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 Job shop scheduling problems are NP-hard problems that have been studied extensively in the 

literature as well as in real-life. Many factories all over the world produce worth millions of dollars 

with job shop type production systems. It is crucial to use effective production scheduling methods 

to reduce costs and increase productivity. Hyperheuristics are fast-implementing, low-cost, and 

powerful enough to deal with different problems effectively since they need limited problem-

specific information. In this paper, a genetic algorithm-based hyperheuristic (GAHH) approach is 

proposed for job shop scheduling problems. Twenty-six dispatching rules are used as low-level 

heuristics. We use a set of benchmark problems from OR-Library to test the proposed algorithm. 

The performance of the proposed approach is compared with genetic algorithm, simulating 

annealing, particle swarm optimization and some of dispatching rules. Computational experiments 

show that the proposed genetic algorithm-based hyperheuristic approach finds optimal results or 

produces better solutions than compared methods.  
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1. Introduction 

Job shop scheduling problem has been widespread and 

tough problem in literature that has been raised in recent 

60 years [1]. There are many factories that make 

production worth millions of dollars with job shop type 

production system all around the world. It is really 

important to employ effective production scheduling 

methods in order to decrease costs and increase labor 

productivity and profitability [2]. The aim of this paper is 

to propose an effective GA-based hyperheuristic approach 

for JSSPs.  

It has been accepted that the first studies, on which job 

shop scheduling was built, started in 1950s [3]. Johnson 

[4]’s algorithm, which was improved for double-machine 

flow type scheduling problem, was adapted to job shop 

scheduling problem by Jackson [5]. During 1950s, 

polynomial time algorithms directed towards the solution 

of the problem of job shop scheduling continued to be 

improved. The studies conducted in 1960s focused on 

reaching optimal result by using enumerative algorithms. 

Disjunctive graphs illustration was firstly proposed by Roy 

and Sussmann [6] in 1964 and the first disjunctive graph-

based enumerative approach was implemented by Balas 

[7] in 1969. As well as being the most common 

enumerative approach, branch and bound algorithm’s area 

of usage has been limited due to the fact that optimal 

solution can’t be found for many problems. The 

complexity of problem has been the focal point of the 

studies during 1970s and the middle of 1980s. It has been 

discussed that only small parts of job shop scheduling 

problems could be solved with polynomial time algorithms 

and the majority of them belongs to NP-hard class. This 

situation has caused approximate solution methods to gain 

importance. Dispatching rules are the first approximate 

solution methods that have been improved. Between 1988 

and 1991, innovative approximate solution methods [8] 

such as bottleneck algorithm and in 1990s, hybrid methods 

were developed [3]. While heuristic methods aim to 

produce appropriate solutions within reasonable 

calculation time, they don’t guarantee optimal solution [9]. 

The reasons why the popularity of heuristic methods has 

increased since 1991 are the fact that their calculation 

power is strong and they have conversion features [10]. 

Dispatching rules, which are also called as priority rules or 

scheduling rules in literature, are the rules that are used for 

the solutions of scheduling problems because of its ease of 

implementation, quick reaction to sudden changes and 

production of valid solutions [11]. In literature, selection 
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of dispatching rules to be used is carried out with two 

methods: steady state simulation and artificial intelligence 

methods [11]. The selection of dispatching rules to be used 

within this study was provided by GA-based 

hyperheuristic approach.  

Hyperheuristic approaches are high-level heuristics that 

look for a good solution instead of looking for a direct 

solution, by managing a series of low-level heuristics and 

they need limited problem-specific information [12]. The 

concept of hyperheuristic was first used to describe the 

protocol including the use of different artificial 

intelligence methods [13]. It was first described as 

“heuristics to choose heuristics” in accordance with 

combinatorial optimization as an independent concept in 

2000 [14]. Burke et al. [13] divided hyperheuristics into 

two, according to the nature of heuristic search space. 

These are heuristic-selection that call for one of available 

low-level heuristics and heuristic-generation that form 

new heuristics by using available low-level heuristics [see 

15–19]. Hyperheuristics can be classified depending on the 

type of low-level heuristics (LLHs) used as “construction” 

or “perturbation”. Hyperheuristics that use dispatching 

rules as LLHs are included in construction class according 

to the structure of low-level heuristics. In this paper, GA-

based hyperheuristic approach that is included in heuristic 

selection-construction class was proposed for job shop 

scheduling problems. 

The aim of this paper is to propose an effective GA-

based hyperheuristic approach for job shop scheduling 

problems. To the best of our knowledge, there are only few 

studies using GA-based hyperheuristic for the solution of 

the JSSP.  This study is one of the few studies proposing a 

GA-based hyperheuristic for job shop scheduling 

problems. Other studies are given in Section 5. Unlike the 

few similar studies in the literature, 26 dispatching rules 

were used as low-level heuristics to provide an effective 

GA-based hyperheuristic approach for job shop scheduling 

problems. 
 

2. Problem Statement 

Job shop scheduling problem is described as qualifying 

starting time of each operation making objective function 

optimum by fulfilling precedence and capacity constraints 

specified in advance for performing n operations in m 

machines [20]. The number of possible schedules in JSSP 

is (n!)m  for m machines and n operations [21]. In a study 

carried out by Lenstra and Rinnooy Kan [22], it was 

proved that JSSP was included in NP-hard class in case of 

availability of more than three machines. Relevant 

calculation time increases exponentially along with the 

increase in the size of the problem in order to obtain 

optimal solution for the problems that are included in NP-

hard class. 𝐽 = {𝐽1, 𝐽2, … , 𝐽𝑛}  is the set of jobs and 𝑀 =

{𝑀1, 𝑀2, … , 𝑀𝑚} is the set of machines. It is accepted that 

each operation is performed only once in each machine. 

Processing of a job 𝐽𝑗  in a machine 𝑀𝑖  is called as an 

operation and the operation of a job is showed as 𝑂𝑖𝑗 . Each 

job follows special sequence of machines by technological 

constraints. Each job has its own sequence of machines 

and it is independent from the sequence of other jobs. Each 

𝑂𝑖𝑗  operation has a special processing time and this time is 

shown as 𝑝𝑖𝑗 . All processing times are known and fixed. 

Setup times and transfer times are integrated into 

processing times.  

In scheduling problems, a large number of complicated 

and sometimes conflicting objective functions can be built. 

Mellor [23] listed 27 scheduling problem objective 

functions. Minimization of maximum completion time is 

the first objective function used by the researchers in 

1950s. Its academic and industrial use is common due to 

the fact that its mathematical formulation is easy [3]. 

Mathematical formulation of general job shop scheduling 

problem, which its objective function is the minimization 

of maximum completion time is as follows [21]: 

𝐶𝑚𝑎𝑥: maximum completion time (makespan) 

𝑦𝑖𝑗: starting time of job 𝑗 on machine 𝑖 

𝑝𝑖𝑗 : processing time of job 𝑗 on machine 𝑖 

𝑁: set of all operations (𝑖, 𝑗) that must be performed on 

𝑛 jobs. 

A: set of all precedence constraints (𝑖, 𝑗) →  (𝑘, 𝑗)  that 

require job 𝑗  to be processed on machine 𝑖  before it is 

processed on machine 𝑘 

min 𝐶𝑚𝑎𝑥 

subject to 

𝑦𝑘𝑗 − 𝑦𝑖𝑗 ≥ 𝑝𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗) → (𝑘, 𝑗) ∊ 𝐴                                  (1) 

𝐶𝑚𝑎𝑥 − 𝑦𝑖𝑗 ≥ 𝑝𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗) ∊ 𝑁                                              (2) 

𝑦𝑖𝑗 − 𝑦𝑖𝑙 ≥ 𝑝𝑖𝑙 𝑜𝑟 𝑦𝑖𝑙 − 𝑦𝑖𝑗 ≥ 𝑝𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑙), (𝑖, 𝑗) ∊ 𝑁       (3) 

𝑦𝑖𝑗 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗) ∊ 𝑁                                                                (4)  

Constraints (1) ensure all precedence constraints (𝑖, 𝑗) →

 (𝑘, 𝑗)  that require job 𝑗  to be processed on machine 𝑖 

before it is processed on machine 𝑘 . Constraints (2) 

ensure that maximum completion time is not exceeded. 

Constraints (3)  ensure that an operation cannot be 

interrupted, once it begins. Constraints (4)  ensure 

nonnegativitiy of decision variables 𝑦𝑖𝑗 . 
 

3. The GA Metaheuristic 

The genetic algorithm (GA) developed by Holland [24] 

is a general search strategy and optimization method 

especially used in combinatorial optimization problems 

[25]. Genetic algorithms are used in many fields such as 

engineering, computer science, economy administration 

and supply chain management [26]. GA approach for the 

solution of scheduling problems was first developed by 

Davis [27] for job shop scheduling problem. GA has 

several advantageous features in comparison with other 

metaheuristics [26]:  



        Akarsu and Küçükdeniz, International Advanced Researches and Engineering Journal 06(01): 016-025, 2022 
 

018 

 

 

• Flexibility of identification of constraints and 

quality measures,  

• The ability to work with continuous and discrete 

variables, 

• Ability of comprehensive search space, 

• The ability to provide multiple optimal or good 

solutions,  

• Use of parallel calculation techniques to reduce 

processing time.  

Contrary to local search methods which handle one 

feasible solution such as simulated annealing and tabu 

search, GA uses population of solutions during search in 

order to prevent early convergence to local minimum [25]. 

Each individual in the population is called as a 

chromosome. Each chromosome consists of genes and 

represents a feasible solution. Chromosomes are evaluated 

with the calculation of fitness values. Crossover and 

mutation operators are used to produce new generations. 

Produced new generations are called as offspring. After 

many produced generations, the population converges 

with a solution that can be local or global optimum [28]. 

Since the time it was first developed, there have been 

significant improvements in chromosome representation 

of GA [29-31], crossover operator [32], mutation operator 

[32, 33], selection operator [32, 34] and generation of an 

initial population [35]. These developments have made 

traditional GA stronger [26]. Cheung and Zhou [36] 

proposed genetic algorithm and heuristic rule-based hybrid 

approach for JSSP. It was concluded that heuristic 

increased the performance of GA. Wang and Zheng [37] 

proposed integrated use of GA and SA for job shop 

scheduling problem. Zhou, Feng and Han [38] proposed 

integrated use of genetic algorithm, neighborhood search 

algorithm and dispatching rules (SPT, MWKR). It was 

stated that proposed algorithm proved good solutions in 

comparison with neighborhood search algorithm, 

simulated annealing and traditional GA. Gao, Sun and Gen 

[39] proposed integrated use of GA and variable 

neighborhood search methods for multi-objective flexible 

job shop scheduling problems. Variable neighborhood 

algorithm was used in order to increase convergence speed 

of GA. Two-vector chromosome representation that 

consists of a machine assignment vector and a job order 

vector was used in GA. It was shown that proposed method 

produced equal or better results in 157 out of 181 

benchmark instances with available methods. Dao, Abhary 

and Marian [26] made a bibliometric analysis of published 

genetic algorithm studies between 1972 and 2014. 
 

4. Dispatching Rules  

Dispatching rules are the rules that are developed to 

make a quick selection among appropriate operations to be 

assigned in each time to form the schedule [18]. 

Dispatching rules are classified as static and dynamic 

based on the time variable [11]. While static dispatching 

rules such as earliest due date (EDD) and shortest 

processing time (SPT) can make evaluations before 

scheduling starts, dynamic rules such as most total work 

remaining (MTWR) and first in first out (FIFO) make 

changeable evaluations in any iteration while forming 

schedule [18]. According to their structural features, 

dispatching rules are classified as simple dispatching rules, 

combined dispatching rules, weighted dispatching rules 

and heuristic dispatching rules. Simple dispatching rules 

such as SPT, EDD have a single parameter objective 

function [11]. Simple dispatching rules can optimize 

limited scheduling objective functions [18]. Combined 

dispatching rules that are formed with the use of several 

simple dispatching rules are more successful for the 

solution of complicated problems. Weighted dispatching 

rules are linear combination of simple dispatching rules in 

which specified weights are assigned to operations 

according to their importance. Heuristic dispatching rules 

such as expert knowledge are generally used with simple, 

combined and weighted dispatching rules based on the 

structure of the system [11]. As new dispatching rules can 

be formed with the combination of one or more available 

dispatching rules, they can also be formed with one or 

more heuristic rules and dispatching rules [40].       

Dispatching rules are heuristic rules that are often used 

for the solution of scheduling problems with the ability of 

producing valid solutions in limited time and quick 

response to sudden changes. When scheduling literature is 

considered, it is clear that sequencing rules, scheduling 

rules, priority rules and dispatching rules are used to 

describe the same technique [11]. Panwalkar and Iskander 

[41] listed and classified more than 100 dispatching rules. 

Dispatching rules have been used and continued to be 

developed for more than fifty years [41]. Even though 

there are many studies on dispatching rules, the majority 

of new studies are about combination and modification of 

old dispatching rules [11].  
 

5. GA-based Hyperheuristic Algorithm 

Generally, development of a heuristic, based on a 

relevant problem, is time consuming and it requires 

detailed information of the field. Though it gives 

successful results for the problems for which they are 

developed, they can’t be generalized to new or similar 

problems very often [42]. The motivation behind 

hyperheuristics is to expand application fields of 

developed methods. The studies carried out for this aim 

date back to the beginning of 1960s [13]. In early studies 

[see 43,44], when the concept of hyperheuristics wasn’t 

used yet, producing better results was aimed by using 

different dispatching rules in iterations according to a 

specific order.  



 

 

 

Apart from simple low-level heuristics, hyperheuristics 

don’t require any problem-specific information. Each LLH 

communicates with high-level heuristic with an interface 

structure independent from the problem. Hyperheuristic 

can call a LLH to see what happens when a LLH is used. 

Called LLH sends various parameters in which we can 

observe the performance of LLH such as objective 

function value and computational time [14].  

Indirect chromosome representation is used in genetic 

algorithm-based hyperheuristics using genetic algorithm 

as high-level heuristic. In indirect chromosome 

representation, each chromosome represents the way of 

forming a solution instead of the solution itself [12]. In 

traditional GA, while chromosome directly encodes a 

solution via binary arrays or permutations, early studies 

were about indirect chromosome encoding as a result of 

difficulty of direct encoding due to the complicated nature 

of real-life problem [12]. Fang, Ross and Corne [45] is one 

of the first publications in which indirect chromosome 

representation is used. Eight dispatching rules were used 

as low-level heuristics for the solution of open shop 

scheduling problem. Each chromosome consists of a pair 

of gene sequences. In each pair, the first gene represents a 

dispatching rule and the second gene represents the job to 

be assigned with the implementation of this dispatching 

rule. It was seen that obtained results were very close to 

available solution in the literature; in fact, they were 

sometimes better. 

To the best of our knowledge, there are only few studies 

using GA-based hyperheuristic for the solution of the 

JSSP.  This study is one of the few studies proposing a GA-

based hyperheuristic for job shop scheduling problems. 

Unlike the few similar studies in the literature, 26 

dispatching rules were used as low-level heuristics in our 

study. Other studies are [43], [46] and [47]. Dorndorf and 

Pesch [43] used GA-based approach specifying sequence 

of LLHs to minimize makespan in JSSP. As low-level 

heuristics, twelve dispatching rules were used. One 

chromosome includes 𝑛 − 1  genes for 𝑛  operations and 

each gene represents the heuristic to be used for scheduling 

an operation. Norenkov and Goodman [46] developed 

heuristic combination method for JSSPs. Scheduling 

problem was divided into two main problems as 

sequencing of jobs and their assignment to servers and 

heuristics were designated for each sub-problem. The aim 

of the method is to find optimal implementation order of 

heuristics. In its dimension, each chromosome is 

represented by a matrix of size 𝑛 × 𝑞  where 𝑛  is the 

number of jobs and 𝑞 is the number of consecutive service 

stages in which each job experiences during its processing. 

The schedule is formed for each service stage by adding a 

job in each stage. Vázquez-Rodríguez and Petrovic [47] 

developed hyperheuristic approach called as Dispatching 

Rule-Based GA for the solution of multiobjective JSSP. 

Genetic algorithm works in the space of dispatching rules 

and the chromosome representing the solution is expressed 

through (ℎ, 𝑝) binary notation where ℎ is the sequence of 

dispatching rules and 𝑝 is the number of consecutive calls 

of each dispatching rule. The results of the approach were 

found to be superior when they were compared with GA 

using permutation chromosome representation and 

hyperheuristic using dispatching rule-based chromosome 

representation. 

GA-based hyperheuristics are also used for other 

scheduling problems in [48-50]. Hart, Ross and Nelson 

[48] proposed GA-based approach for scheduling of 

chicken catching crew with the aim of sending chickens 

according to the orders received in chicken breeding 

facility, which is a real-life problem. A chromosome 

representation consisting of four parts was used. In the first 

part, there is a fixed problem specific criterion for 

narrowing the search space. In the second part, the 

information of the order sequence is included. In the third 

part, there is a heuristic dividing orders into duties and in 

the fourth part, there is a heuristic assigning the duties to 

the crew members. As a result of the study, it was observed 

that proposed method produced schedules within minutes 

competed with the schedules prepared by experts in days. 

For the trainer scheduling problem, Cowling, Kendall and 

Han [49] developed a GAHH approach called as hyper-

GA. Working as a high-level heuristic, genetic algorithm 

specifies implementation sequence of LLHs into the 

problem. Twelve problem-specific heuristics were used as 

LLHs. In a chromosome, each gene was expressed through 

an integer value representing a LLH and the chromosome 

specifies implementation sequence of low-level heuristics. 

It was shown that proposed approach gave better results 

than the individual results of low-level heuristics and 

genetic algorithm. Bacha et al. [50] proposed a GA-based 

hyperheuristic approach for permutation flow shop 

problems. Authors used genetic algorithms as LLHs and 

also as a high-level heuristic. Each chromosome consisted 

of 10 genes and each gene includes a genetic operator or a 

parameter such as population size, number of generations, 

selection method, crossover method, crossover probability 

etc. The high-level heuristic was also a genetic algorithm 

which aim was to produce a tailored genetic algorithm to 

permutation flow shop scheduling problems. Since the 

effectiveness of GA depends on the selection of genetic 

operators and parameters, high-level GA calibrates low-

level genetic algorithms. Authors indicated that there is 

definitely a correlation between benchmark instances and 

the appropriate GA parameters/operators that solve them 

efficiently. In the literature, GA-based hyperheuristic 

algorithms are also applied to different problems such as 

one-dimensional bin-packing problem [51], design of the 

packaging process of two-dimensional rectangular blocks 
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[52], multitask-oriented manufacturing service 

composition [53] and parameter tuning [54]. 

6. The Proposed GA-Based Hyperheuristic 

Algorithm  

In this study, a genetic algorithm-based hyperheuristic 

approach is proposed for job shop scheduling problems. 

Proposed hyperheuristic approach is expressed through 

two modules: hyperheuristic module and low-level 

heuristics module. With a domain barrier, hyperheuristic 

module works independently from the problem. 

Hyperheuristics don’t need to know problem-specific 

information or the names and methodologies of LLHs. 

LLHs are the heuristics directly working in the solution 

space of the problem. Therefore, LLHs module can be seen 

as a black box that hides problem details from the 

hyperheuristic and sends only objective function value of 

the current schedule to the hyperheuristic module.  

6.1 Low-Level Heuristics Module  

LLHs are the heuristics making a search in the solution 

space of the problem and requiring problem-specific 

information. In this paper, 26 dispatching rules shown in 

Table 1 were used as low-level heuristics. Dispatching 

rules were selected due to their success in scheduling 

problems, ease of implementation and flexibility [47]. The 

adaptation of developed approach to the changes in the 

problem can be easily provided by adding or removing 

new dispatching rules without changing the structure of the 

hyperheuristic.  

The terminology below was used for the formulation of 

dispatching rules [55]: 

𝐶𝑖𝑗 : completion time of operation 𝑗 of job 𝑖 

𝑁𝑖𝑗(𝑡) : number of jobs waiting in the queue containing 

operation 𝑗 of job 𝑖 at time 𝑡 

𝑝𝑖𝑗  : processing time of operation 𝑗 of job 𝑖 

𝑞 : index of unassigned operations (𝑞 = 𝑗, … , 𝑚𝑖) 

𝑋𝑖𝑗 : random number between 0 and 1 assigned to 

operation 𝑗 of job 𝑖 

𝑌𝑖𝑗(𝑡) : total work of jobs waiting in the queue 

containing operation 𝑗 of job 𝑖 at time 𝑡 

𝑍𝑖(𝑡) : priority value of job 𝑖 at time 𝑡. Smallest values 

have greatest priority. 

In traditional scheduling algorithm one dispatching rule 

is selected initially and assignments of all operations are 

performed according to this rule. In the proposed method, 

at each decision (assignment) point, the same or a different 

dispatching rule specified by the hyperheuristic is applied. 

Our developed scheduling algorithm is as follows:  

1st step: Select the first unassigned operation according to 

job routing of each job and specify their machines. The 

precedence constraints of operations are satisfied in this 

step.  

2nd step: Select the machine that becomes idle earliest 

among the machines.  

3rd step: Assign the operation to selected machine 

according to the dispatching rule in 𝑘𝑡ℎ  gene of the 

chromosome specified by the hyperheuristic (𝑘 = 1 in the 

first decision point).  

4th step: Update schedule matrix. Update 𝑘 =  𝑘 +  1. 

5th step: If all the operations are assigned, go to 6th step. 

Otherwise, go to 1st step.  

6th step: Calculate objective function value of the schedule 

and send it to the hyperheuristic module. 

6.2 Hyperheuristic Module 

Hyperheuristic module is the part where the strategy of 

selecting the most appropriate heuristic to be called from 

LLH set is built in order to make the assignment at decision 

points of the problem. Steps of developed GA-based 

hyperheuristic module are as follows: 

1st step: Create a population consisting of candidate 

solutions (each of them is called as a chromosome).  

2nd step: Sent the population to LLH module.  

3rd step: Select the chromosomes giving better results in 

accordance with objective function values returning from 

LLH module for the next population.  

4th step: Create a new population from selected 

chromosomes with crossover and mutation operators.  

5th step: Send the new population to LLH module again 

and take objective function values from LLH module.  

6th step: If termination condition is not satisfied, go to the 

3rd step. Otherwise, go to the 7th step.  

7th step: Accept the chromosome giving the best objective 

function value so far as optimal result. 

One of the factors specifying the quality of the solution 

is the method of encoding to chromosome. Cheng, Gen, & 

Tsujimura [56] stated that there were two main coding 
approaches of chromosome representation for job shop 

scheduling problems: direct encoding approach and 

indirect encoding approach. While in direct encoding 

approach, the schedule that is the direct solution of the 

problem is encoded onto the chromosome, in indirect 

encoding approach, for example in dispatching rule-based 

chromosome representation, implementation sequence of 

dispatching rules into the problem are encoded to the 

chromosome. In this paper, real valued dispatching rule-

based chromosome representation is used. In dispatching 

rule-based representation, dispatching rules are matched 

with the numbers starting from 1 to the number of 

dispatching rules and candidate solution is created as a 

sequence of these numbers of size 𝑚 × 𝑛, where 𝑚 is the 

number of machines and 𝑛 is the number of jobs

020 



 

 

 

Table 1. Low-level heuristics 

DR Description 

Selects the job which has… 

𝒁𝒊(𝒕) 

RANDOM the smallest value of random priority 𝑋𝑖𝑗  

FIFO arrived at machine queue first  𝐶𝑖,𝑗−1  

LIFO arrived at machine queue last −𝐶𝑖,𝑗−1  

SPT the shortest processing time (Also used as tie-breaking rule) 𝑝𝑖𝑗  

LPT  the longest processing time −𝑝𝑖𝑗  

STPT the shortest total processing time  ∑ 𝑝𝑖𝑗
𝑚𝑖
𝑗=1   

LTPT the longest total processing time − ∑ 𝑝𝑖𝑗
𝑚𝑖
𝑗=1   

LTWR the least total work remaining ∑ 𝑝𝑖𝑞
𝑚𝑖
𝑞=𝑗   

MTWR the most total work remaining − ∑ 𝑝𝑖𝑞
𝑚𝑖
𝑞=𝑗   

SDT the smallest ratio of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ÷ 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) 𝑝𝑖𝑗/ ∑ 𝑝𝑖𝑗
𝑚𝑖
𝑗=1   

LDT the largest ratio of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ÷ 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) − (𝑝𝑖𝑗/ ∑ 𝑝𝑖𝑗)
𝑚𝑖
𝑗=1   

SDR the smallest ratio of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ÷

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) 

𝑝𝑖𝑗/ ∑ 𝑝𝑖𝑞
𝑚𝑖
𝑞=𝑗   

LDR the largest ratio of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ÷

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) 

− (𝑝𝑖𝑗/ ∑ 𝑝𝑖𝑞
𝑚𝑖
𝑞=𝑗 )  

SMT the smallest value of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) 𝑝𝑖𝑗 × ∑ 𝑝𝑖𝑗
𝑚𝑖
𝑗=1   

LMT the largest value of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) −(𝑝𝑖𝑗 × ∑ 𝑝𝑖𝑗)
𝑚𝑖
𝑗=1   

SMR the smallest value of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ×

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) 

𝑝𝑖𝑗 × ∑ 𝑝𝑖𝑞
𝑚𝑖
𝑞=𝑗   

LMR the largest value of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ×

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) 

−(𝑝𝑖𝑗 ×

∑ 𝑝𝑖𝑞)
𝑚𝑖
𝑞=𝑗   

FRO the fewest number of remaining operations 𝑚𝑖 − 𝑗 + 1  

LRO the largest number of remaining operations −(𝑚𝑖 − 𝑗 + 1)  

AVPRO_1 the shortest average processing time [59]. ∑ 𝑝𝑖𝑗/𝑚𝑖
𝑚𝑖
𝑗=1   

AVPRO_2 the longest average processing time [59] −(∑
𝑝𝑖𝑗

𝑚𝑖

𝑚𝑖
𝑗=1 )  

SIO shortest imminent operation [40]. 𝑝𝑖,𝑗+1  

WINQ the least total work in the queue of its next operation 𝑌𝑖,𝑗+1(𝑡)  

NINQ the least number of jobs in the queue of its next operation 𝑁𝑖,𝑗+1(𝑡)  

PT+WINQ the smallest value of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 +

total work in the queue of its next operation)[59]. 

𝑝𝑖𝑗 + 𝑌𝑖,𝑗+1(𝑡)  

2PT+WINQ+NPT the smallest value of (2 × 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 +

total work in the queue of its next operation +

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑛𝑒𝑥𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛)[60]. 

2 × 𝑝𝑖𝑗 +

𝑌𝑖,𝑗+1(𝑡) + 𝑝𝑖,𝑗+1  

In real valued representation, dispatching rules used as 

LLHs are represented by the number intervals between 0 

and 1 instead of integers. A candidate solution consists of 

𝑚 × 𝑛 unit of value, which is between 0 and 1. A low-level 

heuristic can be repeated more than once in a candidate 

solution. 

An illustration of chromosome representation for a 

problem of size (2 × 4) is shown in Figure 1. Four low-

level heuristics ( ℎ1, ℎ2, ℎ3, ℎ4)  were used and their 

intervals  were  defined  by  a  minimum  and  a  maximum  

value making selection probability of all low-level 

heuristics equal (25%). Each gene in the chromosome 

carries a random value. Each LLH falls into its specific 

discrete probability range and values in the chromosome 

are used to transform the chromosome representation to 

the LLH representation by using these discrete probability 

ranges. When the chromosome is decoded, the sequence of 

LLHs called by hyperheuristic respectively at each 

decision point is also given in Figure 1. It is seen that the 

solution obtained from hyperheuristic shows the way to be 

followed in order to reach optimal solution instead of 

direct solution of the scheduling problem.In this study, 26 

low-level heuristics were used and their intervals were 

defined in order to make selection probability of all low-

level heuristics equal. Until all operations were assigned, 

low-level heuristics encoded in the chromosome are called 

by hyperheuristic respectively at each decision point and 

an operation is assigned to the selected machine. Initial 

population is generated randomly. Uniform distribution is 

used as probability distribution function for creating the 

first population in real valued encoding.  
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Figure 1. Illustration of chromosome representation 

Table 2. Average makespan of selected problems on benchmarked algorithms 

Benchmark 

Instances 
Optimum 

Metaheuristics 
Hyper-

heuristic 
Dispatching Rules 

GA SA PSO GAHH SPT MTWR SIO FIFO PT+WINQ 

FT06 55 56.96 56.20 57.96 55 84 58 69 74 74 

LA01 666 672.43 666.76 677.56 666 817 828 867 912 912 

LA06 926 926.13 926.00 926.00 926 1205 971 1199 1082 1082 

LA11 1222 1226.26 1222 1225.76 1222 1537 1268 1453 1299 1299 

LA19 842 939.63 899.06 942.50 876.93 1011 1000 1160 919 1028.7 

ORB01 1059 1239.06 1173.26 1250.43 1085.46 1266 1374 1466 1327 1327 

ABZ7 656 910.80 798.36 864.90 732.7 818 788 969 859 859 

SWV11 2983 4920.83 4267.46 4745.23 3584.06 3712 4382 4232 4224 3923 

In order to create a new population, some chromosomes 

coming from previous population should be selected to the 

new population as parent chromosomes. There are 

different methods in order to decide which chromosomes 

to choose. These methods are divided into two classes as 

fitness proportionate selection and ordinal selection [57]. 

In this study, roulette wheel selection, known as the most 

common proportional selection method, is used. In roulette 

wheel selection, roulette wheel slots are assigned to each 

individual proportional to its fitness value. Good solutions 

have more slots and therefore more probability of being 

selected. Roulette wheel selection steps are as follows 

[57]: 

1st step: Calculate the fitness value (𝑓𝑖) of each individual 

in the population. 

2nd step: Calculate the probability of being selected (slot 

size) for each individual in the population: 𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑛
𝑗=1

. 

3rd step: Calculate the cumulative probability for each 

individual: 𝑞𝑖 = ∑ 𝑝𝑗
𝑛
𝑗=1 . 

4th step: Generate a uniform random number, 𝑟 ∈ (0,1]. 

5th step: If 𝑟 < 𝑞1  then select first chromosome (𝑥1) , 

otherwise select chromosome 𝑥𝑖 such that 𝑞𝑖−1 < 𝑟 ≤ 𝑞𝑖. 

6th step: Repeat 4th and 5th steps n times.     
  

7. Computational Analysis  

     The performance of proposed GA-based hyperheuristic 

approach was evaluated by comparing with some 

metaheuristics and dispatching rules on a set of benchmark 

instances obtained from OR-Library [58]: FT06 (6×6), 

LA01 (10×5), LA06 (15×5), LA11 (20×5), LA19 (10×10), 

ORB1 (10×10), ABZ7 (20×15), SWV11 (50×10). The 

methods that were compared are GA, SA, PSO and SPT, 

MTWR, SIO, FIFO, PT + WINQ dispatching rules that 

were found to be successful in the literature for 

minimization of makespan in job shop problems. 

     In this paper, parallel GA and parallel GA-based 

hyperheuristic  were  used. Though genetic algorithms are 

more resistant against premature convergence to local 

optimum according to other local search methods, they 

aren’t completely immune. One of proposed methods for 

reducing premature convergence of GA is parallelization 

of the GA into disjoint subpopulations. Parallel GA helps 

reducing computational time due to the use of parallel 

processors [25]. The code of proposed GAHH method was 

written in MATLAB. Population size, crossover rate and 

mutation rate parameter values for GA and GA-based 

hyperheuristic were used as 100, 0.7 and 0.1, respectively. 

The proposed GA-based hyperheuristic approach, GA, SA 

and PSO were run 30 times with 1000 iterations in each 

run. Average results are given in Table 2. The proposed 

GAHH approach gave optimal results for FT06, LA01, 

LA06 and LA11 instances and gave better results than the 

benchmark methods on the other instances. The best 

results for each run are given in Table 3. Also, boxplots of 

the 30 runs on each dataset can be seen in Figure 2. As an 

example, Gantt chart representing the optimal schedule to 

the FT06 instance is shown in Figure 3.  
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Table 3. Best values achieved among all the runs for each benchmarked algorithm 

Benchmark 

Instances 
Optimum 

Metaheuristics 
Hyper-

heuristic 
Dispatching Rules 

GA SA PSO GAHH SPT MTWR SIO FIFO PT+WINQ 

FT06 55 55 55 55 55 84 58 69 74 74 

LA01 666 666 666 666 666 817 828 867 912 912 

LA06 926 926 926 926 926 1205 971 1199 1082 1082 

LA11 1222 1222 1222 1222 1222 1537 1268 1453 1299 1299 

LA19 842 895 875 889 867 1011 1000 1160 919 1028.7 

ORB01 1059 1171 1100 1183 1078 1266 1374 1466 1327 1327 

ABZ7 656 857 767 820 723 818 788 969 859 859 

SWV11 2983 4570 4128 4430 3513 3712 4382 4232 4224 3923 

 
Figure 2. Boxplots of the 30 runs on each dataset 

      

When average running results are considered, the 

proposed GA-based hyperheuristic approach gives the 

optimal results in 4 instances and produces better results 

than GA, SA, PSO, SPT, MTWR, SIO, FIFO, PT+WINQ 

in LA19 by 6.67%, 2.46%, 6.96%, 13.26%, 12.31%, 24.4, 

4.58%, 14.75% respectively; in ORB01 by 12.4%, 7.48%, 

13.19%, 14.26%, 21%, 25.96%, 18.2%, 18.2% 

respectively; in ABZ07 by 19.55%, 8.23%, 15.29%, 

10.43%, 7.02%, 24.39%, 14.7%, 14.7% respectively; in 

SWV11 by 27.17%, 16.01%, 24.47%, 3.45%, 18.21%, 

15.31%, 15.15%, 8.64% respectively. 

     When best running results are considered, the proposed 

GA-based hyperheuristic approach produces better results 

than GA, SA, PSO, SPT, MTWR, SIO, FIFO, PT+WINQ 

in LA19 by 3.13%, 0.91%, 2.48%, 14.24%, 13.3%, 25.26, 

5.66%, 15.72% respectively; in ORB01 by 7.94%, 2%, 

8.88%, 14.85%, 21.54%, 26.47%, 18.76%, 18.76% 

respectively; in ABZ07 by 15.64%, 5.74%, 11.83%, 

11.61%, 8.25%, 25.39%, 15.83%, 15.83% respectively; in 

SWV11 by 23.13%, 14.9%, 20.7%, 5.36%, 19.83%, 

16.99%, 16.83%, 10.45% respectively.  

 

8. Conclusions 

     In today’s highly competitive production environment, 

developing effective production scheduling methods has 

become  a  requirement  for  surviving  in  the  market  and 

maintaining competition. Increasing profitability is 

possible by increasing productivity in production and 

decreasing the costs by using effective scheduling 

methods. For this aim, a genetic algorithm-based 

hyperheuristic approach for job shop scheduling problem 

is proposed in this paper. The hyperheuristic approach is 

based on selection of the most appropriate heuristic from 

simple heuristics set which are called as low-level 

heuristics embedded under the hyperheuristic in order to 

make assignments at decision points of the problem. Since 

hyperheuristic approach doesn’t need any problem-

specific information except low-level heuristics.  

In this paper, 26 dispatching rules were used as low-

level heuristics. Dispatching rules were chosen due to their 

success, ease of implementation and flexibility in 

scheduling problems. The performance of proposed GA-

based hyperheuristic approach was evaluated by 

comparing with GA, SA, PSO and SPT, MTWR, SIO, 

FIFO, PT + WINQ dispatching rules that were found to be 

successful in the literature for minimization of makespan 

in job shop scheduling problems. Eight benchmark 

instances in different sizes from different data sets were 

obtained from OR-Library.  Computational experiments 

showed that the proposed GAHH approach has reached to 

the optimal solution in 4 out of 8 benchmark instances and 

was superior than the GA, SA, PSO and dispatching rules 

on the other instances. Computational results showed that 

proposed GAHH approach is an effective and promising 

method for JSSPs. We can further improve GAHH by 

combining a learning mechanism such as reinforcement 

learning. Reinforcement learning can avoid premature 

convergence and escape local optimum for 4 benchmark 

instances. Furthermore, we can test our proposed GAHH 

approach on different sets of benchmark instances and 

compare their results to the best methods in the state of art.
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Figure 2. Gantt chart of optimal schedule for FT06
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