figure 2. (a) The x-y plane and (b) The x-z plane images are the simulation of the tumoral tissue within the 

breast,(1.4 – 2 at y, 0.3 – 0.7 at x, 1.3 – 1.6 at z) (c) The x-y plane (d) The z-x plane images are reconstructed by 

SVD, (e) The x-y plane (f)  The x-z plane images are reconstructed by Bi-CG, (g) is the x-y plane image 

reconstructed by TFQMR, and (h) is the x-z plane image reconstructed by TFQMR. The gray color bars refer to 

the change of absorption coefficient. 

 

 

IV. CONCLUSION & DISCUSSION 
 

The reconstruction of the DOT systems is an essential process affecting image quality, location, 

resolution.  Although several reconstruction algorithms have been used for DOT systems, Krylov 

subspace algorithms provide a better solution [1], [3]. In our previous studies, we used both algebraic 

and subspace algorithms [1], [2], [20] - [22]. These algorithms are Algebraic Reconstruction, 

Simultaneous Iterative Reconstruction, SVD, CG, Bi-CG, and TFQMR techniques. In these studies, we 
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compared some algorithms with each other and that some algorithms provide higher quality images for 

CW-DOT systems. We have shown that CG-based algorithms are superior to algebraic algorithms for 

CW-DOT systems [1]. Later, we have compared TFQMR with only Bi-CG [2]. In the literature, the CG 

technique is commonly used as one the most powerful technique to solve large, sparse, positive definite 

linear systems. The CG provides a solution to Hermitian systems [21], but not non-Hermitian matrix 

systems [8], [9]. For this case, some algorithms were developed to solve a proper solution system [9], 

[19]. One of them is the Bi-CG algorithm based on CG. Although Bi-CG solves non-Hermitian systems 

[10], [17], it has limitations and disadvantages. An algorithm must meet two significant properties to 

solve non-Hermitian systems. However, the Bi-CG algorithm provides only one; thus, it produces 

oscillations causing irregular convergence behavior and numerical instabilities [8], [9], [19]. The 

TFQMR algorithm was developed to overcome the drawback of the Bi-CG [9]. 

 

In this study, we have compared three algorithms by examining performance metrics. It has been shown 

that TFQMR provides a better solution and generates tumor images in actual location and depth than 

Bi-CG and SVD. TFQMR images have the lowest MPE, MAE, and MSE rates (Table 1 and 2). When 

considering the results of the reconstruction algorithms, the algorithm with the lowest MSE and MAE 

ratios is TFQMR. Considering that the MSE value approaches 0, it is shown as a numerical evaluation 

that TFQMR is the most successful algorithm among the reconstruction algorithms. When examining 

both the visual and performance assessment of the experimental results, it is shown that the results 

obtained with TFQMR were better than the others. Although the simulation experiments are not suitable 

for the actual breast tissue, simulation experiments have given us information about which algorithm 

worked well. As a result of the experimental studies, it has been observed that the TFQMR algorithm is 

suitable for our system. 
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