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Abstract

We introduce the concept of exponentially s-convexity in the second sense on a time scale interval. We prove
among other things that if f : [a,b] — R is an exponentially s-convex function, then

b

. ! - / F(t)At
f(a)

~ egla, o) (b — a)?*

f(0)
eg(b, xo)(b — a)?*
where (3 is a positively regressive function. By considering special cases of our time scale, one can derive

loads of interesting new inequalities. The results obtained herein are novel to best of our knowledge and they
complement existing results in the literature.
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1. Time Scale Essentials

A nonempty subset of R is called a time scale if it is closed with respect to the standard topology
inherited from the reals. The theory of time scale is a relatively new branch of mathematics that has gained
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a lot of interest from mathematicians working in various fields of the mathematical sciences. Initiated in
1988, the German mathematician Stefan Hilger [§] proposed a time scale as a unifier between the discrete
and continuous calculus. A time scale is generically represented by T. Since a time scale is not necessarily
connected, we introduce the following operators on T: forward jump operator o and backward jump operator

p.
The above operators are defined as follows:

c: T—T
t—o(t):=inf{x eT:z >t}
and
p: T—>T
t—p(t) =sup{z eT:z <t}

We put inf() = supT and sup() = inf T. In view of the above definition, we collate the following list of
vocabularies from [§]:

Definition 1. 1. If

0 =t and t<supT, then tis a right-dense point
ot
> t, then t is a right-scattered point.

0 =t and ¢t >infT, then tis a left-dense point
p(t
<t then t is a left-scattered point.

3. The graininess functions p and v are defined as follows: u(t) = o(t) —t and v(t) =t — p(t), t € T.

We now give a quick introduction of the calculus on time scales.

Definition 2. Let f: T — R and fix t € T*. Then we define f2(¢) to be the number (provided it exists)
with the property that for any given & > 0, there exists a neighborhood W of ¢ such that

|f(o(t) — f(s) — A [o(t) — s]| <elo(t)—=z| forall zeW.

We call f2(t) the delta derivative of f at t. We say that f is delta differentiable in T* if f(t) exists for all
t € T®. The function f2 : T* — R is said to be the delta derivative of f in T*.

The time scale version of the product rule is embedded in the succeeding theorem:

Theorem 1.1 ([3], Product rule). If f,g: T — R are differentiable at ¢ € T", then the product fg: T — R
is differentiable at ¢ and

(f9)2(t) = f2(0)g(t) + f(o(t)g™ (1)

Definition 3. The function f : T — R is said to be rd-continuous on T provided it is continuous at all
points t € T with o(t) = ¢ and its left-sided limits exist at all points ¢t € T with p(¢) = ¢t. The set of functions
that are rd-continuous from T into R is denoted by C.q = Ciq(T, R).

By [3], every rd-continuous function has an antiderivative.
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Theorem 1.2 ([3]). If f,g € Ciq, a,b,c € T, and «, 3 € R, then
b b b
[ lorw s saw]at=a [ swaees [ owar
b a
L.ﬂﬂAﬁ:—A(ﬂﬂAn
b c b
/ F()AL = / f(t)At+/ FH)AL
b b
[ 109> @t = (9)6) - (@) - [ 1> wglo0)a

fmwkl%wm

Definition 4 ([3]). For all ,t € T, we define the functions hg, g : T2 — R, k € Ny, by

ho(t, x) = go(t,x) =1

and then recursively by

gk+1(t7x) = /
Definition 5 ([3]). A function p: T — R is called regressive if the following relation holds for all ¢ € T*:
L+ p(t)p(t) # 0.

Let R represents the set of all regressive and rd-continuous function and define the set of all positively
regressive functions by

gk (o(7), ) AT, hk+1(t,iv):/ hi (T, s)AT.

Rt :={peR:1+ut)p(t)>0 forall tcT}.

Given a regressive function p, then for all x,¢ € T one defines the exponential function by

MMFw%KMWMM+

where Agy(w) is the cylinder transformation defined by

%Log(l +wgq), ifg>0
w, if q=0,
where Log is the principal logarithmic function. It is known (see [3]) that the function ey (¢, o) is the unique
solution of the IVP:
y= =p(t)y, y(to) = 1.
If we let T =R, then p(t) = c € R and

to
ep(t,to) = / p(r)dr, ey(tto) =) e (t,0) = e (t) = et.
t

Also, for T = Z, we get

t—1
eplt,to) = [T +p(r),  ecltito) = (L+e)7°, ecl(t,0) = (1+¢)f

r=to

for t,ty € Z with t > ty, where ¢ # —1 is a constant and p : Z — R is a sequence satisfying p(t) # —1 for all
teZ.
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Theorem 1.3 ([2], Holder’s inequality). Let a,b € T and f, g : [a,b] — R be rd-continuous. Then

/ | H0g] At < (/ L At); (/ b g<t>|w)‘lﬂ

Wherep>1and%+%:1.

Extending classical integral inequalities to an arbitrary time scale has been an active area of research
in recent years. Many of such extensions are bound in the literature. For example, the classical Ostrowski
inequality, Griiss inequality, Ostrowski—Griiss inequality, Jensen’s inequality, Gronwall’s inequality, Bihari’s
inequality, Opial inequality, Wirtinger’s inequality, Lyapunov’s inequality, etc. For more on time scales
inequalities, the interested reader is invited to see the following articles [2], Il [6] and the references cited
therein. In 2008, Bohner and Matthews [4] established the following time scale version of the Ostrowski
inequality:

Theorem 1.4. Let a,b,xz,t € T, a < b and f : [a,b] — R be differentiable. Then

b
bia/a Flo@) Ax| < - [ha(t, @) + halt, )],

jf<t> -

where

M = sup |f2(t).
a<t<b

It is our purpose in this present article to first introduce the notion of exponentially s-convexity in the
second sense on a time scale interval. For this class of functions, we establish loads of variant inequalities
of the Ostrowski type. To the best of our knowledge, this is the first work in this direction. In the section
following, we start by presenting the definition of our newly introduced concept. Thereafter, the main results
are framed and justified anchored on loads of newly established lemmas.

2. Main Results
Let zg,a,b € T with a < b. The time scale interval [a, b] represents the intersection between [a, b] and T.

Definition 6. Let s € (0,1]. A function f : [a,b] — R is called exponentially s-convex in the second sense if

b—t\° f(a t—a\® f(b
102 (5=2) o+ (5=2) )
—a/) eg(a,xp) b—a) eg(b,xo)
for any ¢ € [a,b] and for some B € R*. If holds in the reverse sense, then we say that f is exponentially
s-concave in the second sense.

Remark 2.1. By taking T = R and z¢ = 0, Definition [ reduces to [10}, Definition 3.1]. See also [7, .

Throughout this paper, without loss of generality, we assume that s € (0,1). We now start with the
following technical lemma.

Lemma 2.2. The following estimates

b b
/(b—t)SAtg(b—a)l_s(hg(a,b))s and /(t—a)SAtg(b—a)l_s(hg(b,a))s

hold.
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Proof. Using Holder’s inequality on time scales, we get:

/ab(b—t)sAt < (/ab(b—t)At) (/jm)
=(b—a)" </ba(t — b)At)s

= (b—a)'"*(ha(a, b))’

/ab(t —a)*At < (/ab(t = G)At>
— (b a) (o, )"

This completes the proof. O

s 1-s

and

Theorem 2.3. Let f : [a,b] — R be an exponentially s-convex function. Then

b f(a) : (0 :
i | S0at s (a0

Proof. Applying the definition for exponentially s-convex function in the second sense and Lemma we

; f(a) S 70) o
[roa < T / R el AR
-

IN

eg(a, :Ug)(b —
Hence,

f(b)
ep(a,20)(b — a)> e5(b,20) (b — )
This completes the proof. O

(ha(a;0))” + (ha(b, a))*.

Theorem 2.4. Let f: [a,b] = R, |f| > 1 on [a,b] and |f|? be an exponentially s-convex function for some
q>1. Then

—a/ st Altgeﬁ(a Lo()(yq a)? (hQ(a’b))s+eﬁ(b L€§?Z|ia)2s(h2(b’a))s'
Proof. Using Lemma [2.2] we arrive at
/f(t)At < /|f )| At
b
< [irwrar
f(a)]? ’ s £ (0)] ’ s
S e e A v e AR
1 S W
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Hence,

b a)lg a
=IRCLE eg(a,’ai()&’_ oy (e b))+ gl 2y (halb @)

This completes the proof. O

Theorem 2.5. Let f : [a,b] — R, |f|? be exponentially s-convez function for some q > 1. Then

1 b
g G
2

< ( f(a)l 1<h2<a,b>>3+W<h2<b,a>>3).
(b—a) \(eg(a,x0))a (eg(b,z0))q

Proof. By the absolute value property and Hoélder’s inequality (with congugate pair (p,q)), one gets:

/ far < / LA

(/ b rmnw);

3 =

<(b-a)

1

1 |f(a)l® e £ (b)) ’ At
< 0= (= gfitaran |, O A G ey |, ¢~ 9')
R (e e R e e (LD
gzé(b—a)i<(b—a)2 WOl e,
(b—a) 7 (eg(a,x0))e
(b—a)ﬂf(bﬂ (hg(b a))Z)
(b—a)7 (eslbae))s
whereupon we get the desired result. This completes the proof. O

Lemma 2.6. The succeeding inequalities hold:

b
/ c(B)b— AL < (b—a)*(ga(b,a) + alb—a)),

b
/ c()(t— a)* At < (b—a)*(ga(b,a) + ab— a)).

Proof. To establish the first inequality, we proceed as follows:

b
= 0= [ -0t +ald -0
= (b — a)ng(b, a) + a(b _ a)1+s

= (b—a)’(g2(b, ) + a(b — a)).
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Similarly,
/b ot)(t —a)’At < (b—a)® /b o(t)At

< (b—a)’(g2(b,a) + a(b— a)).
This completes the proof. O

Let
G(a,b) = (b—a)’(g2(b,a) + a(b—a)).

Then, by Lemma [2.6] we have

b b
/ () (b — 1) At < G(a,b), / o(t)(t — a)* At < G(a, b).

For the next theorem, the following lemma will be needed.

Lemma 2.7. Let f € C([a,b]). Then

/abff(t)fA(t)At: b)—af(a / 0

Proof. Let g(t) =t, t € T. Then g(o(t)) = o(t) and g*(t) = 1, t € T*. Using the product rule on time
scales, we have:

(F9)2() = F2(B)g(o (1) + F()g (1)
— o()FA (1) + F().

Hence, for t € T%,

a(t)f2(1) = (f9)2 () — f(t)

and
b b
[ omrimat= [ [t95 0 - 1] A
b b
- [Gor0 - [ s
a a b
— (f90) - (fo)(@) ~ [ 0t
b
= f(b)g(b) — f(a)g(a) — [ f(t)AL
b
=bf(b) —af(a) = [ f(O)AL
That completes the proof. O

Theorem 2.8. Let f € CL([a,b]) and |f2|7 be an ezponentially s-convex function for some q > 1. Then

bf(b) —af(a
‘ b—a b—a/f At‘

2io(b) ( 2O (0, 1)) +W(h2<b,a>>3).
(b—a) \(eg(a,xq))e (eg(b,x0))e
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Proof. Using Lemmas [2.2] ﬂ and [2.7] ., and the exponentially s-convexity of |f2]?, we obtain:

bf(b) —af(a
b—a b—a/f At‘

< - [awirmia
S ARG
o L/ .
< P00 ([t
o(b) @l
= (b—a)s ((b—a)seﬂ(mfo)/a (b-tyat
Ao N
e el AU At)
ob) (2@, ey
- <b_a>;<eﬁ<a,xo>(b ) ale )
ROl o A%
65(() xO) (b_a)l 2 (hQ(b7 CL)) >
_ o) (PRI, RO
) <b_a>is(eg<a,xo>(h2( D+ )
%U Aa £ A s
2 (b25< | f2(a)] 1(h2(a,b))q+f(b)’l(hz(b,a))‘1>.
(b—a) s \(eg(a,z0))e (eg(b, o))
This completes the proof. O

For the next results, we recall the following time scale version of Taylor’s formula:

I{+1

Lemma 2.9 ([5], Taylor’s Formula). Let n € N. Suppose that ¢g is n + 1 times differentiable on T% . Let

a € T"" and t € T. Then,
Ak p"(t) At
o0) =Y multa)g™ @+ [ halt.o(r)gA (1)
a
Let f be n-times differentiable on T*". Define g(t) = f[f f(x) Az. Then, applying Lemma we get

t " k—1 n(t) n
[ 1@ a0 =Y e > @+ [T hito@) (r)ar
a =1 a

In particular, if we let t = b, then the above equation becomes:

b n o1 p"(b) "
[ @ a =Y mbar @+ [ habom) s (A @)
a =1 a

Setting

b n
Habn ) = [ F@)ae =Y o) (@)
a k=1
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we get that is reduced to:

p™(b)
I(a,b,n, [) = / (b, (7)) A" (7) A (3)

Theorem 2.10. Let a > 0, f € C*([a,b]), |f2"|7 be an ezponentially s-convez function, where ¢ > 1, and
|f2"| > 1 on [a,b]. Then

. \n—2s A™ q A™ q
ot € O (O SO Y,

n! eg(a, o) es(b, xo)

Proof. By , we have

1
b—a

1 p™(b) n
o (a,bn )] = / ha(b, o (7)) f2" (1) A7

p"(b) N
A [ o s

b (h—a(r))" n
[ s

IN

IN

< O Fpar
e s
+<b A “W)
O (e B )
This completes the proof. 0

Theorem 2.11. Let a >0, f € C%([a,b]), | f2"|? is an ezponentially s-convex function, where ¢ > 1. Then
—1(a,b,n, )
b —a a7 7n’
20— % < " (@)
(

|
- n es(a, o))

f2" ()] :
(65(b7 330))E

(haa. b)) + (o, a))S)

Q=
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Proof. Let p > 1 be chosen so that % + % = 1. Then

1 b—a)"t [P an
I S O

o ([2) ([rars)

<
141 n
(b—a)" "> f2" (@) ’ s
- (b— ) At
n! (b —a)seg(a,xo) Ju
A™ (pV(a b o
PO )
(b - a’)seﬂ(ba 1"0) a
_1 n
(b—a)" = f2" ()] s
= 2s—1 (hQ(aa b))
n! (b—a)?**~leg(a,zo)
An 1
[f7 ()] L
+ ha(b,a))?
(b _ a)QS_leﬁ(b,xO)( ( ) ))
21(b—a)" s 2" (@)
q —a q a s
< 2o 1 Jf (ol b))
‘ (b—a) 7 (ep(a,x0))"
[f2"(0)] :
+ P 7 (ha(b,a))
(b—a) @ (es(b,x0))e
20(b—a)"" 7 (|2 ()|
a(b—a q a s
- ( (e, b))
n! 5
(65 (CL, :L'O)) e
An
/= ()] s
+ 7 (ha(b,a))
(6/3 (b7 [IZ())) 4
This completes the proof. O
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