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Abstract

Lyapunov functions are commonly involved in the analysis of the stability of linear and nonlinear dynam-
ical systems. Despite the fact that there is no generic procedure for creating these functions, many authors
use polynomials in p-forms as candidates for constructing Lyapunov functions, while others restrict the con-
struction to quadratic forms. We proposed a method for constructing polynomial Lyapunov functions that
are not necessary in a form by focusing on the positive and negative de�niteness of the Lyapunov candidate
and the Hessian of its derivative, as well as employing the sum of square decomposition. The idea of Newton
polytopes was used to transform the problem into a system of algebraic equations that were solved using
the polynomial homotopy continuation method. Our method can produce several possibilities of Lyapunov
functions for a given candidate. The sample test conducted demonstrates that the method developed is
promising.
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1. Introduction

One of the basic requirements of designing both linear and nonlinear control systems is that they remain
stable at all times. Stability analysis of a nonlinear system is complicated and typically require establishing
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the existence of a Lyapunov function, see [23, 12, 21]. Thus, the stability analysis of a particular nonlinear
system equilibrium state is reduced to the investigation of the properties of its corresponding Lyapunov
function. This approach possesses great power in applications [11, 22, 14]. To date, there exists no general
approach for obtaining Lyapunov functions which often makes the construction of such functions to be in-
tractable problems.

It is well known that there are globally stable systems for which no Lyapunov function can be found,
see, for instance, [15] and the references therein. To this end, many researchers have proposed di�erent
types of approaches on how to construct Lyapunov functions. For example, Zhenyi et al reported in [9]
proposed a method for constructing Lyapunov function in quadratic form by using positive polynomials.
These polynomials are constructed using the technique of Zhikun et al reported in [20] and by constructing
and solving a semi-algebraic system using cylindrical algebraic decomposition (CAD) reported by Collins
in [6]. Recently an algorithm for construction of Lyapunov functions in p − form was developed in [13].
In that report, the authors utilize using Sum Of Square technique (SOS) and the requirement for the can-
didate to be in quadratic form was removed. SOS decomposition has been employed by many researchers
to construct polynomial and non-polynomial Lyapunov functions for decades, see for instance [16] and the
references therein. The reason why SOS decomposition is extensively used in the construction of Lyapunov
functions may not be unconnected to the fact that SOS decomposition is strongly linked to positive semi
de�niteness of polynomial, [1, 2]. SOS decomposition generally requires decomposing polynomials in terms
of its monomials. Given that, most of the monomials are not required in the �nal calculations, and the idea
of Newton polytope is frequently used in pruning unwanted monomials, see [3, 18, 7, 5].

In this current study, we focus on developing an approach that extends the search of polynomial Lyapunov
function to polynomials of even degree that are not necessarily quadratic nor a p− form. This extends the
work of [9, 13] by removing the requirements of the Lyapunov candidates to be quadratic or in p−form. We
use SOS decomposition and Newton polytope to have decomposition with fewer monomials. The problem
is eventually transformed into a system of algebraic equations where, we use PHClab, which is a software
package for Polynomial Homotopy Continuation, to numerically solve systems of polynomial equations, see
[8] for a detailed discussion on PHClab.

The paper is organized as follows. In Section 2, we give preliminaries, in Section 3, we present our pro-
posed modi�ed algorithm for computing Lyapunov functions, in Section 4, we give the implementation of
our algorithm, and in Section 5, we present the conclusion of the paper.

Consider the following system, where ẋ denotes the time derivative of x with respect to time,

ẋ = f (x) . (1)

Here, x ∈ Rn and f(x) = (f1(x), ..., fn(x))
T is a vector. A point x∗ is considered to be an equilibrium point

for 1 if f (x∗) = 0. Without loss of generality, we assume the origin 0 is the equilibrium of the given system.

Theorem 1.1. [17] Let F (x) ∈ R[x] be a polynomial of degree 2d, then, F (x) is SOS i� there exist a
symmetric positive de�nite (PSD) matrix Q such that

F (x) = zQzT . (2)

De�nition 1.2. [19] A Newton polytope (or cage) of a polynomial p =
∑

α∈A cαx
α over a set A is the convex

hull of A which is denoted as C(p) := convhull(A).

The reduced Newton polytope is given as 1
2C(p) :=

{
1
2α : α ∈ C(p)

}
. Theorem 1.3 is useful for reduction

in the number of monomials.
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Theorem 1.3. [19] If p =
∑m

i=1 f
2
i then the vertices of C(p) are vectors whose entries are even numbers

and C(f1) ⊆ 1
2C(p).

De�nition 1.2 and theorems 1.1 and 1.3 are used for pruning unnecessary monomials from any SOS
decomposition. Without pruning, SOS decomposition may be time consuming for polynomials with many
terms, involves more detailed discussion can found in [19].

2. Lyapunov function by SOS decomposition and Newton polytope

In this section, we propose an approach that utilizes the sum of square decomposition e�ciently to
search for polynomial Lyapunov functions which are neither quadratic nor p-form. The following is the main
theorem of our work.

Theorem 2.1 (Main: Theorem). Let V (x) be a polynomial of degree 2d whose degree of all monomials is
greater than or equal to two (≥ 2) for a given autonomous polynomial system of di�erential equations. If V
is a SOS and the Hessian of V̇ evaluated at the equilibrium point

(
Hess( d

dtV )|x=0

)
is negative de�nite then

V is a Lyapunov function.

Proof. V (x) is a SOS, so from Theorem 1 there exist a symmetric Matrix Q with real entries such that

Q ≥ 0, and,V (x) = z(x)TQz(x).

This implies that V (x) is positive de�nite. Now it is su�cient to prove that there is neighborhood U ⊆ Rn

such that
d

dt
V (x) < 0, for allx ∈ U − {0} .

Firstly let

d

dt
V (x) =

n∑
i=1

δ

δxi
V (x)fi.

Thus for any arbitrary but �xed j, 1 ≤ j ≤ n

δ
(
d
dtV (x)

)
δxj

=
δ
(∑n

i=1
δ
δxi

V (x)fi(x)
)

δxj

=

n∑
i=1

δ
(

δ
δxi

V (x)fi(x)
)

δxj
.

Let r = δV (x)
δxi

, s = fi,
δr
δxj

= δ2V (x)
δxjδxi

and δs
δxj

= δfi
δxj

then using product rule of di�erentiation, we have

δ δV (x)
δxi

fi

δxj
= sr′ + rs′

=
δ2V (x)

δxjδxi
fi +

δV (x)

δxi

δfi
δxj

.

So that
δ
(
dV (x)
dt

)
δxj

=
n∑

i=1

(
δ2V (x)

δxjδxi
fi +

δV (x)

δxi

δfi
δxj

)
. (3)

Evaluating 3 at x = 0, we have

δ
(
dV (x)
dt

)
|x=0

δxj
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=

n∑
i=1

(
δ2V (0)

δxjδxi
fi(0) +

δV (0)

δxi

δfi(0)

δxj

)
. (4)

Then from 1 and the assumption fi(0) = 0 and V (x) is a polynomial, the �rst derivative of any polynomial
evaluated at 0 is also 0. Hence

δ
(
dV (x)
dt

)
|x=0

δxj
= 0.

For a �xed arbitrary j,
δ
(

dV (x)
dt

)
|x=0

δxj
= 0. Since,(

δ

δx1

(
dV (x)

dt

)
, . . . ,

δ

δxn

(
dV (x)

dt

))
|x=0 = 0

and Hess
(
dV (x)
dt

)
|x=0 is negative de�nite. Then by the extremum theory [16], there is a neighborhood U

of the origin such that dV (x)
dt < dV (0)

dt = 0 for all x ∈ U− 0. Hence, V (x) is a Lyapunov function.

The achievement of the theorem 2.1 are as follows.

1. It does not require the Lyapunov candidate to be either quadratic or a form.

2. Finding a Lyapunov function using our method does not require the computation of two Hessian as in
the work of [9].

From theorem 2.1 we state the following Corollary.

Corollary 2.2. Let V (x) be a polynomial of degree 2d with the degree of all monomials (≥ 2) for a given
di�erential system. If V is a SOS and the Hessian of V evaluated at the equilibrium point

(
Hess( d

dtV )|x=0

)
is negative semi-de�nite then V is a Lyapunov like function.

2.1. Construction of positive polynomial systems

Now our approach of constructing Lyapunov functions begins with a symmetric n×n matrix say A whose
de�niteness is to be determined. There are many techniques for doing this one of them is using the principal
minors. The following theorem from [4] can be used to do just that;

Theorem 2.3. [4] Let A be a symmetric n × n matrix, and denote by Dk the leading principal minor of
order k, 1 ≤ k ≤ n. Then we have

� A is positive de�nite ⇔ Dk > 0 for all leading principal minors

� A is negative de�nite ⇔ (−1)kDk > 0 for all leading principal minors

� A is positive semi-de�nite ⇔ Dk ≥ 0 for all leading principal minors

� A is negative semi-de�nite

⇔ (−1)kDk ≥ 0 for all leading principal minors.

Using theorem 2.3 an n× n matrix A is positive de�nite if and only if the following inequality is true

Ineq1 = {D1 > 0, D2 > 0, ..., Dn > 0} . (5)

Similarly, the Hessian matrix of A is is negative de�nite, if and only if its principal minor Hk satis�es

Ineq2 = {−H1 > 0, H2 > 0, . . . , (−1)nHn > 0} . (6)
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Combining inequalities 5 and 6, we have

Ineq = {A1 > 0, A2 > 0, . . . , An > 0, (7)

− H1 > 0, H2 > 0, . . . , (−1)nHn > 0} .

Now �nding a solution for the parameters such that the symmetric matrix A positive de�nite and H negative
de�nite is equivalent to �nding a solution of the semi-algebraic system given in 7. The inequality in 7 can
be converted to a system of equations by adding slack variables

x = (x1, x2, . . . , xm) , 0 ≤ m ≤ 2n,

and using these variables, we re-write equation 7 as

ES1 =
{
s1 − x21 = 0, . . . , sn − x2m = 0

}
, (8)

where s1 = A1, s2 = A2, and so on. If we can �nd one real solution (ā, x̄) of the system (8) with at least one
nonzero element in x̄, then the point ā satis�es

Ineq = {s1(ā) > 0, . . . , sm(ā) > 0} , (9)

this means that there exists a Lyapunov function at the equilibrium for the given system. Below we present
our propose algorithm for �nding such Lyapunov functions.

2.2. Propose algorithm for constructing Lyapunov functions

In this section, we present our proposed algorithm for construction of a Lyapunov function where the
candidates are not necessarily in a p − form nor quadratic, unlike the work in [9]. The algorithm slightly
di�ers from the one presented in [9], hence we only highlighted the main di�erences.
Input:- A di�erential system as de�ned and a tolerance.
Output:- A Lyapunov function or unknown.

1. Given a polynomial p of degree 2d(d ∈ N) with the degree of all monomials (≥ 2).

2. Compute the SOS decomposition of p, the Hessian of of p and its derivative.

3. Follow the procedure outlined in [9].

3. Experiment

In this section, we present some examples to demonstrate the e�ciency of our algorithm. We use a
personal computer with 2.20 GHz CPU processor, 4 GB RAM, and codes were written utilizing PHClab
in MATLAB R2013a to carry out our calculations. We terminate our calculations whenever a Lyapunov
function is found or a failure when the number of iterations is over 100.

Example 3.1. This is an example from [? ]

ẋ = −x+ y + xy,

ẏ = −x− x2.
(10)

We assumed the Lyapunov candidate to be V (x, y) = x4+ax2+bxy+cy2+y3 which is a polynomial of degree
4 in two variables (n = 2) that is neither quadratic nor a p-form. We compute the SOS decomposition as
follows

1. dim(V ) = n = 2, degV = 4 = 2d, where d = 2.

2. Number of monomials in z is |∧Z | =
(
n+d
d

)
= 6.
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3. The list of all monomials in two variables with degree ≤ 2 is
X =

[
1, x, y, x2, xy, y2

]
. These are all of the power-products that could occur in an arbitrary 2-

dimensional polynomial of degree 4.

4. The set of monomial degree vectors for V is X :={(
4

0

)
,

(
2

0

)
,

(
1

1

)
,

(
0

2

)
,

(
0

3

)}
5. The Newton polytope C(V ) is the quadrilateral with vertices{(

4
0

)
,
(
2
0

)
,
(
0
2

)
,
(
0
3

)}
.

6. The reduced Newton polytope
1
2C(V ) ∩Nn is a triangle with vertices

{(
0
1

)
,
(
1
0

)
,
(
2
0

)}
.

7. Set the monomials in the reduced Newton polytope Z = [x, y, x2].

8. V is an SOS if we can �nd a 3× 3 real, symmetric matrix Q known as the Gram matrix such that

V = zQzT . (11)

That is, we are looking for some real, symmetric,

Q =


q11 q12 q13

q21 q22 q23

q31 q32 q33


such that

(
x y x2

)

q11 q12 q13

q21 q22 q23

q31 q32 q33




x

y

x2

 = V (x, y) = x4 + ax2 + bxy + cy2 + y3.

By multiplying through, and simplifying we have

V (x, y) = q11x
2 + (q12 + q21)xy + (q13 + q31)x

2 + (q23 + q32)x
2y + q22y

2 + q33x
4.

Comparing coe�cients,

q12 + q21 = b, q13 + q31 = a, q23 + q32 = 0, q22 = c, q33 = 1, q11 = a.

Moreover, we know that Q must be symmetric, so we can strengthen our linear constraint system even further:

2q12 = b, 2q13 = a, 2q23 = 0, q22 = c, q33 = 1, q11 = a.

For V (x, y) = x4 + ax2 + bxy + cy2 + y3 to be SOS we must have

Q =


a b

2
a
2

b
2 c 0

a
2 0 1


to be positive semi-de�nite. Thus we have the semi-algebraic inequality

Ineq1 =

[
a > 0,−b2

4
+ ac > 0,

− b2

4
+ ac− a2c

4
> 0

]
. (12)
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For the Hessian of the derivative

H =

 −4a− 2b 2a− b− 2c

2a− b− 2c 2b

 , we have the following semi-algebraic system

Ineq2 = [4a+ 2b > 0,−4a2 − 4ab+ 8ac− 5b2 − 4bc− 4c2 > 0]. (13)

Combining 12 and 13 we have the following [a > 0,− b2

4 + ac > 0,− b2

4 + ac− a2c
4 > 0, 4a+ 2b > 0,−4a2 −

4ab+ 8ac− 5b2 − 4bc− 4c2 > 0] which we converted into the following system

ES1 =



a− x21 = 0,

− b2

4 + ac− x22 = 0,

− b2

4 + ac− a2c
4 − x23 = 0,

4a+ 2b− x24 = 0,

−4a2 − 4ab+ 8ac− 5b2 − 4bc−
4c2 − x25 = 0.

We then constructed three hyperplane
{h1, h2, h3} denote by ES2 as

h1 = 0.540708809411a+ 0.0632864027578b+ 0.0549791162158c+ 0.941086405860x1 + 0.169279620130x2 +
0.961699048039x3 + 0.505103290781x4 + 0.659778101676x5.

h2 = 0.692959778799a+ 0.6545711516656b+ 0.0340062393965c+ 0.839223301894x1 + 0.082575528455x2 +
0.275900397578x3 + 0.271008171267x4 + 0.890554884863x5.

h3 = 0.575002278003a+ 0.3773460450476b+ 0.5428655373597c+ 0.826034942560x1 + 0.846906747132x2 +
0.057982096941x3 + 0.834334490277x4 + 0.555949898229x5.

step4 We compute the solution of {ES1, ES2} using the Homotopy approximation method through PHC solver
in MATLAB, see [8] where we obtained the following results in 1.715900 seconds. a = 1.2908, b = −1.6672
and c = 0.9920. Hence

V (x, y) = x4 + 1.2908x2 − 1.6672xy + 0.9920y2 + y3 (14)

is a Lyapunov function for Example 3.1. The trajectories for this Example 3.1 is shown in Figure 1 demon-
strating global asymptotic stability.

Figure 1: Phase Portrait of system presented in Example 3.1
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Example 3.2. Consider the following non-linear dynamic system which has an equilibrium point at the
origin which also �ts the Moore Greitzer jet engine model see [10]. The equation takes the form

ẋ = −y − 3

2
x2 − 1

2
x3,

ẏ = 3x− y.
(15)

We choose a polynomial of degree 4 as Lyapunov candidate as V (x, y) = x4 + ax2 + bx2y2 + cxy + dx2y +
exy2 + fy2 + y4. A Lyapunov function of degree 4 is found using our algorithm as

V (x, y) = x4 + 1.6983x2 + 1.3319x2y2 − 0.0213xy − 1.0221x2y + 0.1501xy2 + 0.6225y2 + y4.

The trajectories for Example 3.2 is shown in Figure 2, also demonstrating global asymptotic stability. Our

Figure 2: Phase Portrait of system presented in Example 3.2

method can produce several Lyapunov functions at the same time. We illustrate this in Examples 3, 4 5,

and 6. In these examples, we provide the di�erential systems and propose the respective Lyapunov candidates.
The results of the calculation of the coe�cients, the number of solutions (N), eigenvalues of the matrices Q
and H and the C. P. U. time are presented in Table 1.

Example 3.3. This is an example from [20].

ẋ = −x− 3y + 2x+ yz,

ẏ = 3x− y + z + xz,

ż = −2x+ y − z + xy,

(16)

with Lyapunov candidate as V (x, y, z) = x2 + axy + xz + cy2 + dyz2 + ez2.

Example 3.4. A noisy time series of the chaotic Lorenz model introduced in 1963 by Edward Lorenz as a
simple model of atmospheric convection see [? ]. The model equations takes the form

ẋ1 = −λ1x1 + λ1x2,

ẋ2 = λ2x1 − x2 + x23 − x1x3,

ẋ3 = −λ3x3 + x1x2,

(17)

we choose a Lyapunov candidate as V (x1, x2, x3) = ax21 + x31x3 + x1x2x3 + cx1x2 + dx22 + bx23 where the
λi, i = 1 . . . 3 are usually regarded as positive numbers, here we assigned arbitrary positive values as λ1 =
2.3399, λ2 = 48.9372, λ3 = 21.0961.

Example 3.5. Consider the system

ẋ = −x+ x2z,

ẏ = z,

ż = −y − z − x3,

(18)

with the Lyapunov candidate as V (x, y, z) = x4 + ax2 + bxy + cxz + dy2 + eyz + z2 + y4.
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Example 3.6. Consider the system

ẋ = −x+ y3,

ẏ = −y − x√
(1 + x2)

+ z3,

ż = −z + x,

(19)

with the Lyapunov candidate as V (x, y, z) = x6+x3y+ax2+bxyz+cy2+dyz+ez2+fxz+z6+xz3+z5x+gx2y.

Table 1: Lyapunov functions for Examples 3.3, 3.4, 3.5 and 3.6, the number of solutions and the C. P. U. times.

Ex. Lyapunov Function Eig(Q) Eig(H) N T (s)

3.3 V (x, y) = x2 + 0.2300xy 0.3645 -14.6595 72 2.8252
+xz + 0.7832y2 0.8132 -3.5527
+1.0305yz2 + 2.7704z2 2.8759 -0.0028

3.4 V (x1, x2, x3) = 18.0095x21 2.1995 -
16408.2200

48 1.9106

+x1x2x3 − 139.8403x1x2 18.0095 -
14620.3998

+27.6294x22 + 194.4470x23 219.8769 -0.0003
+x31x3 6.6708

3.5 V (x, y, z) = x4 + 6.5279x2 0.0597 -2.5022 769 78.0545
+2.2828xy − 0.9553xz 0.7522 -0.0735
+0.7487y2 + 0.8014yz 0.9935
+z2 + y4 1.7772

2.0701

3.6 V (x, y, z) = x6 + x3y 0.8535 -42.3248 543 95.8067
+2.7831x2 + 4.1090y2 0.9205 -19.3191
+1.1040yz + 7.3379z2 2.6272 -0.0108
−2.3671xz + z6 4.1188
+xz3 + z5x. 7.7099

From our results, we can say that our algorithm for constructing Lyapunov function where the candidates are
not required to be quadratic or p−form is successful. This has removed two important restrictions in search
of Lyapunov functions reported in the literature, see for instance [13, 9, 20]. We included the eigenvalues
of Q and H to show that the de�niteness of the two matrices is satis�ed, unlike the work reported in [9].
We choose homotopy continuation method in solving the system of algebraic equations resulting from our
SOS decomposition because the method is known to be an e�cient numerical technique for approximating
all isolated solutions of a polynomial system, [8].

4. Conclusion

In this work, we presented a modi�ed algorithm for constructing Lyapunov functions. Our main contri-
bution in this paper is that we were able to address the fact that a polynomial Lyapunov candidate must
not necessarily be quadratic or p − forms. We provided some examples to illustrate the usefulness of the
proposed method.
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