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Abstract 

In this article, fractional case of periodic problems is discussed. Considering the time fractional heat equation, inverse problems with 

periodic and anti-periodic boundary conditions were created. For these problems, the Fourier method was used to obtain existence and 

uniqueness results. The fractional derivative of a periodic function was analyzed along the real axis, and the periodic behavior of linear 

systems in case of fractions was investigated. 
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Kesirli Diferansiyel Sistemler için Verilen Bazı Sınır Koşullarında 

Çözümlerin Varlığı ve Tekliği 
Öz 

Bu makalede, periyodik problemlerin kesirli durumu tartışılmaktadır. Zaman kesirli ısı denklemi göz önünde bulundurularak, periyodik 

ve anti-periyodik sınır koşulları ile ters problemler oluşturulmuştur. Bu problemler için varlık ve teklik sonuçlarını elde etmek için 

Fourier yöntemi kullanılmıştır. Periyodik bir fonksiyonun kesirli türevi gerçek eksen boyunca analiz edilmiş ve lineer sistemlerin 

kesirler durumundaki periyodik davranışı araştırılmıştır. 

 

Anahtar Kelimeler: Periyodik, Anti-periyodik, Kesirli Türev, Fourier Metodu, Lineer Sistem. 
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1. Introduction 

   The advantages of fractional derivatives in science are that 

they have more flexibility in the model and provide a unique way 

for reality to emerge. Because when modeling a physical 

situation, it is essential not only to depend on the current time, but 

also to the past of the previous time, that is, the calculation of the 

fractional derivative of time at a time affects all previous 

processes with memory and hereditary.  

 

     Periodicity of functions constitutes an important situation in 

physics, technology and other scientific fields (Al-Mdallal, 2009). 

The influence of periodic functions on linear systems is well 

known (Ibrahim, 2007).   This is true not only for integer systems, 

but also for fractions (Delavari et al., 2012). It has been proven in 

some studies that systems defined by some special fractional 

derivatives cannot have periodic solutions (Bouchaud, 1990 and 

Podlubny, 1999). However, the existence of periodic results 

obtained in linear systems has been characterized as a remarkable 

feature (Metzler, 2002). In the studies carried out so far, the 

solution of these two problems has still not been clarified. The 

problem that needs to be examined for an FD is, First, does a 

periodic signal of FD form a periodic function? The other, what is 

the relationship between the fractionalness of the linear system 

and its periodicity?We will consider them in this study. First of 

all, we give the Fourier series and its properties, as it is related to 

periodicity, and explain frequently used FD definitions. We show 

that we can easily obtain periodic signals if the derivative is 

defined only in R.For the other case, we obtain that systems can 

only have causal periodic data results if they are integer ordinal.To 

reach these studies, we will first base some tempered distributions 

(Mainardi, 2010). 

         When causality is applied to systems, causal systems result 

in zero at values where the variable is negative. This situation 

leads to a troublesome process. To turn this process into a positive 

step, the Heaviside unit step can be used. Thus, we consider the 

definition of "causal periodic", which makes a connection with a 

periodic data. In the light of these considerations, the problem of 

periodic functions and their derivatives, which forms the basis of 

the article, has been dealt with and solution steps have been 

created.  

2. Fourier Method and its Application 

         In this study, the time fractional heat equation with an 

involution type periodic term is discussed. We want to obtain 

existence and uniqueness results for these problems with the 

Fourier method by creating a periodic and antiperiodic inverse 

problem. 

 

 

2.1.Periodic Functions and Their Relation to 

Derivatives 

          This section explains the basic concepts of periodicity. In 

the first part, the periodic functions and the steps to solve the 

problems are determined and the necessary methods are 

discussed. For this, the Fourier transform and its properties are 

given. In the next section, the fractional derivatives of the periodic 

functions and their solutions are given step by step. 

Definition.  The definition of the periodic function is as follows, 

𝑥𝑝(𝑡), by an identity such that 

𝑥𝑝(𝑡) = 𝑥𝑝(𝑡 + 𝑇),    𝑡 ∈  𝑅 , 𝑇 ∈  𝑅+,  

where t represents time, T represents period (Samko, 2003). 

Corollary.  Let 𝑥𝑏(𝑡) = 𝑥𝑝(𝑡) , 𝑡 ∈  (𝑎, 𝑏) with 𝑏 − 𝑎 =  𝑇.  

         The truth of the following equation is well known.  

𝑥𝑝(𝑡) = ∑ 𝑥𝑏(𝑡 − 𝑛𝑇 )∞
𝑛=−∞  ,𝑡𝑛 = 𝑛𝑇, 𝑛 ∈ 𝑁                        (2)                                                 

Definition. The following series can be written, with the 

definition being, 𝑐(𝑡), 𝑡 ∈  𝑅,  

𝑐(𝑡)=∑ 𝛿(𝑡 −  𝑛𝑇 )∞
𝑛=−∞                                                         (3)                                                                           

The convergence of the ∑ 𝛿(𝑡 −  𝑛𝑇 )∞
𝑛=−∞  series is shown 

(Pooseh et al., 2011). If we choose delta like this, 

𝑥𝑏(𝑡) = 𝑥𝑝(𝑡)∗∑ 𝛿(𝑡 −  𝑛𝑇 )∞
𝑛=−∞                                         (4)                                                                  

∗ is called the convolution operation and corresponds to 

( 𝑓 ∗  𝑔) (𝑡)  = ∫ 𝑓 (𝜏 ) 𝑔 (𝑡 −  𝜏 ) 𝑑𝜏.

∞

−∞

  

To calculate fractional derivatives, we start from the linearity of 

its operators. We try to calculate the solution by taking the  Eq. 

(2)  into consideration and obtaining the terms of fractional 

derivatives, 

𝑥𝑝 (𝛼) (𝑡) = ∑ 𝑥𝑏  (𝛼) (𝑡)(𝑡 −  𝑛𝑇 )

∞

𝑛=−∞

 

           From the definition of convolution, 

𝑥𝑝 (𝛼) (𝑡) = 𝑥𝑏  (𝛼) (𝑡) ∗ ∑ 𝛿(𝑡 −  𝑛𝑇 )

∞

𝑛=−∞

 

         The significance of this approach is that it specifies a 

function on which only derivatives defined will be useful. The 

point to note here is that although 𝑥𝑏 (t) is finite, the derivative of 

𝑥𝑏 (t) can no longer be expected to be finite. This can be proved 

by important fractional derivatives formulations such as 

Grünwald–Lenikov, Riemann–Liouville, Liouville, Caputo 
(Podlubny, 1999). 
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 2.2.Fourier Method 

        We define the Fourier transform using the shift property as 

follows, 

𝐶(𝜔)=∑ 𝛿(𝑡 −  𝑛𝑇 )∞
𝑛=−∞ 𝑒𝑖𝑛𝜔𝑡,                                       (5)                                                                                               

where ω is the angular frequency. If taken as 

 𝐶(𝜔)  =  𝐹{𝑐(𝑡)}, It can be called the Fourier series 

𝐶(𝜔)=∑ 𝛿(𝜔 −  𝑛𝜏 )∞
𝑛=−∞                                                  (6)                                                                                                                    

where 𝜏𝑇 =  2𝜋  is ( Bochner, 1949). If the function is a 

periodic function with a period T, the Fourier transform is also 

periodic and has a period  

𝜏 = 𝑇/2𝜋 . If we combine the Fourier transform and 

convolution, we get 

𝑋𝑝(𝜔) = 𝑋𝑏(𝜔) 
𝑇

2𝜋
 ∑ 𝛿(𝜔 −  𝑛𝜏  )∞

𝑛=−∞  

                =
𝑇

2𝜋
 ∑ 𝑋𝑏(𝜔)𝛿(𝜔 −  𝑛𝜏 )∞

𝑛=−∞ . 

        For some functions  f, it gives and from here  𝑓 (𝑡)𝛿(𝑡 −

𝑎)  =  𝑓 (𝑎)𝛿(𝑡 − 𝑎) and we deduce 

𝑋𝑝(𝜔) = 2𝜋 
𝑇

2𝜋
 ∑ 𝑋𝑏(𝑛𝜏)𝛿(𝜔 −  𝑛𝜏  )∞

𝑛=−∞  

and, by inversion 

𝑥𝑝(𝑡)  = ∑ 𝑋𝑏(𝑛𝜏)𝑒−𝑖𝑛
2𝑥

𝑇
𝑡∞

𝑛=−∞ .                                               (7)                                                                                             

its terar with the same periods is represented by the Fourier series, 

and is expressed as a series (7). The resulting Fourier series 

defines a function that is periodic in the whole real axis 

(Tapdıgoglu, 2019). 

          In our study based on the Fourier method, we will consider 

the relationship we will establish between the perturbative term of 

the evolution type according to the space variable and the heat 

equation as an inverse problem. 

       Let's define the heat equation as 

𝐷𝑡
𝛼  𝑢(𝑥, 𝑡) − 𝑢𝑥𝑥 (𝑥, 𝑡) + 𝜀𝑢𝑥𝑥 ( 1 − 𝑥, 𝑡) = 𝑓 (𝑥),               (8)                                                         

for (𝑥, 𝑡)  ∈  Ω =  {0 < 𝑥 <  1, 0 <  𝑡 <  𝑇 < ∞}, 0 < 𝛼 <  1 

where  𝐷𝑡
𝛼  is the Caputo derivative and 𝜀 is a real number. 

we will obtain (𝑢(𝑥, 𝑡), 𝑓 (𝑥))  which are smooth functions, we 

will satisfy Eq. (8) under the conditions given below, 

𝑢(𝑥, 0)  =  𝜑(𝑥), 𝑥 ∈  [0,1],                                                (9)                                                                                        

𝑢(𝑥, 𝑇) =  𝜓(𝑥),   𝑥 ∈  [0,1],                                              (10)                                                                      

and periodic boundary conditions 

𝑢(0, 𝑡) =  𝑢(1, 𝑡), 𝑡 ∈  [0, 𝑇],                                            (11)                                                                                  

𝑢𝑥 (0, 𝑡)  = 𝑢𝑥 (1, 𝑡) , 

anti-periodic boundary conditions 

 𝑢(0, 𝑡) =  −𝑢(1, 𝑡)  , 𝑡 ∈  [0, 𝑇],                                       (12)                                                                                  

𝑢𝑥 (0, 𝑡) = −𝑢𝑥 (1, 𝑡) , 

(𝑢(𝑥, 𝑡), 𝑓 (𝑥)), where 𝑢 ∈ C2(Ω̅) and𝑓 ∈ 𝐶([0,1]).  

       Now here we will use the Fourier method to solve the P and 

AP problems, with this application Eq. (8) poses a spectral 

problem. 

       For P and AP problems we use the following theorems. 

Theorem.  Let |𝜀| <  1, where 𝜑, 𝜓 ∈ C3 [01] and 

where 𝜑 (𝑖)(0) =   𝜑 (𝑖) (1),  𝜑𝑥  (𝑖)(0) = 𝜑𝑥  (𝑖)(1)  and 

 𝜓 (𝑖)(0) =   𝜓 (𝑖) (1), 𝜓𝑥  (𝑖)(0) =  𝜓𝑥  (𝑖) (1),𝑖 =  0,1,2. Then 

problem P has only one solution and can be written as, 

𝑢(𝑥, 𝑡) =  𝜑(𝑥)  

 +   ∑
(1−𝐸𝛼,1(−(1−𝜀)(𝑘+

1

2
)

2
𝑡𝛼)) sin(𝑘+

1

2
)𝑥

(1−𝐸𝛼,1(−(1−𝜀)(𝑘+
1

2
)

2
𝑇𝛼)) (𝑘+

1

2
)

2 (∞
𝑘=0 𝜑1𝑘

(2)
− 𝜓1𝑘

(2)
) +  

  ∑
(1−𝐸𝛼,1(−(1+𝜀)(2𝑘)2𝑡𝛼)) sin 𝑘𝑥

(1−𝐸𝛼,1(−(1+𝜀)(2𝑘)2𝑇𝛼)) (2𝑘)2
(∞

𝑘=1 𝜑2𝑘
(2)

− 𝜓2𝑘
(2)

),             (13)                              

𝑓 (𝑥) = − 𝜑 ′′ (𝑥) + 𝜀 𝜑 ′′( 1 − 𝑥)  

+   ∑
((1−𝜀)(𝜑1𝑘

(2)
−𝜓1𝑘

(2)
))

(1−𝐸𝛼,1(−(1−𝜀)(𝑘+
1

2
)

2
𝑇𝛼))

sin (𝑘 +
1

2
) 𝑥∞

𝑘=0     

+ ∑
((1+𝜀)(𝜑2𝑘

(2)
−𝜓2𝑘

(2)
))

(1−𝐸𝛼,1(−(1+𝜀)(2𝑘)2𝑇𝛼))
sin 𝑘 𝑥∞

𝑘=1 ,                                (14)                                

where 

𝜑1𝑘
(2)

= ( 𝜑 ′′ (𝑥), 𝑦
𝑘+

1

2

𝑃 ) ,  𝜑2𝑘
(2)

= ( 𝜑 ′′ (𝑥), 𝑦𝑘
𝑃),  

𝜓1𝑘
(2)

= ( 𝜓 ′′ (𝑥), 𝑦
𝑘+

1

2

𝑃 ) ,  𝜓2𝑘
(2)

= ( 𝜓 ′′ (𝑥), 𝑦𝑘
𝑃),  

and 𝐸𝛼,𝛽(𝜆𝑡) is the Mittag-Leffler type function, 

 𝐸𝛼,𝛽(𝑧)= ∑
𝑧𝑚

𝛤(𝛼𝑚+𝛽)

∞
𝑚=0   . 

Theorem. Let |𝜀| <  1, where 𝜑, 𝜓 ∈ C3[0,1] and 

where 𝜑 (𝑖)(0) =  − 𝜑 (𝑖) (1),  𝜑𝑥  (𝑖)(0) = −𝜑𝑥 (𝑖)(1)  and 

 𝜓 (𝑖)(0) =  − 𝜓 (𝑖) (1), 𝜓𝑥 (𝑖)(0) =  −𝜓𝑥 (𝑖) (1), 𝑖 =  0,1,2. 

Then the solution of problem AP exists, is unique and it can 

bewritten in the form 
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𝑢(𝑥, 𝑡) =  𝜑(𝑥)  + 
𝑡

𝑇
(𝜓0- 𝜑0) 

+   ∑
(1−𝐸𝛼,1(−(1−𝜀)(2𝑘)2𝑡𝛼)) cos 𝑘𝑥

(1−𝐸𝛼,1(−(1−𝜀)(2𝑘)2𝑇𝛼))(4𝑘)2
(∞

𝑘=1 𝜓1𝑘
(2)

− 𝜑1𝑘
(2)

)   

+   ∑
(1−𝐸𝛼,1(−(1+𝜀)(𝑘+

1

2
)

2
𝑡𝛼)) cos(𝑘+

1

2
)𝑥

(1−𝐸𝛼,1(−(1+𝜀)(𝑘+
1

2
)

2
𝑇𝛼))(𝑘+

1

2
)

2 (∞
𝑘=0 𝜓2𝑘

(2)
− 𝜑2𝑘

(2)
),   (15)                                                    

𝑓 (𝑥) = − 𝜑 ′′ (𝑥) + 𝜀 𝜑 ′′( 1 − 𝑥)  

+   ∑
((1−𝜀)(𝜑1𝑘

(2)
−𝜓1𝑘

(2)
))

(1−𝐸𝛼,1(−(1−𝜀)(2𝑘)2𝑇𝛼))
cos 𝑘 𝑥∞

𝑘=1    

+ ∑
((1+𝜀)(𝜑2𝑘

(2)
−𝜓2𝑘

(2)
))

(1−𝐸𝛼,1(−(1+𝜀)(𝑘+
1

2
)

2
𝑇𝛼))

cos (𝑘 +
1

2
) 𝑥∞

𝑘=0 ,                  (16)                                                              

where 

𝜑0 = (𝜑0, 𝑦0
𝐴𝑃), 𝜑1𝑘

(2)
= ( 𝜑 ′′ (𝑥), 𝑦𝑘

𝐴𝑃),  𝜑2𝑘
(2)

=

( 𝜑 ′′ (𝑥), 𝑦
𝑘+

1

2

𝐴𝑃 ),  

𝜓0 = (𝜓0, 𝑦0
𝐴𝑃), 𝜓1𝑘

(2)
= ( 𝜓 ′′ (𝑥), 𝑦𝑘

𝐴𝑃),  𝜓2𝑘
(2)

=

( 𝜓 ′′ (𝑥), 𝑦
𝑘+

1

2

𝐴𝑃 ).  

2.3.Existence of Solution of Periodic and Anti-

Periodic Problems 

       We will first prove the problem P. It can be proved in a similar 

way that the solution of the AP problem also exists. The 

eigenvalues of the problem (8)- (11) and their corresponding 

eigenfunctions are as follows: 

 𝜆
𝑘+

1

2

𝑃 = (1 +  𝜀)2𝑘2,  𝑘 ∈  𝑁, 

 𝜆𝑘
𝑃=  (1 − 𝜀) 2𝑘2,  𝑘 ∈ 𝑁0, 

with the corresponding eigenfunctions  

𝑦0
𝑃 = 1, 

𝑦
𝑘+

1

2

𝑃 =√2 sin (2𝑘𝑥),  𝑘 ∈  𝑁, 

 𝑦2𝑘
𝑃 =  √2 cos (2𝑘𝑥),  𝑘 ∈  𝑁, 

 The problem (8)-(12) has the following eigenvalues. 

  𝜆
𝑘+

1

2

𝐴𝑃 = (1 +  𝜀)(𝑘 +
1

2
)2,  𝑘 ∈  𝑁0, 

 𝜆𝑘
𝐴𝑃=  (1 − 𝜀) (𝑘 +

1

2
)2,  𝑘 ∈ 𝑁0, 

and the corresponding eigenfunctions 

𝑦2𝑘+1
𝐴𝑃 =√

2

𝜋
 cos (𝑘 +

1

2
)𝑥,  𝑘 ∈  𝑁0, 

 𝑦𝑘
𝐴𝑃=  √

2

𝜋
 sin (𝑘 +

1

2
)𝑥,  𝑘 ∈  𝑁0. 

         The P problem creates an orthonormal basis in L2 (0,1), so 

the problem  (8)- (11) is a self adjoint problem and corresponds 

to the solution function below. 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑘(𝑡) ∞
𝑘=0  sin (𝑘 +

1

2
)𝑥 +∑ 𝑣𝑘(𝑡) ∞

𝑘=1  sin 𝑘𝑥 

𝑓 (𝑥) = ∑ 𝑓𝑘
1 ∞

𝑘=0  sin (𝑘 +
1

2
)𝑥  +∑ 𝑓𝑘

2  ∞
𝑘=1 sin 𝑘𝑥        

where 𝑓𝑘
1
, 𝑓𝑘

2
 , 𝑢𝑘(𝑡), 𝑣𝑘(𝑡)  are unknown . If we substitute (11) 

and (12) in (8) here, we find the constants and functions as 

follows, 𝑢𝑘(𝑡), 𝑣𝑘(𝑡)   and the constants 𝑓𝑘
1
, 𝑓𝑘

2
: 

𝐷𝛼𝑢𝑘(𝑡)  +  (1 − 𝜀)(𝑘 +
1

2
)2𝑢𝑘(𝑡)  =  𝑓𝑘

1
, 

𝐷𝛼𝑣𝑘(𝑡)  +  (1 + 𝜀)2𝑘2𝑣𝑘(𝑡)  =  𝑓𝑘
2
, 

We obtain 

𝑢𝑘(𝑡) =
𝑓𝑘

1,

(1−𝜀)(𝑘+
1

2
)

2 +𝐶1𝑘 𝐸𝛼,1 (−(1 − 𝜀) (𝑘 +
1

2
)

2

𝑡𝛼), 

𝑣𝑘(𝑡) =
𝑓𝑘

2,

(1+𝜀)𝑘2 + + 𝐶2𝑘 𝐸𝛼,1(−(1 + 𝜀)2𝑘2𝑡𝛼), 

C1k, C2k, 𝑓𝑘
1
, 𝑓𝑘

2
 are unknown constants.To find these constants, 

we consider the conditions (11). the coefficients of the expansions 

being 𝜑 (𝑥) and 𝜓(𝑥) 

𝜑1𝑘 = √2 ∫ 𝜑(𝑥)sin (𝑘 +
1

2
)𝑥𝑑𝑥

1

0
, 

𝜑2𝑘 = √2 ∫ 𝜑(𝑥)sin (𝑘𝑥)𝑑𝑥
1

0
, 

𝜓1𝑘 = √2 ∫ 𝜓(𝑥)sin (𝑘 +
1

2
)𝑥𝑑𝑥

1

0
, 

𝜓2𝑘 = √2 ∫ 𝜓(𝑥)sin (𝑘𝑥)𝑑𝑥
1

0
, 

first we find C1k, 

𝑢𝑘(0) =
𝑓𝑘

1,

(1−𝜀)(𝑘+
1

2
)

2 + C1k = 𝜑1𝑘 , 

𝑢𝑘(𝑡) =
𝑓𝑘

1,

(1−𝜀)(𝑘+
1

2
)

2 +C1k 𝐸𝛼,1 (−(1 − 𝜀) (𝑘 +
1

2
)

2

𝑇𝛼) = 𝜓1𝑘, 

𝜑1𝑘 − C1k + C1𝑘 𝐸𝛼,1 (−(1 − 𝜀) (𝑘 +
1

2
)

2

𝑇𝛼)= 𝜓1𝑘 . 
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      Later 

C1k =
𝜑1𝑘−𝜓1𝑘

1−𝐸𝛼,1(−(1−𝜀)(𝑘+
1

2
)

2
𝑇𝛼)

. 

     It is represented as a fixed 𝑓𝑘
1
 , 

𝑓𝑘
1 = (1 − 𝜀) (𝑘 +

1

2
)

2

𝜑1𝑘 − (1 − 𝜀) (𝑘 +
1

2
)

2

C1𝑘. 

     Now we find C2k, 

𝑣𝑘(0) =
𝑓𝑘

2,

(1+𝜀)2𝑘2 + + C2k = 𝜓2𝑘, 

𝑣𝑘(𝑇) =
𝑓𝑘

2,

(1+𝜀)𝑘2 + + C2k 𝑒−(1+𝜀)2𝑘2𝑇 = 𝜓2𝑘, 

ψ2k − C2k + C2k e−(1+ε)2k2T = 𝜓2𝑘. 

later, 

C2𝑘 =
𝜑2𝑘 − 𝜓2𝑘

1 − 𝐸𝛼,1(−(1 + 𝜀)2𝑘2𝑇𝛼)
. 

For fixed we found 𝑓𝑘
2
,  

𝑓𝑘
1 = (1 − 𝜀) (𝑘 +

1

2
)

2

𝜑1𝑘 − (1 − 𝜀) (𝑘 +
1

2
)

2

C1𝑘. 

𝑢(𝑥, 𝑡) =  𝜑(𝑥) 

+∑ C1𝑘 𝐸𝛼,1 (−(1 − 𝜀) (𝑘 +
1

2
)

2

𝑡𝛼) − 1)∞
𝑘=0  sin (𝑘 +

1

2
)𝑥 

+ ∑ C2k Eα,1(−(1 + ε)2k2tα) − 1) ∞
k=1  sin 𝑘𝑥. 

          Therefore, this solution found is recorded as the solution 

of Eq. (8). Likewise, the solution of  problem (9)- (11) is found 

in a similar way. 

3. Results and Discussion  

     In response to the questions of whether the fractional 

derivatives of a periodic signal is also a periodic function or does 

the linear fractional system have periodic data, we saw in this 

study. If the derivative is defined only in R, we can easily obtain 

periodic signals. For the second problem, we have seen that 

systems can only have periodic data results if they are integer 

order. 

     When causality is applied to systems, causal systems result in 

zero at values where the variable is negative. This situation causes 

a troublesome process. We want to turn this process into a positive 

step. Thus, considering the Heaviside unit step principle and the 

causal periodic definition, which makes the connection with a 

periodic data, we can evaluate the periodic data results in case the 

systems are integer or fractional order. 

4. Conclusions and Recommendations 

   In this study, periodic functions are considered as fractions. 

Liouville and Caputo, which are fractional derivatives frequently 

used in the literature, have been used. It has been shown that the 

fractional derivative of a periodic function defined along the real 

axis is also periodic. It has also been proven that derivatives of 

these functions are not periodic in some cases. Also, fractional 

periodic behavior of linear systems is discussed. It has been 

shown that when certain derivatives are applied to such systems, 

their periodicity does not change. It is concluded that only integer 

ordered linear systems can have sinusoidal periodic oscillations. 

  The existence and uniqueness of the solution in fractional 

periodic and antiperiodic inverse problems has been proven by the 

Fourier method. The importance of this in the literature is that the 

existence theorem tells us that this problem has a solution to look 

for, it will prevent the loss of effort and time to be spent to find 

this special solution. It contributes to science in this respect. 
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