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Abstract. The aim of the article is the presentation of certain extensions of

the famous Fuglede-Putnam Theorem on the class of p-w-hyponormal opera-
tors, which generalize some results proved by authors in [10].

1. Introduction and Preliminaries

Throughout this work, B(H) denotes the Banach algebra of bounded linear
operators on a complex separable Hilbert space H. By ker(T ) and ran(T ) respec-
tively, we mean the null space and the range of an operator T ∈ B(H). Given
T, S ∈ B(H), the generalized derivation δT,S induced by T and S is defined for all
X ∈ B(H) by δT,S(X) = TX −XS. Recall that T is said to be normal if T com-
mutes with its adjoint T ?. The well-known Fuglede-Putnam Theorem states that
ker(δT,S) ⊂ ker(δT?,S?) whenever T and S are normal operators, see [5, 6, 7] and [15]
where several generalizations of this result are given for operators T and S belonging
to some classes of non normal operators. For 0 < p ≤ 1, an operator T ∈ B(H) is

said to be p-hyponormal if |T |2p−|T ?|2p ≥ 0, where |T | = (T ?T )
1
2 is the module of

T. A 1-hyponormal operator is hyponormal and 1
2 -hyponormal is semi-hyponormal.

Reader can find many interesting spectral properties of this class in [1, 2, 12, 15]. In

[1], it is defined the Aluthge transform of an operator T = U |T | by T̃ = |T |
1
2 U |T |

1
2 ,

and in [2], it is shown that if T is p-hyponormal, then T̃ is (p+ 1
2 )-hyponormal for

0 < p ≤ 1
2 and hyponormal for 1

2 ≤ p ≤ 1. Also, T is said to be log-hyponormal
if T is invertible and log(T ?T ) ≥ log(TT ?). The operator T ∈ B(H) is said to be
dominant if ran(T − λ) ⊂ ran(T − λ)? for each λ in the spectrum σ(T ) of T. Also,
if there exists M > 0 such that (T − λ)(T − λ)? ≤ M(T − λ)?(T − λ) for each
λ ∈ σ(T ), then T is said to be M -hyponormal. Clearly,

Hyponormal ⊂M -hyponormal ⊂ dominant
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In [15], it is presented an example of an M -hyponormal operator that is not hy-

ponormal. An operator T is said to be w-hyponormal if
∣∣∣T̃ ∣∣∣ ≥ |T | ≥ ∣∣∣T̃ ?∣∣∣ [2, 4, 8].

Useful results of the class of w-hyponormal operators are presented in [2, 8, 9], and
it was proved that it contains the class of p-hyponormal operators. The following
inclusions hold

Hyponormal ⊂ p-hyponormal ⊂ w-hyponormal

The operator T is said to be p-w-hyponormal for certain 0 < p ≤ 1, if∣∣∣T̃ ∣∣∣p ≥ |T |p ≥ ∣∣∣T̃ ?∣∣∣p
[10, 16]. A 1-w-hyponormal is w-hyponormal, and w-hyponormal operators are
evidently p-w-hyponormal. In this article, we’ll extend the Fuglede-Putnam the-
orem for p-w-hyponormal with p-hyponormal operators or with log-hyponormal
operators. Other spectral related results are also added.

2. Known Results

The following known results will be needed for the rest of the paper.

Lemma 2.1. [13] Let T be in B(H) and S be in B(K). The following assertions
are equivalent

1. The pair (T, S) satisfies the Fuglede-Putnam theorem.

2. If TX = XS for some X in B(K,H), then ran(X) reduces T , (ker(X))⊥

reduces S, and restrictions T
∣∣∣ran(X) , S

∣∣(ker(X))⊥ are unitarily equiva-

lent normal operators.

Lemma 2.2. [2] Let T ∈ B(H) be a w-hyponormal operator and let M ⊂ H be an
invariant subspace under T . Then T |M is w-hyponormal.

Lemma 2.3. [2] Let T ∈ B(H) be a w-hyponormal operator. Then T̃ is semi-
hyponormal.

Lemma 2.4. [1] If T is a p-hyponormal operator, then T̃ is (p + 1
2 )-hyponormal

for 0 < p ≤ 1
2 and hyponormal for 1

2 ≤ p ≤ 1.

Lemma 2.5. [16] Let T ∈ B(H) be p-w-hyponormal, and let M ⊂ H be a T -
invariant subspace. Then T |M is p-w-hyponormal.

Lemma 2.6. [16] Let T ∈ B(H) be a p-w-hyponormal operator. Then T̃ is p
2 -

hyponormal.

3. Main results

The familiar Fuglede-Putnam Theorem asserts that for normal operators T and S
on H, equation δT,S(X) = 0 implies δT?,S?(X) = 0 for all X in B(H). Extensions
of this result for certain classes of non normal operators are presented in many
papers, see [5, 6] and [7]. Authors in [11] showed that this result remains true for
an M -hyponormal operator T and a dominant operator S.

The following result gives an extension of the Fuglede-Putnam property for M -
hyponormal and p-hyponormal operators.
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Proposition 1. For anM -hyponormal operator T and for a p-hyponormal operator
S? in B(H), ker(δT,S) ⊂ ker(δT?,S?).

Proof. Due to [7] and since an M -hyponormal operator is dominant, the pair (T, S)
satisfies the Fuglede-Putnam property. �

Theorem 3.1. Let T be M -hyponormal and let S? be w-hyponormal operators in
B(H). Then, δT,S(X) = 0 entails δT?,S?(X) = 0 for all X in B(H). Moreover,

ran(X) reduces T, (ker(X))⊥reduces S and restrictions T
∣∣∣ran(X) , S

∣∣(ker(X))⊥

are unitarily equivalent normal operators.

Proof. Subspaces ran(X) and (ker(X))⊥ are invariant for T and S respectively
since δT,S(X) = 0. Then, we can write

T =

(
T1 T2
0 T3

)
, S =

(
S1 0
S2 S3

)
and X =

(
X1 0
0 0

)
: H2 −→ H1

under the decompositions

H = H1 = ran(X)⊕ ran(X)⊥

H = H2 = (kerX)⊥ ⊕ kerX

From δT,S(X) = 0 we get

(3.1) T1X1 = X1S1

where T1 isM -hyponormal, and S1 is w-hyponormal by Lemma 2.2. Let S1 = U |S1|
be the polar decomposition of T1. Since U |S1| = |S∗1 |U , equality (3.1) can be writen

(3.2) T1X1 = X1 |S?1 |U

Multiplying the two sides of (3.2) at right by |S?1 |
1
2 , we obtain

T1(X1 |S?1 |
1
2 ) = X1 |S?1 |U |S?1 |

1
2 = (X1 |S?1 |

1
2 )S̃?1

The Aluthge transform S̃?1 of S?1 is semi-hyponormal by Lemma 2.3. Hence, the

pair (T1, S̃?1 ) satisfies the Fuglede-Putnam property by Proposition 1. Thus, restric-

tions T1

∣∣∣∣∣ran(X1|S?
1 |

1
2 )

and S̃?1

∣∣∣∣
(ker((X1|S?

1 |
1
2 )⊥

are equivalent normal operators by

Lemma 2.1. Since X1 is quasiaffinity, i.e., one-to-one with dense range, and |S∗1 |
1
2

is injective,

ran(X1 |S?1 |
1
2 ) = ranX1 = ranX

and

ker(X1 |S?1 |
1
2 ) = kerX1 = kerX

Thus, S̃?1 is normal and then S1 is normal by [15]. The operator S? isM -hyponormal
and its restriction S?1 on (kerX)⊥ is normal. Consequently, kerX reduces S?. Hence
S2 = 0.

Similarly, T is M hyponormal, and its restriction T1 on ranX is normal. Then,
ranX reduces T . Thus T2 = 0. Since the pair (T1, S1) satisfies the Fuglede-Putnam
theorem, T ?1X1 = X1S

?
1 . Finally T ?X = XS?. �
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Theorem 3.2. Let T be a p-w-hyponormal operator in B(H). If |T | is invertible,
then for all λ /∈ σ(T )

i.

∥∥∥∥∥
∣∣∣∣˜̃T ∣∣∣∣ 12 ∣∣∣T̃ ∣∣∣ 12 |T | 12 (T − λ)−1 |T |−

1
2

∣∣∣T̃ ∣∣∣− 1
2

∣∣∣∣˜̃T ∣∣∣∣− 1
2

∥∥∥∥∥ ≤ 1
dist(λ,σ(T ))

ii.
∥∥T−1∥∥ ≤ 1

min(|λ|,λ∈σ(T ))

Proof. i. T̃ is p
2 -hyponormal by Lemma 2.6, and 0 < p

2 ≤
1
2 . Since σ(T ) = σ(T̃ ) by

[3], ∥∥∥∥∥
∣∣∣∣˜̃T ∣∣∣∣ 12 ∣∣∣T̃ ∣∣∣ 12 (T̃ − λ)−1

∣∣∣T̃ ∣∣∣− 1
2

∣∣∣∣˜̃T ∣∣∣∣− 1
2

∥∥∥∥∥ ≤ 1

dist(λ, σ(T ))

for λ /∈ σ(T ) by [1]. The proof derives then from the fact that

(T̃ − λ)−1 = |T |
1
2 (T − λ)−1 |T |−

1
2

ii. Since
∥∥∥T̃∥∥∥ ≤ ‖T‖ for an arbitary operator T in B(H),

∥∥T−1∥∥ ≤ ∥∥∥T̃−1∥∥∥ =
1

min(|λ| , λ ∈ σ(T̃ ))
=

1

min(|λ| , λ ∈ σ(T ))

�

As a consequence of the previous result, and since the Aluthge transform of
a log-hyponormal operator is semi-hyponormal [14], we can then state the fol-
lowing generalization of the Fuglede-Putnam’s Theorem for p-w-hyponormal with
log-hyponormal operators as follows

Theorem 3.3. The Fuglede-Putnam Theorem holds for a p-w-hyponormal operator
T ∈ B(H) with kerT ⊂ kerT ?, and a p-hyponormal operator S? ∈ B(H).

Proof. Let

T =

(
T1 0
0 0

)
, S =

(
S1 0
0 0

)
and X =

(
X1 X2

X3 X4

)
according to the decompositions

H = H1 = (kerT )
⊥ ⊕ (kerT )

H = H2 = (kerS?)
⊥ ⊕ (kerS?)

From equation TX = XS, we get

(3.3) T1X1 = X1S1

and T1X2 = X3S1 = 0. Since T1 and S1 are one-to-one, X2 = X3 = 0. T1 is a
one-to-one p-w-hyponormal operator by Lemma 2.3, and S?1 is p-hyponormal. Let
T1 = U |T1| be the polar decomposition of T1. Equation (3.3) can be written

(3.4) U |T1|X1 = X1S1

Multiplying the two sides of (3.4) on the left by |T1|
1
2 we get

|T1|
1
2 U |T1|

1
2 |T1|

1
2 X1 = |T1|

1
2 X1S1
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So T̃1(|T1|
1
2 X1) = (|T1|

1
2 X1)S1. The Aluthge transform T̃1 of T1 is p

2 -hyponormal

by Lemma 2.6, and S?1 is p-hyponormal. By [5], the pair (T̃1, S1) satisfies the
Fuglede-Putnam Theorem. Thus,

T̃1
∗
(|T1|

1
2 X1) = (|T1|

1
2 X1)S?1

Consequently, restrictions T̃1

∣∣∣∣ran(|T1|
1
2X1)

and S1

∣∣∣
(ker(|T1|

1
2X1)⊥

are unitarily equiv-

alent normal operators by Lemma 2.1. Since the operator |T1|
1
2 and X1 are one-to-

one, the operator |T1|
1
2 X1 so is. Thus

(ker(|T1|
1
2 X1))⊥ = {0}⊥ = (kerX1)⊥ = (kerX)⊥

And

ran(
∣∣∣T̃1∣∣∣ 12 X1) = (ker |T1|

1
2 X1)⊥ = {0}⊥ = ran(X1) = ran(X)

Thus, T̃1 is a normal operator. The operator T1 so is by [15]. Therefore, ran(X)
reduces T1 by Lemma 2.1, and (kerX1)⊥ reduces S?1 by [17]. Since T1 is normal,
and S?1 is p-hyponormal, the Fuglede-Putnam property holds for the pair (T1, S1).
Thus, T ?1X1 = X1S

?
1 and then, T ?X = XS?. �

Corollary 3.4. The pair (T, S) satisfies the Fuglede-Putnam Theorem if T is a
p-hyponormal operator and S? is a p-w-hyponormal with kerS ⊂ kerS?.

Proof. TX = XS for some X in B(H). Put A = S?, B = T ? and C = X?. Then,
B?C? = C?A?. Hence, AC = CB, where A is an injective p-w-hyponormal or a
p-w-hyponormal with kerA ⊂ kerA?, and B? is p-hyponormal. By the previous
result, A?C = CB∗. Thus, SX? = X?T. Consequently, T ?X = XS?. �

Theorem 3.5. δ(T,S) ⊂ δ(T?,S?) for a p-w-hyponormal operator T with kerT ⊂
kerT ?, and a log-hyponormal operator S?.

We need the following property of log-hyponormal operators for the proof.

Lemma 3.6. [15] Let T ∈ B(H) be a log-hyponormal operator and let M ⊂ H be
a T -invariant closed subspace. Then, the restriction T |M is log-hyponormal.

Proof. ( of Theorem 3.5) Let’s consider the decompositions

H = H1 = (kerT )
⊥ ⊕ (kerT )

H = H2 = (kerS?)
⊥ ⊕ (kerS?)

Then

T =

(
T1 0
0 0

)
, S =

(
S1 0
0 0

)
and X =

(
X1 X2

X3 X4

)
From equation δT,S(X) = 0, we get

(3.5) δT1,S1
(X1) = 0
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and T1X2 = X3S1 = 0. Since T1 and S1 are one-to-one, X2 = X3 = 0. T1 is a
one-to-one p-w-hyponormal operator by Lemma 2.6, and S?1 is an injective log-
hyponormal by Lemma 3.6. Let S1 = U |S1| be the polar decomposition of S1.
Since S1 = |S?1 |U, equation (3.5) can be written

(3.6) T1X1 = X1 |S?1 |U

Multiplying the two sides of (3.6) at right by |S?1 |
1
2 we get

T1(X1 |S?1 |
1
2 ) = (X1 |S?1 |

1
2 ) |S?1 |

1
2 U |S?1 |

1
2 = (X1 |S?1 |

1
2 )S̃?1

T1 is p-w-hyponormal, and the Aluthge transform S̃?1 of S?1 is 1
2 -hyponormal by [14].

By Theorem 3.3, the Fuglede-Putnam’s Theorem holds for the pair (T1, S̃?1 ). Hence,

T ?1 (X1 |S?1 |
1
2 ) = (X1 |S?1 |

1
2 )S̃?1

?
. Furthermore, and by Lemma 2.1, T1

∣∣∣∣∣ran(X1|S?
1 |

1
2 )

and S̃?1

∣∣∣∣(ker(X1|S?
1 |

1
2 )⊥

are unitarily equivalent normal operators. Since the operator

|S?1 |
1
2 and X1 are one-to-one, the operator X1 |S?1 |

1
2 so is. The rest of proof is similar

to Theorem 3.1. �

Corollary 3.7. Let T ∈ B(H) be a pure log-hyponormal operator, and let S∗ ∈
B(H) be a p-w-hyponormal with kerS ⊂ kerS∗. Then, equation TX = XS implies
X = 0.

Proof. By Theorem 3.3, equations TX = XS and T ?X = XS? hold. Hence,

restriction T
∣∣∣(ran(X) is a normal operator by Lemma 2.1, which contradicts the

hypotheses that T is pure. Thus, X = 0. �

Corollary 3.8. An invertible p-w-hyponormal operator T ∈ B(H) is normal if and
only if it is log-hyponormal.

Proof. Put T = X = S in the previous Theorem. �

In [9, Lemma 7], it is shown that if T is w-hyponormal with kerT ⊂ kerT ? and
S is normal, and if X ∈ B(H) has dense range such that TX = XS, then T is
normal. We give now, an extension of this result for a p-w-hyponormal operator as
follows

Lemma 3.9. Let T ∈ B(H) be a p-w-hyponormal operator with kerT ⊂ kerT ?,
and let S be normal. If TX = XS for some X ∈ B(H) with dense range, then T
is normal.

Proof. The pair (T, S) verifies the Fuglede-Putnam property by Theorem 3.2. Then,

by Lemma 2.1, the restriction T
∣∣∣(ran(X) is a normal operator. This achieves the

proof since ran(X) = H. �

Corollary 3.10. Let T, S? ∈ B(H) be p-w-hyponormal operators with kerT ⊂
kerT ?, and kerS ⊂ kerS?. If TX = XS and SY = Y T for certain X,Y ∈ B(H)
with dense ranges, then T and S are normal.
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4. Conclusion

In this paper, are shown some versions of Fuglede-Putnam Theorem on classes of
p-w-hyponormal operators with log-hyponormal and with p-hyponormal opertaors.
Some spectral results in [16] on w-hyponormal operators are also extended to p-w-
hyponormal operators.
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