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Abstract − The new exact solutions of the conformable time-fractional Bad and Good modified 

Boussinesq equations are obtained using the Exp-function method, which is different from 

previous literature works. These equations play a significant role in mathematical physics, 

engineering sciences and applied mathematics. Plentiful exact solutions with arbitrary parameters 

are effectively obtained by the method. The obtained solutions are shown graphically. It is shown 

that the Exp-function method provides a simpler but more effective mathematical tool for 

constructing exact solutions of non-linear evolution equations. 
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1. Introduction 

Many phenomena in the real world are governed by nonlinear evolution equations (NLEEs). Hence, it is 

essential to obtain exact solutions to these equations, and many methods have been proposed to get exact 

solutions. The most known methods are the Exp-function method [1], the tanh-method [2], the homogeneous 

balance method [3], the trial function method [4], the (
𝐺′

𝐺
) expansion methods [5], the Kudryashov method [6]. 

The Exp-function method was used by many researchers to solutions of various NLEEs [7-10]. Also, new 

exact solutions of the nonlinear evolution equations may be obtained using different methods.  

Travelling waves arise naturally in many physical systems, usually described by partial differential 

equations. Solitary waves, also known as 'solitons', are a particular travelling wave class with some special 

properties. Solitons can usually propagate over large distances without dispersion due to certain nonlinear 

effects cancelling out dispersive effects. They also have the additional property that they can interact with 

other solitons such that they emerge following a collision without changing shape, apart from a small phase 

change. 
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Traditional real problems are defined with integer-order nonlinear evolution equations, characterized by 

theirs. However, the nonlinear evolution equations with integer-order derivatives are ideal classic events, 

which are not suitable for describing irregular phenomena. On the other hand, Fractional differential equations 

have become preferable, despite the difficulty in calculations, since they give more real results than standard 

integer order nonlinear evolution equations. Difficulties in fractional calculus have begun to be overcome 

thanks to new fractional derivative definitions and theorems made in recent years. The most popular definitions 

of the fractional derivative can be listed as the conformable derivative [11], the Caputo derivative [12], 

Riemann-Liouville derivative [12], Atangana-Baleanu derivative [13]. The new trends in exact solution 

research are to find new exact solutions and to develop new solution mechanisms.  

Lately, Khalil et al. defined a limit-based fractional derivative in 2014 [11], named the conformable 

fractional derivative. The structure of this new definition of fractional derivative is simpler than that of other 

popular fractional derivatives. 

The definition of conformable fractional derivative is given as follow. 

Let 𝑓: [0,∞]→ℝ. Then, the conformable fractional derivative of order 𝛼 is defined by  

𝑇𝛼(𝑓(𝑡)) = lim
𝜀→0

𝑓(𝑡 + 𝜀𝑡1−𝛼) − 𝑓(𝑡)

𝜀
(1) 

for all 𝑡 > 0 and 𝛼 ∈ (0,1]. If 𝑓 is 𝛼-differentiable in some (0, 𝛼), 𝛼 > 0 and lim
𝑡→0+

𝑇𝛼(𝑓(𝑡)) exists, then  

(𝑇𝛼𝑓)(0) = lim
𝑡→0+

𝑇𝛼(𝑓(𝑡)) (2) 

In addition to this definition, it is known that 𝑇𝛼(𝑓(𝑡)) = lim
𝜀→0

𝑓⌈𝛼−1⌉(𝑡+𝜀𝑡⌈𝛼⌉−𝛼)−𝑓⌈𝛼−1⌉(𝑡)

𝜀
 such that 𝛼 ∈

(𝑛, 𝑛 + 1] and function 𝑓 is 𝑛-th order differentiable at a point for 𝑡 > 0, where ⌈. ⌉ ceil function, ⌈𝛼⌉ is the 

smallest integer no larger than 𝛼 [11]. 

This paper applies the Exp-function method to new exact solutions of fractional Bad and Good modified 

Boussinesq equations with conformable derivative. The rest of this paper is organized as follows: Some useful 

properties of the conformable fractional derivative and mechanism of the Exp-function method are given in 

Section 2. Exact solutions of the fractional Bad and Good modified Boussinesq equations are obtained in 

Section 3. Finally, the conclusions of this paper are given in Section 4. 

2. Preliminary and The Exp-Function Method 

It is well known that most of the events that develop in mathematical, physics and engineering fields can be 

described by partial differential equations (PDEs). So, partial differential equations are useful tools for 

mathematical modelling. First, the Exp-function method is defined by He and Wu (2006) and applied to various 

applications by many scientists [14-20]. The exact solution of non-linear partial differential equations is 

obtained by the Exp-function method. First, the partial differential equation is reduced to the ordinary 

differential equation and referred to the exact solution using the exponential function method. The Exp-

function method is an effective method for solutions of the non-linear evolution equations that emerges in 

mathematical physics, applied mathematics and engineering applications. The Exp-function method also gives 

generalized single and periodic solutions of the nonlinear evolution equation. Some solutions of fractional Bad 

and Good modified Boussinesq equations with the aid of auxiliary equation method are obtained by Durur et 

al. [21]. 

We consider a general nonlinear PDE in the form 

𝑃 = (𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑥𝑥, 𝑢𝑥𝑦 , 𝑢𝑦𝑦, … ) = 0 (3) 

Let us introduce a complex variable 𝜉 =  𝑘𝑥 +  𝑤𝑡 where 𝑘 and 𝑤 are constants. We rewrite Equation 

(3) in the subsequent nonlinear ODE: 
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𝑄(𝑢, 𝑢′, 𝑢′′, 𝑢′′′, … ) = 0 (4) 

where the prime denotes the derivation concerning 𝜉 [4]. According to the Exp-function method, we assume 

that the solution can be expressed in the form  

𝑢 (𝜉) =
∑ 𝑎𝑛𝑒(𝑛𝜉)𝑑

𝑛=−𝑐

∑ 𝑏𝑚
𝑞
𝑚=−𝑝 𝑒(𝑚𝜉)

(5) 

where 𝑐, 𝑑, 𝑝 and 𝑞 are positive integers, 𝑎𝑛 and 𝑏𝑚 are unknown constants to be observed. Without loss of 

generality, if we take 𝑑 = 𝑞 = 𝑐 = 𝑝 = 1 then Equation (5) can be written as follow, 

𝑢 () =  
𝑎−1𝜉 +  𝑎0 +  𝑎1𝑒𝜉

𝑏−1𝑒−𝜉 + 𝑏0 +  𝑒𝜉
(6) 

Here, the constant 𝑏1 is taken as 1 for simplicity. It will arrive us to a set of algebraic equations for the 

unknowns 𝑎0, 𝑎1 , 𝑎−1; 𝑏0, 𝑏−1; 𝑘, 𝑤. Some useful theorems are given by Ebaid [22] for this subject. 

Theorem 2.1. Suppose that 𝑢(𝑟) and 𝑢(𝛾) are respectively the highest order linear term and the highest order 

nonlinear term of a nonlinear ODE, where 𝑟 and γ are both positive integers. Then the balancing procedure 

using the Exp-function ansatz; 𝑢 (𝜉) =
∑ 𝑎𝑛𝑒(𝑛𝜉)𝑑

𝑛=−𝑐

∑ 𝑏𝑚
𝑞
𝑚=−𝑝 𝑒(𝑚𝜉) leads to 𝑐 = 𝑑 and 𝑝 = 𝑞, ∀ 𝑟 ≥ 1, ∀𝛾 ≥ 1 [14]. 

i) Suppose that 𝑢(𝑟) and 𝑢(𝑠)𝑢(𝑘) are respectively the highest order linear term and the highest order 

nonlinear term of a nonlinear ODE, where 𝑟, 𝑠 and 𝑘 are all positive integers. Then the balancing procedure 

using the Exp-function ansatz leads to 𝑐 = 𝑑 and 𝑝 = 𝑞, ∀𝑟, 𝑠, 𝑘 ≥ 1 

ii) Let 𝑢(𝑟) and (𝑢(𝑠))𝛾 be respectively the highest order linear term and the highest order nonlinear term 

of a nonlinear ODE, where 𝑟, 𝑠 and 𝛾 are all positive integers. Then the balancing procedure using the Exp-

function ansatz leads to 𝑐 = 𝑑 and 𝑝 = 𝑞, ∀𝑟, 𝑠 ≥ 1, ∀𝛾 ≥ 2 

iii) Suppose that 𝑢(𝑟) and (𝑢(𝑠))𝛾𝑢(𝜆) are respectively the highest order linear term and the highest order 

nonlinear term of a nonlinear ODE, where 𝑟, 𝑠, 𝛾 and 𝜆 are all positive integers. Then the balancing 

procedure using the Exp-function ansatz leads to 𝑐 = 𝑑 and 𝑝 = 𝑞, ∀𝑟, 𝑠, 𝛾, 𝜆 ≥ 1 

Theorem 2.2. [11] If 𝑓 and 𝑔 functions are α -differentiable at a point 𝑡 > 0 for 𝛼(0,1] , then 

a) 𝑇𝛼(𝜆𝑓(𝑡) + 𝛿𝑔(𝑡)) = 𝜆𝑇𝛼(𝑓(𝑡)) + 𝛿𝑇𝛼(𝑔(𝑡)) , for all 𝛿, 𝜆 ∈ ℝ 

b) 𝑇𝛼(𝑡𝑝) = 𝑝𝑡𝑝−𝛼, for all 𝑝 ∈ ℝ 

c) 𝑇𝛼(𝑐) = 0 for all constant 𝑐. 

d) 𝑇𝛼(𝑓(𝑡)𝑔(𝑡)) = 𝑓(𝑡)𝑇𝛼(𝑔(𝑡)) + 𝑔(𝑡)𝑇𝛼(𝑓(𝑡)) 

e) 𝑇𝛼 (
𝑓(𝑡)

𝑔(𝑡)
) =

𝑔(𝑡)𝑇𝛼(𝑓(𝑡))−𝑓(𝑡)𝑇𝛼(𝑔(𝑡))

(𝑔(𝑡))
2  

f) If the function 𝑓 is differentiable, 𝑇𝛼(𝑓(𝑡)) = 𝑡1−𝛼 𝑑𝑓

𝑑𝑡
 . 

In addition, 𝛼-th order conformable fractional derivatives of some functions are given as, 

i) 𝑇𝛼(𝑒𝑎𝑡) = 𝑎𝑡1−𝛼𝑒𝑎𝑡 , ∀𝑎 ∈ ℝ 

ii) 𝑇𝛼(sin (𝑏𝑡)) = 𝑏𝑡1−𝛼cos (𝑏𝑡) , ∀𝑏 ∈ ℝ 

iii)  𝑇𝛼(cos (𝑐𝑡)) = −𝑐𝑡1−𝛼 sin(𝑐𝑡), ∀𝑐 ∈ ℝ 

iv) 𝑇𝛼 (
𝑡𝛼

𝛼
) = 1 
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v) 𝑇𝛼 (sin (
𝑡𝛼

𝛼
)) = cos (

𝑡𝛼

𝛼
) 

vi) 𝑇 (cos (
𝑡𝛼

𝛼
)) = −sin (

𝑡𝛼

𝛼
) 

vii) 𝑇𝛼 (𝑒
𝑡𝛼

𝛼 ) =  𝑒
𝑡𝛼

𝛼  

3. Fractional Bad and Good Modified Boussinesq Equations 

The Boussinesq equation is first discovered by Joseph Boussinesq in 1870 [23]. This equation is one of the 

non-linear partial differential equations in plasma that have applications in many areas, such as ion sound 

waves, shallow water waves modelling, longitudinal propagation waves in elastic bars, suppressed waves in 

liquid-gas foam mixtures and the propagation model of these waves. Then, the Boussinesq equation is modified 

to adapt to deeper water problems and hence there are many new forms of this equation in the literature [21,23]. 

Time-Fractional Bad Modified Boussinesq Equation is denoted by 

𝐷𝑡
(2𝛼)

𝑢 − 𝐷𝑥
2𝑢 − 𝐷𝑥

4𝑢 − 3𝐷𝑥
2(𝑢2) + 3𝐷𝑥(𝑢2𝐷𝑥𝑢) = 0 (7) 

Time-Fractional Good Modified Boussinesq Equation is denoted by 

𝐷𝑡
(2𝛼)

𝑢 − 𝐷𝑥
2𝑢 + 𝐷𝑥

4𝑢 − 3𝐷𝑥
2(𝑢2) + 3𝐷𝑥(𝑢2𝐷𝑥𝑢) = 0 (8) 

We are now ready for solutions of Time-Fractional Bad Modified Boussinesq Equation using the Exp-

function method to produce a solution set. In view of the Exp-function method, we assume that the solutions 

of Equation (7) can be expressed in the form, 

𝑢 (𝜉)  =
∑ 𝑎𝑛𝑒(𝑛𝜉)𝑑

𝑛=−𝑐

∑ 𝑏𝑚
𝑞
𝑚=−𝑝 𝑒(𝑚𝜉)

 

By using Theorem 2. 2. (f) and the travelling wave transformation as follow, 

𝑢(𝑥, 𝑡) = 𝑢(𝜉) , 𝜉 = 𝑥 − 𝑤
𝑡𝛼

𝛼
(9) 

and therefore, the Equation (7) convert to an ordinary differential equation. Here 𝑎𝑛 and 𝑏𝑚 are unknown 

constants, 𝑤 denotes the velocity of the wave, and prime denotes the derivative of the functions concerning 𝜉. 

By applying the wave transform in (9), the equation in (7) is obtained to the following ordinary differential 

equation. 

(−w2 − 1)𝑢′′ − 𝑢𝚤𝑣 − 6𝑢′2
− 6𝑢𝑢′′ + 6𝑢𝑢′2

+ 3𝑢2𝑢′′ = 0 (10) 

By applying the wave transform in (9), the equation in (8) is obtained to the following ordinary differential 

equation. 

(−w2 − 1)𝑢′′ + 𝑢𝚤𝑣 − 6𝑢′2
− 6𝑢𝑢′′ + 6𝑢𝑢′2

+ 3𝑢2𝑢′′ = 0 (11) 

Firstly, substitute Equation (6) into Equation (10) and Equation (11), then the unknown parameters are 

obtained by using Maple Software. 

Hence, we obtain all the solutions related to Bad and Good Modified Boussinesq Equations cases. We 

balance the linear term of the highest order of Equation (10) 𝑢𝚤𝑣 with the highest order nonlinear term 𝑢2𝑢′′,we 

set 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1; then the trial solution of Equation (10), reduces to 

−1

𝐴
[𝐶4𝑒4𝜉 + 𝐶

3
𝑒3𝜉 + 𝐶2𝑒2𝜉 + 𝐶1𝑒𝜉 + 𝐶0 + 𝐶−1𝑒−𝜉 + 𝐶−2𝑒−2𝜉 + 𝐶−3𝑒−3𝜉 + 𝐶−4𝑒−4𝜉] = 0 (12) 

https://www.sciencedirect.com/science/article/pii/S0898122110004967#fd000040
https://www.sciencedirect.com/science/article/pii/S0898122110004967#fd000060
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and all coefficients must be zero for the solutions of Equation (12). Hence, we get 

𝐴 = 𝑏−1(𝑒−𝜉 +  𝑏0 + 𝑒𝜉)5 ; 

𝐶4 = −2𝑎0 + 3𝑎1
2𝑎0 − 6𝑎0𝑎1 + 6𝑎1

2𝑏0 − 3𝑎1
3𝑏0 + 2𝑎1𝑏0 − 𝑤2𝑎0 + 𝑤2𝑎1𝑏0; 

𝐶3 = −20𝑎−1 + 24𝑎1
2𝑏−1 + 20𝑎1𝑏−1 + 12𝑎1

2𝑎−1 + 9𝑎1
3𝑏0

2 − 6𝑎1
2𝑏0

2 − 12𝑎1
3𝑏−1 + 12𝑎1𝑎0

2 

 −24𝑎1𝑎−1 − 4𝑤2𝑎−1 − 10𝑎1𝑏0
2 + 10𝑎0𝑏0 + 4𝑤2𝑎1𝑏−1 + 18𝑎1𝑏0𝑎0 − 𝑤2𝑎0𝑏0 + 𝑤2𝑎1𝑏0

2 

 −21𝑎1
2𝑎0𝑏0 − 12𝑎0

2; 

𝐶2 = 9𝑎0
3 + 4𝑤2𝑎0𝑏−1 − 70𝑎1𝑏−1𝑏0 − 12𝑎1

2𝑏0𝑏−1 − 𝑤2𝑎1𝑏0
3 − 12𝑎1𝑎−1𝑏0 − 21𝑎1

2𝑎−1𝑏0 

 −21𝑎1𝑏0𝑎0
2 + 12𝑎0𝑎1

2𝑏0
2 + +18𝑎1𝑎0𝑏0

2 + 78𝑎1𝑎0𝑏−1 − 11𝑤2𝑎−1𝑏0 − 66𝑎0𝑎1
2𝑏−1 − 10𝑎0𝑏0

2 

 +80𝑎0𝑏−1 − 54𝑎−1𝑎0 − 10𝑎−1𝑏0 − 12𝑎1
2𝑏0

3 + +33𝑎1
3𝑏0𝑏−1 + 𝑤2𝑎0𝑏0

2 + 7𝑤2𝑎1𝑏0𝑏−1 

 +10𝑎1𝑏0
3 − 6𝑎0

2𝑏0 + 54𝑎1𝑎0𝑎−1; 

𝐶1 = −𝑤2𝑎1𝑏0
4 − 84𝑎1𝑎0

2𝑏−1 + 4𝑤2𝑎1𝑏−1
2 − 24𝑎1

2𝑏−1
2 + 56𝑎1𝑏0

2𝑏−1 − 6𝑎0𝑎1𝑏0
3 − 78𝑎−1𝑎0𝑏0 

 +3𝑎0
2𝑎1𝑏0

2 + 3𝑎−1𝑎1
2𝑏0

2 − 4𝑤2𝑎−1𝑏−1 + 12𝑎−1𝑎1𝑏0
2 + 72𝑎−1𝑎1𝑏−1 − 54𝑎1

2𝑏−1𝑏0
2 − 11𝑤2𝑎−1𝑏0

2 

 +𝑤2𝑎0𝑏0
3 − 84𝑎1

2𝑎−1𝑏−1 ± 34𝑎0𝑏0𝑏−1 + 36𝑎0
2𝑏−1 − 48𝑎−1

2 + 2𝑎0𝑏0
3 + 48𝑎−1𝑎0

2 − 2𝑎1𝑏0
4 

 −172𝑎1𝑏−1
2 − 3𝑎0

3𝑏0 + 48𝑎1𝑎−1
2 + 36𝑎1

3𝑏−1
2 + +6𝑎0

2𝑏0
2 + 172𝑎−1𝑏−1 − 22𝑎−1𝑏0

2 

 +51𝑎0𝑎1
2𝑏0𝑏−1 + 84𝑎0𝑎1𝑏0 𝑏−1 + 13𝑤2𝑎0𝑏0𝑏−1 − 2𝑤2𝑎1𝑏−1𝑏0

2 − 18𝑎−1𝑎0𝑎1𝑏0; 

𝐶0 = 110𝑎−1𝑏−1𝑏0 − 90𝑎1
2𝑏−1

2 𝑏0 + 15𝑎−1𝑏0𝑎0
2 + 15𝑎−1𝑎1

2𝑏−1𝑏0 + 75𝑎0𝑎1
2𝑏−1

2 + 30𝑎0𝑎1𝑏−1
2  

 −5𝑤2𝑎−1𝑏−1𝑏0 + 10𝑤2𝑎0𝑏−1𝑏0
2 + 15𝑎1𝑏0𝑎0

2𝑏−1 + 10𝑤2𝑎0𝑏−1
2 − 10𝑎−1𝑏0

3 − 220𝑎0𝑏−1
2  

 +30𝑎−1𝑎0𝑏−1 − 5𝑤2𝑎−1𝑏0
3 + 15𝑎−1

2 𝑎1𝑏0 + 110𝑎1𝑏−1
2 𝑏0 − 10𝑎1𝑏−1𝑏0

3 + 20𝑎0𝑏−1𝑏0
2 − 30𝑎0

3𝑏−1 

 −30𝑎1𝑎0𝑏0
2𝑏−1 − 30𝑎−1𝑏0

2𝑎0 − 5𝑤2𝑎1𝑏−1
2 𝑏0 + 60𝑎0

2𝑏−1𝑏0 − 90𝑎−1
2 𝑏0 + 120𝑎−1𝑎1𝑏−1𝑏0 

 −5𝑤2𝑎1𝑏−1𝑏0
3 − 180𝑎−1𝑎0𝑎1𝑏−1 + 75𝑎0𝑎−1

2 ; 

𝐶−1 = −172𝑎−1𝑏−1
2 + 172𝑎1𝑏−1

3 − 24𝑎−1
2 𝑏−1 + 36𝑎0

2𝑏−1
2 − 2𝑎−1𝑏0

4 − 48𝑎1
2𝑏−1

3 − 54𝑎−1
2 𝑏0

2 

 +48𝑎1𝑎0
2𝑏−1

2 − 22𝑎1𝑏−1
2 𝑏0

2 + 6𝑎0
2𝑏−1𝑏0

2 − 84𝑎−1𝑎0
2𝑏−1 − 6𝑎0𝑎−1𝑏0

3 − 34𝑎0𝑏−1
2 𝑏0 

 +48𝑎−1𝑎1
2𝑏−1

2 + 3𝑎−1
2 𝑏0

2𝑎1 + 3𝑎0
2𝑎−1𝑏0

2 + 4𝑤2𝑎−1𝑏−1
2 − 3𝑎0

3𝑏−1𝑏0 + 72𝑎1𝑎−1𝑏−1
2 − 𝑤2𝑎−1𝑏0

4 

 +51𝑎0𝑎−1
2 𝑏0 − 4𝑤2𝑎1𝑏−1

3 + 𝑤2𝑎0𝑏−1𝑏0
3 + 12𝑎−1𝑏0

2𝑎1𝑏−1 + 13𝑤2𝑎0𝑏−1
2 𝑏0 − 2𝑤2𝑎−1𝑏0

2𝑏−1 

 −11𝑤2𝑎1𝑏0
2𝑏−1

2 + 2𝑎0𝑏−1𝑏0
3 − 84𝑎−1

2 𝑎1𝑏−1 + 84𝑎−1𝑎0𝑏−1𝑏0 − 78𝑎1𝑏−1
2 𝑎0𝑏0 

 −18𝑎−1𝑎0𝑎1𝑏−1𝑏0 + 36𝑎−1
3 + 56𝑎−1𝑏−1𝑏0

2; 

𝐶−2 = 9𝑎0
3𝑏−1

2 − 12𝑎−1
3 𝑏0

3 + 80𝑎0𝑏−1
3 + 33𝑎−1

3 𝑏0 + 12𝑎0𝑎−1
2 𝑏0

2 + 4𝑤2𝑎0𝑏−1
3 + 10𝑎−1𝑏−1𝑏0

3 

 −54𝑎0𝑎1𝑏−1
3 − 70𝑎−1𝑏−1

2 𝑏0 − 12𝑎−1
2 𝑏−1𝑏0 − 66𝑎−1

2 𝑎0𝑏−1 + 78𝑎−1𝑎0𝑏−1
2 − 10𝑎1𝑏−1

3 𝑏0 
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 −6𝑎0
2𝑏−1

2 𝑏0 − 10𝑎0𝑏−1
2 𝑏0

2+18𝑎−1𝑏0
2𝑎0𝑏−1 + 𝑤2𝑎0𝑏−1

2 𝑏0
2 − 12𝑎−1𝑏0𝑎1𝑏−1

2 − 21𝑎−1𝑏0𝑎0
2𝑏−1 

 −11𝑤2𝑎1𝑏−1
3 𝑏0 + 54𝑎−1𝑎1𝑎0𝑏−1

2 − 𝑤2𝑎−1𝑏0
3𝑏−1 − 21𝑎−1

2 𝑎1𝑏0𝑏−1 + 7𝑤2𝑎−1𝑏−1
2 𝑏0; 

𝐶−3 = 18𝑎−1𝑏0𝑎0𝑏−1
2 − 21𝑎−1

2 𝑎0𝑏0𝑏−1 − 12𝑎−1
3 𝑏−1 + 24𝑎−1

2 𝑏−1
2 − 20𝑎1𝑏−1

4 + 10𝑎0𝑏−1
3 𝑏0 

 −𝑤2𝑎0𝑏−1
3 𝑏0 + 𝑤2𝑎−1𝑏−1

2 𝑏0
2 − 12𝑎0

2𝑏−1
3 + 9𝑎−1

3 𝑏0
2 + 20𝑎−1𝑏−1

3 − 10𝑎−1𝑏−1
2 𝑏0

2 + 4𝑤2𝑎−1𝑏−1
3  

 +12𝑎−1
2 𝑎1𝑏−1

2 − 4𝑤2𝑎1𝑏−1
4 − 6𝑎−1

2 𝑏0
2𝑏−1 + 12𝑎−1𝑎0

2𝑏−1
2 − 24𝑎−1𝑎1𝑏−1

3 ; 

𝐶−4 = 𝑤2𝑎−1𝑏−1
3 𝑏0 − 2𝑎0𝑏−1

4 + 6𝑎−1
2 𝑏−1

2 𝑏0 + 2𝑎−1𝑏−1
3 𝑏0 − 3𝑎−1

3 𝑏0𝑏−1 + 3𝑎−1
2 𝑎0𝑏−1

2 − 6𝑎−1𝑎0𝑏−1
3  

 −𝑤2𝑎0𝑏−1
4  ; 

All the coefficients of 𝑒𝑛𝜉 must be zero. Hence, we produce a system of algebraic equations which the 

Maple can tackle to produce the subsequent cases of solutions: 

Case 1: 

𝑎0 =  𝑎1𝑏0 , 𝑎−1 =  𝑎1𝑏−1 (13) 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) = 𝑎1 (14) 

where 𝑎1 is a free parameter. 

 
 

Fig. 1. 3D and 2D plots of travelling wave solutions (Case 1) 

The plots indicate the wave solutions for 𝑎1 = 4 in Equation (14). 

Case 2: 

𝑎0 = 0, 𝑏0 = 0, 𝑎1 = 1, 𝑤 = 2√2𝐼, 𝑤 = −2√2𝐼,  𝑏−1 = 0 (15) 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =
𝑎−1𝑒−𝜉 + 𝑒𝜉

𝑒𝜉
(16) 

where 𝑎−1 is a free parameter. 
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Fig. 2. 3D and 2D plots of travelling wave solutions (Case 2) 

The plots indicate the wave solutions for 𝑎−1 = 3 in Equation (16). 

Case 3: 

𝑎0 = 0, 𝑏0 = 0, 𝑎1 = 1 + √2,  𝑎1 = 1 − √2 , 𝑤 = 𝐼√2 , 𝑤 = −𝐼√2 (17) 

𝑎−1 = −(1 + √2) 𝑏−1 + 2𝑏−1,  𝑎−1 = −(1 − √2)𝑏−1 + 2𝑏−1 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =
(−(1 + √2) 𝑏−1 + 2𝑏−1)𝑒−𝜉 + (1 + √2)𝑒𝜉

𝑏−1𝑒−𝜉 + 𝑒𝜉
(18) 

where 𝑏−1 is a free parameter. 

 

 

 

Fig. 3. 3D and 2D plots of travelling wave solutions (Case 3) 

The plots indicate the wave solutions for 𝑏−1 = 5 in Equation (18).  

Case 4: 

𝑎−1 = 0, 𝑏−1 = 0, 𝑎1 = 1 +
1

2
√2,  𝑎1 = 1 −

1

2
√2 , 𝑤 =

1

2
𝐼√14 (19) 
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𝑤 = −
1

2
𝐼√14,  𝑎0 = − (1 −

1

2
√2) 𝑏0 + 2𝑏0, 𝑎0 = − (1 +

1

2
√2) 𝑏0 + 2𝑏0 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =
− (1 −

1
2 √2) 𝑏0 + 2𝑏0 + (1 −

1
2 √2)𝑒𝜉

𝑏0 + 𝑒𝜉
(20) 

where 𝑏0 is a free parameter. 

  

Fig. 4. 3D and 2D plots of travelling wave solutions (Case 4) 

The plots indicate the wave solutions for 𝑏0 = 2 in Equation (20). 

Case 5: 

𝑎−1 = 0, 𝑏0 = 𝑎0, 𝑎1 = 0, 𝑤 = 𝐼√2 , 𝑤 = −𝐼√2,  𝑏−1 =
1

8
𝑎0

2 (21) 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =
𝑎0

1
8 𝑎0

2𝑒−𝜉 + 𝑎0 + 𝑒𝜉
(22)

 

where 𝑎0 is a free parameter. 

  

Fig. 5. 3D and 2D plots of travelling wave solutions (Case 5) 
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The plots indicate the wave solutions for 𝑎0 = 6 in Equation (22). 

Case 6: 

𝑎−1 = −𝑎0
2 +

1

2
(1 −

1

2
√2) 𝑎0

2 − (1 −
1

2
√2) 𝑏0𝑎0 +

1

4
(1 −

1

2
√2) 𝑏0

2 + 2𝑏0𝑎0 −
1

2
𝑏0

2
 

𝑎−1 = −𝑎0
2 +

1

2
(1 +

1

2
√2) 𝑎0

2 − (1 +
1

2
√2) 𝑏0𝑎0 +

1

4
(1 +

1

2
√2) 𝑏0

2 + 2𝑏0𝑎0 −
1

2
𝑏0

2 (23) 

𝑏−1 = 𝑏0𝑎0 −
1

2
𝑎0

2 −
1

4
𝑏0

2, 𝑤 =
1

2
𝐼√14, 𝑤 = −

1

2
𝐼√14, 𝑎1 = 1 −

1

2
√2, 𝑎1 = 1 +

1

2
√2 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =

(−𝑎0
2

+
1

2
(1 −

1

2
√2) 𝑎0

2
− (1 −

1

2
√2) 𝑏0𝑎0 +

1

4
(1 −

1

2
√2) 𝑏0

2
+ 2𝑏0𝑎0 −

1

2
𝑏0

2) 𝑒
−𝜉

+ 𝑎0 + (1 −
1

2
√2)𝑒

𝜉

(𝑏0𝑎0 −
1

2
𝑎0

2 −
1

4
𝑏0

2) 𝑒−𝜉 + 𝑏0 + 𝑒𝜉

(24) 

where 𝑏0 and 𝑎0 are free parameters. 

 
 

Fig. 6. 3D and 2D plots of travelling wave solutions (Case 6) 

The plots indicate the wave solutions for 𝑎0 = 1, 𝑏0 = 1 in Equation (24). 

Case 7: 

𝑎0 =  
𝑏0(𝑎1

2 −  𝑎1 − 1)

−1 + 𝑎1
, 𝑤 = √−6 𝑎1 + 3𝑎1

2 − 2 , 𝑤 = −√−6 𝑎1 + 3𝑎1
2 − 2 (25) 

𝑏−1 =
1

8

𝑏0
2(2𝑎1

2− 4𝑎1+1)

(−1+𝑎1)2  , 𝑎−1 =
1

8

𝑏0
2(2𝑎1

2− 4𝑎1+1)𝑎1

(−1+𝑎1)2  

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =

(
1
8

𝑏0
2(2𝑎1

2 −  4𝑎1 + 1)𝑎1

(−1 + 𝑎1)2 ) 𝑒−𝜉 +
𝑏0(𝑎1

2 −  𝑎1 − 1)
−1 + 𝑎1

+ 𝑎1𝑒𝜉

(
1
8

𝑏0
2(2𝑎1

2 −  4𝑎1 + 1)
(−1 + 𝑎1)2 ) 𝑒−𝜉 + 𝑏0 + 𝑒𝜉

(26) 

where 𝑏0 and 𝑎1 are free parameters. 
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Fig. 7. 3D and 2D plots of travelling wave solutions (Case 7) 

The plots indicate the wave solutions for 𝑎1 = 2, 𝑏0 = 1 in Equation (26). 

Case 8: 

𝑎−1 = −
1

8
𝑎0

2, 𝑏0 = 0, 𝑎1 = 1, 𝑤 = 𝐼√5, 𝑤 = −𝐼√5, 𝑏−1 =
1

8
𝑎0

2 (27) 

  Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =
−𝑎0

2𝑒−𝜉 + 8𝑎0 + 8𝑒𝜉

𝑎0
2𝑒−𝜉 + 8𝑒𝜉

(28) 

where 𝑎0 is a free parameter. 

 

 

Fig. 8. 3D and 2D plots of travelling wave solutions (Case 8) 

The plots indicate the wave solutions for 𝑎0 = 1 in Equation (28). 

Therefore, the full solutions of the Time-Fractional Bad Modified Boussinesq equation for the above 

conditions have been obtained. Now let's solve the Time-Fractional Good Modified Boussinesq equation using 

the Exp-function method.  

We balance the linear term of the highest order of Equation (11)  𝑢𝚤𝑣 with the highest order nonlinear term 

𝑢2𝑢′′, we set 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1; then the trial solution, Equation (11), reduces to 

https://www.sciencedirect.com/science/article/pii/S0898122110004967#fd000040
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−1

𝐵
[𝐷4𝑒4𝜉 + 𝐷3𝑒3𝜉 + 𝐷2𝑒2𝜉 + 𝐷1𝑒𝜉 + 𝐷0 + 𝐷−1𝑒−𝜉 + 𝐷−2𝑒−2𝜉 + 𝐷−3𝑒−3𝜉 + 𝐷−4𝑒−4𝜉] = 0 (29) 

and for the solutions of Equation (29), all coefficients must be zero. 

𝐵 = (𝑏−1𝑒−𝜉 +  𝑏0 + 𝑒𝜉)5; 

 
𝐷4 = 𝑤2𝑎1𝑏0 − 3𝑎1

3𝑏0 − 6𝑎1𝑎0 + 6𝑎1
2𝑏0 − 𝑤2𝑎0 + 3𝑎1

2𝑎0; 

𝐷3 = 24𝑎1
2𝑏−1 − 12𝑎1𝑏−1 − 24𝑎1𝑎−1 + 12𝑎1

2𝑎−1 + 12𝑎1𝑏0
2 + 12𝑎1𝑎0

2 − 12𝑎1
3𝑏−1 − 4𝑤2𝑎1 

 +9𝑎1
3𝑏0

2 − 21𝑎0𝑎1
2𝑏0 − 6𝑎1

2𝑏0
2 − 12𝑎0𝑏0 + 4𝑤2𝑎1𝑏−1 − 𝑤2𝑎0𝑏0 + 𝑤2𝑎1𝑏0

2 − 12𝑎0
2 + 12𝑎−1 

 +18𝑎1𝑏0𝑎0; 

 
𝐷2 = −12𝑎1𝑏0

3 − 72𝑎0𝑏−1 − 12𝑎1
2𝑏0

3 − 12𝑎−1𝑏0 − 66𝑎1
2𝑏−1𝑎0 + 12𝑎0𝑏0

2 − 54𝑎−1𝑎0 + 9𝑎0
3 

 +18𝑎1𝑏0
2𝑎0 − 11𝑤2𝑎−1𝑏0 + 33𝑎1

3𝑏−1𝑏0 + 12𝑎0𝑎1
2𝑏0

2 − 21𝑎1
2𝑏−1𝑏0 + 54𝑎−1𝑎0𝑎1 − 12𝑎−1𝑎1𝑏0 

 +84𝑎1𝑏−1𝑏0 + 4𝑤2𝑎0𝑏−1 + 𝑤2𝑎0𝑏0
2 − 21𝑎1𝑏0𝑎0

2 − 𝑤2𝑎1𝑏0
3 + 78𝑎1𝑏−1𝑎0 − 12𝑎1

2𝑏−1𝑏0 

 −6𝑎0
2𝑏0 + 7𝑤2𝑎1𝑏−1𝑏0; 

 
𝐷1 = −3𝑎0

3𝑏0 + 180𝑎1𝑏−1
2 + 36𝑎0

2𝑏−1 + 48𝑎−1𝑎0
2 − 24𝑎1

2𝑏−1
2 + 6𝑎0

2𝑏0
2 + 48𝑎1𝑎−1

2 + 36𝑎1
3𝑏−1

2  

 −180𝑎−1𝑏−1 + 3𝑎−1𝑎1
2𝑏0

2 − 18𝑎−1𝑎0𝑎1𝑏0 − 2𝑤2𝑎1𝑏0
2𝑏−1 − 11𝑤2𝑎−1𝑏0

2 − 78𝑎−1𝑎0𝑏0 

 +13𝑤2𝑎0𝑏0𝑏−1 + 84𝑎1𝑏−1𝑎0𝑏0 + 51𝑎0𝑎1
2𝑏−1𝑏0 + 72𝑎−1𝑎1𝑏−1 − 84𝑎1𝑏−1𝑎0

2 − 54𝑎1
2𝑏−1𝑏0

2 

 +60𝑎0𝑏−1𝑏0 + 4𝑤2𝑎1𝑏−1
2 − 6𝑎0𝑎1𝑏0

3 − 48𝑎−1
2 + 𝑤2𝑎0𝑏0

3 + 12𝑎−1𝑎1𝑏0
2 − 84𝑎1

2𝑎−1𝑏−1 

 +3𝑎0
2𝑎1𝑏0

2 − 𝑤2𝑎1𝑏0
4 − 60𝑎1𝑏−1𝑏0

2 − 4𝑤2𝑎−1𝑏−1; 

 
𝐷0 = −30𝑎0𝑎1𝑏−1

2 + 75𝑎0𝑎1
2𝑏−1

2 + 10𝑤2𝑎0𝑏−1
2 + 240𝑎0𝑏−1

2 + 120𝑎−1𝑎1𝑏−1𝑏0 + 15𝑎1
2𝑎−1𝑏−1𝑏0 

 
 −90𝑎1

2𝑏−1
2 𝑏0 − 90𝑎−1

2 𝑏0 − 30𝑎−1
2 𝑎0𝑏0

2 + 15𝑎−1𝑏0𝑎0
2 − 120𝑎1𝑏−1

2 𝑏0 − 120𝑎−1𝑏−1𝑏0 

 −30𝑎1𝑏0
2𝑎0𝑏−1 + 15𝑎1𝑎−1

2 𝑏0 − 180𝑎0𝑎−1𝑎1𝑏−1 + 10𝑤2𝑎0𝑏0
2𝑏−1 + 15𝑎1𝑏0𝑎0

2𝑏−1 + 75𝑎0𝑎−1
2  

 −5𝑤2𝑎−1𝑏−1𝑏0 − 5𝑤2𝑎1𝑏0
3𝑏−1 − 5𝑤2𝑎1𝑏0𝑏−1

2 − 5𝑤2𝑎−1𝑏0
3 − 30𝑎0

3𝑏−1 + 60𝑎0
2𝑏−1𝑏0 

 +30𝑎0𝑎−1𝑏−1; 

 
𝐷−1 = 36𝑎−1

3 − 6𝑎0𝑎−1𝑏0
3 − 4𝑤2𝑎1𝑏−1

3 − 3𝑎0
3𝑏−1𝑏0 + 3𝑎0

2𝑎−1𝑏0
2 + 6𝑎0

2𝑏−1𝑏0
2 − 𝑤2𝑎−1𝑏0

4 

 −84𝑎−1
2 𝑎1𝑏−1 − 84𝑎0

2𝑎−1𝑏−1 + 48𝑎1𝑎0
2𝑏−1

2 + 60𝑎0𝑏−1
2 𝑏0 − 60𝑎−1𝑏−1𝑏0

2 + 3𝑎−1
2 𝑎1𝑏0

2 

 +4𝑤2𝑎−1𝑏−1
2 + 51𝑎0𝑎−1

2 𝑏0 + 48𝑎−1𝑎1
2𝑏−1

2 + 72𝑎−1𝑎1𝑏−1
2 + 180𝑎−1𝑏−1

2 − 180𝑎1𝑏−1
3 − 48𝑎1

2𝑏−1
3  

 −54𝑎−1
2 𝑏0

2 − 24𝑎−1
2 𝑏−1 + 36𝑎0

2𝑏−1
2 + 𝑤2𝑎0𝑏−1𝑏0

3 + 13𝑤2𝑎0𝑏−1
2 𝑏0 − 78𝑎1𝑏−1

2 𝑎0𝑏0 

 −11𝑤2𝑎1𝑏0
2𝑏−1

2 − 18𝑎0𝑎−1𝑎1𝑏0𝑏−1 + 12𝑎−1𝑏0
2𝑎1𝑏−1 − 2𝑤2𝑎−1𝑏0

2𝑏−1 + 84𝑎−1𝑎0𝑏0𝑏−1; 

 
𝐷−2 = 𝑤2𝑎0𝑏−1

2 𝑏0
2 + 54𝑎−1𝑎0𝑎1𝑏−1

2 − 21𝑎−1𝑎0
2𝑏0𝑏−1 − 11𝑤2𝑎1𝑏−1

3 𝑏0 + 18𝑎−1𝑏0
2𝑎0𝑏−1 
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 +7𝑤2𝑎−1𝑏−1
2 𝑏0 − 12𝑎−1𝑏0𝑎1𝑏−1

2 − 21𝑎−1
2 𝑎1𝑏0𝑏−1 − 𝑤2𝑎−1𝑏0

3𝑏−1 + 9𝑎0
3𝑏−1

2 − 72𝑎0𝑏−1
3  

 +33𝑎−1
3 𝑏0 − 12𝑎−1

2 𝑏0
3 − 66𝑎−1

2 𝑎0𝑏−1 + 84𝑎−1𝑏−1
2 𝑏0 − 12𝑎1𝑏−1

3 𝑏0 + 78𝑎−1𝑎0𝑏−1
2 − 6𝑎0

2𝑏−1
2 𝑏0 

 +4𝑤2𝑎0𝑏−1
3 − 12𝑎−1𝑏−1𝑏0

3 + 12𝑎0𝑏−1
2 𝑏0

2 + 12𝑎0𝑎−1
2 𝑏0

2 − 54𝑎1𝑏−1
3 𝑎0 − 12𝑎−1

2 𝑏0𝑏−1; 

 
𝐷−3 = 24𝑎−1

2 𝑏−1
2 + 12𝑎1𝑏−1

4 − 12𝑎−1𝑏−1
3 + 9𝑎−1

3 𝑏0
2 − 12𝑎0

2𝑏−1
3 − 12𝑎−1

3 𝑏−1 + 12𝑎−1𝑎0
2𝑏−1

2  

 +12𝑎−1𝑏−1
2 𝑏0

2 − 12𝑎0𝑏−1
3 𝑏0 + 𝑤2𝑎−1𝑏−1

2 𝑏0
2 − 21𝑎−1

2 𝑎0𝑏−1𝑏0 + 18𝑎−1𝑎0𝑏−1
2 𝑏0 − 𝑤2𝑎0𝑏−1

3 𝑏0 

 +12𝑎−1
2 𝑎1𝑏−1

2 − 4𝑤2𝑎1𝑏−1
4 − 6𝑎−1

2 𝑏0
2𝑏−1 + 4𝑤2𝑎−1𝑏−1

3 − 24𝑎−1𝑎1𝑏−1
3 ; 

 
𝐷−4 = 𝑤2𝑎−1𝑏−1

3 𝑏0 − 3𝑎−1
3 𝑏−1𝑏0 − 𝑤2𝑎0𝑏−1

4 − 6𝑎−1𝑎0𝑏−1
3 + 6𝑎−1

2 𝑏−1
2 𝑏0 + 3𝑎−1

2 𝑎0𝑏−1
2 ; 

 
All the coefficients of 𝑒𝑛𝜉 must be zero. Hence, we produce a system of algebraic equations which the 

Maple can tackle to produce the subsequent cases of solutions: 

Case 1: 

𝑎0 =  𝑎1𝑏0 , 𝑎−1 =  𝑎1𝑏−1 (30) 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) = 𝑎1 (31) 

where 𝑎1 is a free parameter. 

 

 

Fig. 9. 3D and 2D plots of travelling wave solutions (Case 1) 

The plots indicate the wave solutions for 𝑎1 = 3 in Equation (31). 

Case 2: 

𝑎0 = 0, 𝑏0 = 0,  𝑎1 = 1, 𝑤 = 0,  𝑏−1 = 0 (32) 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =
𝑎−1𝑒−𝜉 + 𝑒𝜉

𝑒𝜉
(33) 
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where 𝑎−1 is a free parameter. 

 

Fig. 10. 3D and 2D plots of travelling wave solutions (Case 2) 

The plots indicate the wave solutions for 𝑎−1 = 3 in Equation (33). 

Case 3: 

𝑎0 = 0,  𝑏0 = 0,  𝑎1 = 1 + 𝐼√2,  𝑎1 = 1 − 𝐼√2 , 𝑤 = 𝐼√6 , 𝑤 = −𝐼√6 (34) 

𝑎−1 = −(1 + 𝐼√2) 𝑏−1 + 2𝑏−1,  𝑎−1 = −(1 − 𝐼√2)𝑏−1 + 2𝑏−1 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =
(−(1 + 𝐼√2) 𝑏−1 + 2𝑏−1)𝑒−𝜉 + (1 + 𝐼√2)𝑒𝜉

𝑏−1𝑒−𝜉 + 𝑒𝜉
(35) 

where 𝑏−1 is a free parameter. 

 

Fig. 11. 3D and 2D plots of travelling wave solutions (Case 3) 

The plots indicate the wave solutions for 𝑏−1 = 1 in Equation (35). 

Case 4: 

𝑎−1 = 0, 𝑏−1 = 0, 𝑎1 = 1 +
1

2
𝐼√2,  𝑎1 = 1 −

1

2
𝐼√2 , 𝑤 =

3

2
𝐼√2 (36) 

𝑤 = −
3

2
𝐼√2,  𝑎0 = − (1 −

1

2
𝐼√2) 𝑏0 + 2𝑏0,  𝑎0 = − (1 +

1

2
𝐼√2) 𝑏0 + 2𝑏0 
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Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =
− (1 −

1
2 √2) 𝑏0 + 2𝑏0 + (1 −

1
2 √2)𝑒𝜉

𝑏0 + 𝑒𝜉
(37) 

where 𝑏0 is a free parameter.  

 

Fig. 12. 3D and 2D plots of travelling wave solutions (Case 4) 

The plots indicate the wave solutions for 𝑏0 = 1 in Equation (37). 

Case 5: 

𝑎−1 = 0, 𝑏0 = −𝑎0, 𝑎1 = 0, 𝑤 = 0, 𝑏−1 =
3

8
𝑎0

2 (38) 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =
𝑎0

3
8

𝑎0
2𝑒−𝜉 − 𝑎0 + 𝑒𝜉

(39)
 

where 𝑎0 is a free parameter. 

  

Fig. 13. 3D and 2D plots of travelling wave solutions (Case 5) 
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The plots indicate the wave solutions for 𝑎0 = 4 in Equation (39). 

Case 6: 

𝑎−1 = 𝑎0
2 −

1

2
(1 +

1

2
𝐼√2) 𝑎0

2 + (1 +
1

2
𝐼√2) 𝑏0𝑎0 −

3

4
(1 +

1

2
𝐼√2) 𝑏0

2 − 2𝑏0𝑎0 +
3

2
𝑏0

2
 

𝑎−1 = 𝑎0
2 −

1

2
(1 −

1

2
𝐼√2) 𝑎0

2 + (1 −
1

2
𝐼√2) 𝑏0𝑎0 −

3

4
(1 −

1

2
𝐼√2) 𝑏0

2 − 2𝑏0𝑎0 +
3

2
𝑏0

2 (40) 

𝑏−1 = −𝑏0𝑎0 +
1

2
𝑎0

2 +
3

4
𝑏0

2, 𝑤 =
3

2
𝐼√2 , 𝑤 = −

3

2
𝐼√2, 𝑎1 = 1 −

1

2
𝐼√2, 𝑎1 = 1 +

1

2
𝐼√2 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =

(𝑎0
2 −

1

2
(1 +

1

2
𝐼√2) 𝑎0

2 + (1 +
1

2
𝐼√2) 𝑏0𝑎0 −

3

4
(1 +

1

2
𝐼√2) 𝑏0

2 − 2𝑏0𝑎0 +
3

2
𝑏0

2) 𝑒−𝜉 + 𝑎0 + (1 −
1

2
𝐼√2)𝑒𝜉

(−𝑏0𝑎0 +
1

2
𝑎0

2 +
3

4
𝑏0

2) 𝑒−𝜉 + 𝑏0 + 𝑒𝜉

(41) 

where 𝑏0 and 𝑎0 are free parameters. 

 

 

Fig. 14. 3D and 2D plots of travelling wave solutions (Case 6) 

The plots indicate the wave solutions for 𝑎0 = 1, 𝑏0 = 1 in Equation (41) 

Case 7: 

𝑎0 =  
𝑏0(𝑎1

2 −  𝑎1 + 1)

−1 + 𝑎1
, 𝑤 = √−6 𝑎1 + 3𝑎1

2, 𝑤 = −√−6 𝑎1 + 3𝑎1
2 (42) 

𝑏−1 =
1

8

𝑏0
2(2𝑎1

2 −  4𝑎1 + 3)

(−1 + 𝑎1)2
, 𝑎−1 =

1

8

𝑏0
2(2𝑎1

2 −  4𝑎1 + 3)𝑎1

(−1 + 𝑎1)2
 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =

(
1
8

𝑏0
2(2𝑎1

2 −  4𝑎1 + 3)𝑎1

(−1 + 𝑎1)2 ) 𝑒−𝜉 +
𝑏0(𝑎1

2 −  𝑎1 + 1)
−1 + 𝑎1

+ 𝑎1𝑒𝜉

(
1
8

𝑏0
2(2𝑎1

2 −  4𝑎1 + 3)
(−1 + 𝑎1)2 ) 𝑒−𝜉 + 𝑏0 + 𝑒𝜉

(43) 

where 𝑏0 and 𝑎1 are free parameters. 
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Fig.15. 3D and 2D plots of travelling wave solutions (Case 7) 

The plots indicate the wave solutions for 𝑎1 = 2, 𝑏0 = 1 in Equation (43). 

Case 8: 

𝑎−1 =
1

8
𝑎0

2, 𝑏0 = 0, 𝑎1 = 1, 𝑤 = 𝐼√3 , 𝑤 = −𝐼√3,  𝑏−1 =
1

8
𝑎0

2 (44) 

Replace these outcomes into Equation (6), we produce a subsequent exact solution, 

𝑢(𝜉) =
−𝑎0

2𝑒−𝜉 + 8𝑎0 + 8𝑒𝜉

𝑎0
2𝑒−𝜉 + 8𝑒𝜉

  (45) 

where 𝑎0 is a free parameter. 

 

 

Fig. 16. 3D and 2D plots of travelling wave solutions (Case 8) 

The plots indicate the wave solutions for 𝑎0 = 1 in Equation (45). 

Remark: With the aid of Maple, we have verified all solutions in Section 3 by putting them back into the 

originals Equations (10) and (11). 
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4. Conclusion 

In this paper, we have been obtained the new exact solution of the Conformable Time Fractional Bad and 

Good Modified Boussinesq Equations. We converted the Conformable Time Fractional Bad and Good 

Modified Boussinesq Equations into an ordinary differential equation with the help of a travelling wave 

transformation. We obtained new exact solutions by using the Exp-function method, which is different from 

previous literature works. These results show that the Exp-function method is a powerful and effective 

method to obtain the exact solutions of nonlinear evolution equations born in mathematical physics and 

non-linear dynamic systems. 
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