Essential self-adjointness for covariant tri-harmonic operators on manifolds and the separation problem

Hany A. Atia* ${ }^{* 1}$, Hala H. Emam² ${ }^{\text {(D) }}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
${ }^{2}$ Department of Basic Science, High Institute for Engineering and Technology, Al-Obour, Egypt

Abstract

Consider the tri-harmonic differential expression $L_{V}^{\nabla} u=\left(\nabla^{+} \nabla\right)^{3} u+V u$, on sections of a hermitian vector bundle over a complete Riemannian manifold (M, g) with metric g, where ∇ is a metric covariant derivative on bundle E over complete Riemannian manifold, ∇^{+} is the formal adjoint of ∇ and V is a self adjoint bundle on E. We will give conditions for L_{V}^{∇} to be essential self-adjoint in $L^{2}(E)$. Additionally, we provide sufficient conditions for L_{V}^{∇} to be separated in $L^{2}(E)$. According to Everitt and Giertz, the differential operator L_{V}^{∇} is said to be separated in $L^{2}(E)$ if for all $u \in L^{2}(E)$ such that $L_{V}^{\nabla} u \in L^{2}(E)$, we have $V u \in L^{2}(E)$.

Mathematics Subject Classification (2020). 47F05, 58J99
Keywords. essential self-adjoint, separation problem, Riemannian manifold, covariant tri-harmonic

1. Introduction

Assume that (M, g) be a smooth Riemannian manifold without boundary and $\operatorname{dim} M=$ n, let M is connected, with metric g , and with Riemannian volume element d_{μ}. Assume that E be a vector bundle over M. The study of essential self-adjointness for differential operators on R^{n} has been the central theme of numerous studies, such as [11] and [30]. Gaffney studied essential self-adjointness for differential operators on Riemannian manifolds in [15]. This problem has lead to many works, such as [$4,5,10,17,18,21,25]$. The study of the separation property for Schrodinger operators on R^{n} was studied through Everitt and Giertz, see [15]. The operator $-\triangle+V$ in $L^{p}\left(R^{n}\right)$ is separated if the following condition is satisfied for all $u \in L^{p}\left(R^{n}\right)$ such that $(\triangle+V) u \in L^{p}\left(R^{n}\right)$, we have that $\Delta u \in L^{p}\left(R^{n}\right)$ and $V u \in L^{p}\left(R^{n}\right)$. For the separation problem of second and higher order differential operators, see $[1,2,6,7,9,13,27,28]$. The separation problem of the differential operator $\triangle_{M}+V$ on $L^{2}(M)$ where M is a non-compact Riemannian manifold, \triangle_{M} is the scalar laplacian on M and $V \in C^{1}(M)$, was studied in [23]. Milatovic was studied the separation property for $\triangle_{M}+V$ in $L^{p}(M)$ in [24]. The separation problem for

[^0]Schrodinger operators on R^{n} goes back to the work of Everitt and Giertz in [14]. Some authors have studied the separation problem for differential operators on Riemannian manifolds, see $[2,24,25]$. The separation property is linked to the self adjointness in $L^{2}(M)$, see [26]. Separation problem of differential operators has strong links with the essential self-adjointness of the underlying operator. In this article, we will give the conditions for essentially self-adjointness of $\Delta_{A}^{3}+V$ on $C_{c}^{\infty}(M)$, where Δ_{A}^{3} be the (non-negative) magnetic tri-Laplacian (with a smooth magnetic field A) on a geodescially complete Riemannian manifold M and $0 \leq V \in C^{2}(M)$. Additionally, we provide sufficient conditions for L_{V}^{∇} to be separated in $L^{2}(E)$.

2. General notations

In this article we consider the differential operator $\left(\nabla^{+} \nabla\right)^{3} u+V u$, where ∇ is a metric covariant derivative on a hermitian bundle E over a Riemannian manifold M, ∇^{+}its formal adjoint and V is a linear self-adjoint bundle map over E. In general, the symbols $C^{\infty}(E)$ and $C_{c}^{\infty}(E)$ and $\Omega^{1}(M)$ denote sections of E and compactly supported sections of E, and complex-valued smooth 1-forms on M respectively. We call $L^{p}(E), 1 \leq p<\infty$, indicates the space of p-integrable sections of E with the norm $\|u\|_{p}:=\left(\int_{M}|u(x)|^{p} d \mu\right)^{1 / p}$. In the special case $p=2$, we have the Hilbert space $L^{2}(E)$ and we use (.,.) to denote the corresponding inner product in $L^{2}(M)$ and the pairing (linear in the first and anti-linear in the second slot) between $L^{p}(M)$ and $L^{q}(M)$ with $1 / p+1 / q=1$. For local Sobolev spaces of sections we use the notation $W_{l o c}^{k, p}(E)$, with p and k indicating the corresponding L^{p} spaces and the highest order of derivatives, respectively. For $k=0$ we use $L_{l o c}^{p}(E)$. In the case $E=M \times C$, we denote the corresponding function spaces by $C^{\infty}(M), C_{c}^{\infty}(M), L^{p}(M)$, $L_{l o c}^{p}(M)$ and $W_{l o c}^{k, p}(M)$. In this paper, $\nabla: C^{\infty}(E) \rightarrow C^{\infty}\left(T^{*} M \otimes E\right)$ stands for a smooth metric covariant derivative on E, and $\nabla^{+}: C^{\infty}\left(T^{*} M \otimes E\right) \rightarrow C^{\infty}(E)$ indicates the formal adjoint of ∇ with respect to (.,.). The covariant derivative ∇ on E induces the covariant derivative $\nabla^{E n d}$ on the bundle of endomorphisms End E, making $\nabla^{E n d} V$ a section of the bundle $T^{*} M \otimes(E n d E)$. Working in the space $L^{2}(E)$ only, we find it convenient to indicate by (.,.) and $\|$.$\| the inner product and the norm in the spaces L^{2}(E)$ and $L^{2}\left(T^{*} M \otimes E\right)$. We study the separation property on $L^{2}(E)$ that can be seen as an extension of the work mentioned in [23]. We define a set $D_{2}^{\nabla}:=\left\{u \in L^{2}(E): L_{V}^{\nabla} u \in L^{2}(E\}\right.$, it is not true that for all $u \in D_{2}^{\nabla}$, we have $\left(\nabla^{+} \nabla\right)^{3} u \in L^{2}(E)$ and $V u \in L^{2}(E)$ simultaneously, using the terminology of Everitt and Giertz [15] we will say that $L_{V}^{\nabla}=\left(\nabla^{+} \nabla\right)^{3}+V$ is separated in $L^{2}(E)$ when the following statement holds true for all $u \in D_{2}^{\nabla}$, we have $V u \in L^{2}(E)$, to make the notations less cumbersome, the symbols (.,.) and $\|.\|_{p}$ will also be used when referring to $L^{p}\left(\Lambda^{1} T^{*} M\right)$, the space of p-integrable 1 -forms on M, we only consider the space $L^{2}(M)$, we will use $\|$.$\| instead of \|.\|_{2}$ to indicate the norm. In a magnetic field $A \in \Omega^{1}(M)$, where A be real-valued form, the operator $d_{A}: C^{\infty}(M) \rightarrow \Omega^{1}(M)$ stands for the magnetic differential where $d_{A} u=d u+i u$ A where $d: C^{\infty}(M) \rightarrow \Omega^{1}(M)$ be the standard differential and $i=\sqrt{-1}$. We denote the formal adjoint of d_{A} with respect to (\cdot, \cdot) by d_{A}^{+}, the (non-negative) magnetic Laplacian on M by $\Delta_{A}:=d_{A}^{+} d_{A}$, and the magnetic tri-Laplacian by $\Delta_{A}^{3}:=\left(d_{A}^{+} d_{A}\right)^{3}$. We start recalling some abstract terminology concerning m-accretive operators on Banach spaces. A linear operator S on a Banach space \varkappa is called accretive if $\|(\xi+S) u\|_{\varkappa} \geq \xi\|u\|_{\varkappa}$, for all $\xi>0$ and all $u \in \operatorname{Dom}(S)$. In [12], a densely defined accretive operator S is close and its closure S^{\sim} is also accretive. An operator S on \varkappa is called m-accretive if it is accretive and $\xi+S$ is surjective for all $\xi>0$. An operator S on \varkappa is named essentially m-accretive if it is accretive and S^{\sim} is m -accretive. We use the relation between m -accretivity and self-adjointness of operators on Hilbert spaces which stated in the paper [22] that the operator S is a self-adjoint and non-negative operator if and only if S is symmetric, closed and m-accretive. We mentioned
some results on the essential m-accretivity of operators in $L^{2}(E)$ used in this paper with L_{V}^{∇} with $0 \leq V \in L_{l o c}^{\infty}(E n d E)$ and $0 \leq v \in L_{l o c}^{\infty}(M)$, we define an operator $H_{2 . V}^{\nabla}$ as $H_{2 . V}^{\nabla} u:=L_{V}^{\nabla} u$ with the domain $D_{2}^{\nabla}:=\left\{u \in L^{2}(E): L_{V}^{\nabla} u \in L^{2}(E\}\right.$ and an operator $H_{2 . v}^{d}$ as $H_{2 . v}^{d} u:=S_{v}^{d} u$ for all $u \in D_{2}^{d}$, where $D_{2}^{d}:=\left\{u \in L^{2}(M): S_{v}^{d} u \in L^{2}(M)\right\}$. Atia was studied the separation problem of bi-harmonic differential operators on Riemannian manifolds in $[3,4]$.

3. Essential self-adjointness result for a perturbation of Δ_{A}^{3}

Let $p(t, x, y)$ be the heat kernel of M. For a Borel function $f: M \rightarrow R$, define

$$
F(t):=\sup _{x \in M} \int_{0}^{t} \int_{M} p(s, x, y)|f(y)| d \mu(y) d s
$$

where $f \in D(M)$ if there exists $t>0$ such that $F(t)<1$. We say that f belongs to the Kato class $K(M)$ of M if $F(t) \rightarrow 0$ as $t \rightarrow 0+$. So $K(M) \subset D(M)$, see Theorem 7.13 in [16].
Now, we remind our main result, in this section.
Theorem 3.1. Let M is a geodesically complete connected Riemannian manifold. Let $U=U_{1}+U_{2}$ with $0 \leq U_{1} \in L_{l o c}^{2}(M)$ and $0 \leq U_{2} \in L_{l o c}^{2}(M) \cap D(M)$. Furthermore, let $W \in W_{\text {loc }}^{3,2}(M)$ and $W \geq 0$. Also there exist constants $c_{1} \geq 0$ and $c_{2} \geq 0$ such that

$$
\begin{equation*}
|d W(x)|^{2} \leq c_{1}+c_{2} W(x), \tag{3.1}
\end{equation*}
$$

for all almost $x \in M$. Then $\Delta_{A}^{3}+U-W$ is essentially self-adjoint on $C_{c}^{\infty}(M)$.
Now, we explain some notations used in subsequent results.
We define operators $T_{\Delta_{A}}^{(p)}$ and $T_{\Delta_{A}^{3}}^{(p)}$ in $L^{p}(M)$ where $1<p<\infty$ by the formulas

$$
\begin{equation*}
T_{\Delta_{A}}^{(p)} u:=\Delta_{A} u, u \in \operatorname{Dom}\left(T_{\Delta_{A}}^{(p)}\right):=\left\{u \in L^{p}(M): \Delta_{A} u \in L^{p}(M)\right\}, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{\Delta_{A}^{3}}^{(p)} u:=\Delta_{A}^{3} u, u \in \operatorname{Dom}\left(T_{\Delta_{A}^{3}}^{(p)}\right):=\left\{u \in L^{p}(M): \Delta_{A}^{3} u \in L^{p}(M)\right\} . \tag{3.3}
\end{equation*}
$$

We now state the result of Okazawa, see [29].
Lemma 3.2. Let S and G be nonnegative symmetric operators in a Hilbert space H with inner product (., . $)_{H}$ and norm $\|.\|_{H}$. We assume D be a linear subspace of H on which $S+G$ is essentially self-adjoint. Assume that the following inequalities hold for all $u \in D$:

$$
\begin{equation*}
\|S u\|_{H}+\|G u\|_{H} \leq a_{1}\|u\|_{H}+a_{2}\|(S+G) u\|_{H} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\operatorname{Im}(G u, S u)_{H}\right| \leq \tilde{a_{1}}\|u\|_{H}^{2}+\tilde{a_{2}}\|(S+G) u\|_{H}\|u\|_{H} \tag{3.5}
\end{equation*}
$$

where $a_{1}, a_{2}, \tilde{a_{1}}$ and $\tilde{a_{2}} \geq 0$ are constants. Then $S-G$ is essentially self-adjoint on D.
The following lemma is a direct consequence of Lemma VI.7 in [20] and Corollary 2.5 in [19]:

Lemma 3.3. Let M be a geodesically complete connected Riemannian manifold with Riemannian volume element $d \mu$. Let $0 \geq U_{2} \in L_{\text {loc }}^{2}(M) \cap D(M)$. Then, there exist constants $0 \leq \delta<1$ and $\xi \geq 0$ such that

$$
\begin{equation*}
\int_{M}\left|U_{2}\left\|\left.u\right|^{2} d \mu \leq \delta \int_{M}\left|d_{A} u\right|^{2} d \mu+\xi\right\| u \|^{2}\right. \tag{3.6}
\end{equation*}
$$

for all $u \in W_{A}^{3,2}(M)$.
We will introduce the following lemma which will be used in the proof of the main theorem in this section,

Lemma 3.4. Let M be a geodesically complete connected Riemannian manifold with Riemannian volume element $d \mu$. Let $U=U_{1}+U_{2}$ with $0 \leq U_{1} \in L_{l o c}^{2}(M)$ and $0 \geq U_{2} \in$ $L_{\text {loc }}^{2}(M) \cap D(M)$. Additionally, let $0 \leq W \in W_{\text {loc }}^{3,2}(M)$ is a function satisfying (3.1). Then we have

$$
\begin{equation*}
2 \operatorname{Re}\left(\left(T_{W}+1\right) u,\left(T_{\Delta_{A}^{3}}+T_{U}+\xi\right) u\right) \geq-c_{3}\left\|d_{A}^{+} d_{A} u\right\|^{2} \tag{3.7}
\end{equation*}
$$

for all $u \in C_{c}^{\infty}(M)$, where ξ is as in (3.6) and $c_{3}:=\left(c_{1}+c_{2}\right) / 2$.
Proof. We will use the integration by parts and the product rule

$$
d_{A}(f v)=f d_{A} v+(d f) v
$$

where f and v are functions on M, also we define

$$
\begin{aligned}
& W_{A}^{1,3}(M):=\left\{u \in L^{2}(M): d_{A} u \in L^{2}\left(\Lambda^{1} T^{*} M\right)\right\} \\
& \operatorname{Re}\left(T_{\Delta_{A}^{3}} u,\left(T_{W}+1\right) u\right)=\operatorname{Re}\left(\Delta_{A}^{3} u,(W+1) u\right) \\
& =\operatorname{Re}\left(\left(d_{A}^{+} d_{A}\right)^{3} u,(W+1) u\right) \\
& =\operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d_{A}(\sqrt{W+1} \sqrt{W+1} u)\right) \\
& =\operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, \sqrt{W+1} d_{A}(\sqrt{W+1} u)\right) \\
& +\operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u,(d \sqrt{W+1})(\sqrt{W+1} u)\right) \\
& =\operatorname{Re}\left(\sqrt{W+1} d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d_{A}(\sqrt{W+1} u)\right) \\
& +\operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, \frac{d W}{2 \sqrt{W+1}} \sqrt{W+1} u\right) \\
& =\operatorname{Re}\left(\sqrt{W+1} d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d_{A}(\sqrt{W+1} u)\right) \\
& +\frac{1}{2} \operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d W u\right) \\
& =\operatorname{Re}\binom{d_{A}\left(\sqrt{W+1}\left(d_{A}^{+} d_{A}\right)^{2} u\right)}{-d(\sqrt{W+1})\left(d_{A}^{+} d_{A}\right)^{2} u, d_{A}(\sqrt{W+1} u)} \\
& +\frac{1}{2} \operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d W u\right) \\
& =\operatorname{Re}\left(d_{A}\left(\sqrt{W+1}\left(d_{A}^{+} d_{A}\right)^{2} u\right), d_{A}(\sqrt{W+1} u)\right) \\
& -\operatorname{Re}\left(d(\sqrt{W+1})\left(d_{A}^{+} d_{A}\right)^{2} u, d_{A}(\sqrt{W+1} u)\right) \\
& +\frac{1}{2} \operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d W u\right) \\
& =\operatorname{Re}\left(\sqrt{W+1}\left(d_{A}^{+} d_{A}\right)^{2} u, d_{A}^{+} d_{A}(\sqrt{W+1} u)\right) \\
& -\operatorname{Re}\left(\frac{d W}{2 \sqrt{W+1}}\left(d_{A}^{+} d_{A}\right)^{2} u, d_{A}(\sqrt{W+1} u)\right) \\
& +\frac{1}{2} \operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d W u\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{W+1} \operatorname{Re}\left(u,\left(d_{A}^{+} d_{A}\right)^{3}(\sqrt{W+1} u)\right) \\
& -\frac{1}{2} \operatorname{Re}\left(d W\left(d_{A}^{+} d_{A}\right)^{2} u(W+1)^{-1 / 2}, d_{A}(\sqrt{W+1} u)\right) \\
& +\frac{1}{2} \operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d W u\right) \\
& =\operatorname{Re}\left(\left(d_{A}^{+} d_{A}\right)^{3 / 2}(\sqrt{W+1} u),\left(d_{A}^{+} d_{A}\right)^{3 / 2}(\sqrt{W+1} u)\right) \\
& -\frac{1}{2} \operatorname{Re}\left(d W\left(d_{A}^{+} d_{A}\right)^{2} u(W+1)^{-1 / 2}, \sqrt{W+1} d_{A} u+d \sqrt{W+1} u\right) \\
& +\frac{1}{2} \operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d W u\right) \\
& =\left\|\left(d_{A}^{+} d_{A}\right)^{3 / 2}(\sqrt{W+1} u)\right\|^{2} \\
& -\frac{1}{2} \operatorname{Re}\left(d W\left(d_{A}^{+} d_{A}\right)^{2} u(W+1)^{-1 / 2},(W+1)^{1 / 2} d_{A} u\right) \\
& -\frac{1}{2} \operatorname{Re}\left(d W\left(d_{A}^{+} d_{A}\right)^{2} u(W+1)^{-1 / 2}, d \sqrt{W+1} u\right) \\
& +\frac{1}{2} \operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d W u\right) \\
& =\left\|\left(d_{A}^{+} d_{A}\right)^{3 / 2}(\sqrt{W+1} u)\right\|^{2} \\
& -\frac{1}{2} \operatorname{Re}\left(d W\left(d_{A}^{+} d_{A}\right)^{2} u, d_{A} u\right) \\
& -\frac{1}{2} \operatorname{Re}\left(d W\left(d_{A}^{+} d_{A}\right)^{2} u(W+1)^{-1 / 2}, \frac{d W}{2 \sqrt{W+1}} u\right) \\
& +\frac{1}{2} \operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d W u\right) \\
& =\left\|\left(d_{A}^{+} d_{A}\right)^{3 / 2}(\sqrt{W+1} u)\right\|^{2} \\
& -\frac{1}{2} \operatorname{Re}\left(d W\left(d_{A}^{+} d_{A}\right)^{2} u, d_{A} u\right) \\
& -\frac{1}{4} \operatorname{Re}\left(\frac{d W\left(d_{A}^{+} d_{A}\right)^{2} u}{\sqrt{W+1}}, \frac{d W}{\sqrt{W+1}} u\right) \\
& +\frac{1}{2} \operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d W u\right) \\
& =\left\|\left(d_{A}^{+} d_{A}\right)^{3 / 2}(\sqrt{W+1} u)\right\|^{2} \\
& -\frac{1}{4} \int_{M} \frac{\left|d_{A}^{+} d_{A} u\right|^{2}}{W+1}|d W|^{2} d \mu \\
& -\frac{1}{2} \operatorname{Re}\left(d W\left(d_{A}^{+} d_{A}\right)^{2} u, d_{A} u\right) \\
& +\frac{1}{2} \operatorname{Re}\left(d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u, d W u\right) \\
& =\left\|\left(d_{A}^{+} d_{A}\right)^{3 / 2}(\sqrt{W+1} u)\right\|^{2}-\frac{1}{4} \int_{M} \frac{\left|d_{A}^{+} d_{A} u\right|^{2}}{W+1}|d W|^{2} d \mu .
\end{aligned}
$$

We use our assumptions on W, we get $(\sqrt{W+1} u) \in W_{A}^{3,2}(M)$, we combine the last equality, (3.1) and (3.6) we get

$$
\begin{aligned}
& \operatorname{Re}\left(\left(T_{W}+1\right) u,\left(T_{\Delta_{A}^{3}}+T_{U}\right) u\right) \\
& =\operatorname{Re}\left(\left(T_{W}+1\right) u, T_{\Delta_{A}^{3}} u\right)+\operatorname{Re}\left(\left(T_{W}+1\right) u, T_{U} u\right) \\
& =\operatorname{Re}\left(T_{\Delta_{A}^{3}} u,\left(T_{W}+1\right) u\right)+\operatorname{Re} \int_{M} U_{1}|u \sqrt{W+1}|^{2} d \mu \\
& +\operatorname{Re} \int_{M} U_{2}|u \sqrt{W+1}|^{2} d \mu \\
& \geq\left\|\left(d_{A}^{+} d_{A}\right)^{3 / 2}(\sqrt{W+1} u)\right\|^{2}-\frac{1}{4} \int_{M} \frac{\left|d_{A}^{+} d_{A} u\right|^{2}}{W+1}|d W|^{2} d \mu \\
& -\delta\left\|\left(d_{A}^{+} d_{A}\right)^{3 / 2}(\sqrt{W+1} u)\right\|^{2}-\xi\|\sqrt{W+1} u\|^{2} \\
& =(1-\delta)\left\|\left(d_{A}^{+} d_{A}\right)^{3 / 2}(\sqrt{W+1} u)\right\|^{2}-\frac{1}{4} \int_{M} \frac{\left|d_{A}^{+} d_{A} u\right|^{2}}{W+1}|d W|^{2} d \mu \\
& -\xi\|\sqrt{W+1} u\|^{2} \\
& \geq-\xi\|\sqrt{W+1} u\|^{2}-\frac{c_{1}+c_{2}}{4}\left\|d_{A}^{+} d_{A} u\right\|^{2} .
\end{aligned}
$$

So we proved the lemma.

3.1. Proof of theorem 3.1

We assume that the hypotheses of Theorem 3.1 are satisfied, we assume that M is a geodesically complete connected Riemannian manifold with Riemannian volume element d_{μ}. Let $U=U_{1}+U_{2}$ with $0 \leq U_{1} \in L_{l o c}^{2}(M)$ and $0 \geq U_{2} \in L_{l o c}^{2}(M) \cap D(M)$, let $0 \leq W \in$ $W_{l o c}^{3,2}(M)$ is a function satisfying (3.1). We get $\left(T_{\Delta_{A}^{3}}+T_{U}+\xi\right)_{C_{c}^{\infty}(M)}$ is a non-negative symmetric operator. By the assumptions on W, it follows that $\left(T_{W}+1\right)_{C_{c}^{\infty}(M)}$ is a nonnegative symmetric operator. Since $0 \leq\left(U_{1}+W\right) \in L_{l o c}^{2}(M)$ also $U_{2} \in L_{l o c}^{2}(M) \cap D(M)$ by using Theorem X. 1 in [21] to conclude that the operator $\left(T_{\Delta_{A}^{3}}+T_{U}+T_{W}+1+\xi\right)$ is essentially self-adjoint on $C_{c}^{\infty}(M)$. By using (3.7) we get

$$
\begin{aligned}
& \left\|\left(T_{\Delta_{A}^{3}}+T_{U}+T_{W}+1+\xi\right) u\right\|^{2}+c_{3}\|u\|^{2} \\
& =\left(\left(T_{\Delta_{A}^{3}}+T_{U}+T_{W}+1+\xi\right) u,\left(T_{\Delta_{A}^{3}}+T_{U}+T_{W}+1+\xi\right) u\right) \\
& +c_{3}\|u\|^{2} \\
& =\left\|\left(T_{\Delta_{A}^{3}}+T_{U}+\xi\right) u\right\|^{2}+2 \operatorname{Re}\left(\left(T_{W}+1\right) u,\left(T_{\Delta_{A}^{3}}+T_{U}+\xi\right) u\right) \\
& +\left\|\left(T_{W}+1\right) u\right\|^{2}+c_{3}\|u\|^{2} \\
& \geq\left\|\left(T_{\Delta_{A}^{3}}+T_{U}+\xi\right) u\right\|^{2}+\left\|\left(T_{W}+1\right) u\right\|^{2}
\end{aligned}
$$

for all $u \in C_{c}^{\infty}(M)$. Applying hypothesis (3.4) of Lemma 3.2 is satisfied
with $S=T_{\Delta_{A}^{3}}+T_{U}+\xi, G=T_{W}+1$ and $D=C_{c}^{\infty}(M)$, we will use the integration by parts and the product rule, for all $u \in C_{c}^{\infty}(M)$ we have

$$
\begin{align*}
\operatorname{Im}\left(T_{W} u, T_{\Delta_{A}^{3}} u\right) & =\operatorname{Im}\left(W u,\left(d_{A}^{+} d_{A}\right)^{3} u\right) \\
& =\operatorname{Im}\left(d_{A}(W u), d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u\right) \\
& =\operatorname{Im}\left(W d_{A} u+d W u, d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u\right) \\
& =\operatorname{Im}\left(W d_{A} u, d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u\right)+\operatorname{Im}\left(d W u, d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u\right) \\
& =\operatorname{Im}\left(d W u, d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u\right) . \tag{3.8}
\end{align*}
$$

From (3.1) and (3.8) we obtain

$$
\begin{aligned}
\left|\operatorname{Im}\left(T_{W} u, T_{\Delta_{A}^{3}} u\right)\right| & =\left|\operatorname{Im}\left(d W u, d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u\right)\right| \\
& \leq \frac{1}{2} \int_{M}|d W|^{2}|u|^{2} d \mu+\frac{1}{2} \int_{M}\left|d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u\right|^{2} d \mu \\
& \leq \frac{c_{1}}{2}\|u\|^{2}+\frac{c_{2}}{2} \int_{M} W|u|^{2} d \mu+\frac{1}{2}\left\|d_{A}\left(d_{A}^{+} d_{A}\right)^{2} u\right\|^{2} \\
& \leq \frac{c_{1}}{2}\|u\|^{2}+\frac{c_{2}}{2}\left(u, T_{W} u\right)+\frac{1}{2}\left(u, T_{\Delta_{A}^{5}} u\right) \\
& \leq \frac{c_{1}}{2}\|u\|^{2}+\frac{c_{2+1}}{2}\left(u,\left(T_{\Delta_{A}^{5}}+T_{W}\right) u\right)
\end{aligned}
$$

For all $u \in C_{c}^{\infty}(M)$ we get

$$
\begin{align*}
\left|\operatorname{Im}\left(T_{W} u,\left(T_{\Delta_{A}^{3}}+T_{U}+\xi\right) u\right)\right| & =\left|\operatorname{Im}\left(T_{W} u, T_{\Delta_{A}^{3}} u\right)\right| \\
& \leq \frac{c_{1}}{2}\|u\|^{2}+\frac{c_{2+1}}{2}\left(u,\left(T_{\Delta_{A}^{5}}+T_{W}\right) u\right) . \tag{3.9}
\end{align*}
$$

From (3.6) we obtain

$$
\begin{aligned}
\left(u, T_{U} u\right) & =\left(u,\left(U_{1}+U_{2}\right) u\right) \geq\left(u, U_{2} u\right) \\
& \geq-\delta\left(u, \Delta_{A} u\right)-\xi\|u\|^{2},
\end{aligned}
$$

for all $u \in C_{c}^{\infty}(M)$ we get

$$
\begin{align*}
\left(u,\left(T_{\Delta_{A}^{3}}+T_{U}\right) u\right)+\xi\|u\|^{2} & =\left(u, T_{\Delta_{A}^{3}} u\right)+\left(u, T_{U} u\right)+\xi\|u\|^{2} \\
& =\left(u, T_{\Delta_{A}^{3}} u\right)+\xi\|u\|^{2}+(u, U u) \\
& \geq\left(u, T_{\Delta_{A}^{3}} u\right)+\xi\|u\|^{2}-\delta \int\left|d_{A} u\right|^{2} d \mu-\xi\|u\|^{2} \\
& =\left(u, T_{\Delta_{A}^{3}} u\right)-\delta\left(u,\left(d_{A}^{+} d_{A}\right)^{3} u\right) \\
& =(1-\delta)\left(u, T_{\Delta_{A}^{3}} u\right), \tag{3.10}
\end{align*}
$$

for all $u \in C_{c}^{\infty}(M)$ from (3.9), (3.10) and since

$$
\operatorname{Im}\left(u,\left(T_{\Delta_{A}^{3}}+T_{U}+\xi\right) u\right)=0
$$

We get

$$
\begin{aligned}
\left|\operatorname{Im}\left(\left(T_{W}+1\right) u,\left(T_{\Delta_{A}^{3}}+T_{U}+\xi\right) u\right)\right| & =\left|\operatorname{Im}\left(T_{W} u,\left(T_{\Delta_{A}^{3}}+T_{U}+\xi\right) u\right)\right| \\
& \leq \frac{c_{1}}{2}\|u\|^{2}+\frac{c_{2+1}}{2}\left(u,\left(T_{\Delta_{A}^{5}}+T_{W}\right) u\right) \\
& =\frac{c_{1}}{2}\|u\|^{2}+\frac{c_{2+1}}{2}\left(u, T_{W} u\right)+\frac{c_{2+1}}{2}\left(u, T_{\Delta_{A}^{5}} u\right) \\
& \leq \frac{c_{1}}{2}\|u\|^{2}+\frac{c_{2+1}}{2}\left(u, T_{W} u\right) \\
& +\frac{c_{2+1}}{2(1-\delta)}\left(u,\left(T_{\Delta_{A}^{5}}+T_{U}\right) u\right) \\
& +\left(\frac{c_{2+1}}{2}\right)\left(\frac{\xi}{1-\delta}\right)\|u\|^{2} \\
& \leq\left(\frac{c_{1}}{2}+\left(\frac{c_{2+1}}{2}\right)\left(\frac{\xi}{1-\delta}\right)\right)\|u\|^{2} \\
& +\frac{c_{2+1}}{2(1-\delta)}\left(u,\left(T_{\Delta_{A}^{5}}+T_{U}+T_{W}+1+\xi\right) u\right) .
\end{aligned}
$$

Hence the assumptions of (3.5) of Lemma 3.2 is satisfied with $S=T_{\Delta_{A}^{3}}+T_{U}+\xi$ and $G=$ $T_{W}+1$ and $D=C_{c}^{\infty}(M)$, Thus by Lemma 3.2 it follows that $S-G=T_{\Delta_{A}^{3}}+T_{U}+\xi-T_{W}-1$ is essentially self-adjoint on $C_{c}^{\infty}(M)$, since $\xi-1$ is a constant, then $\Delta_{A}^{3}+U-W$ is essentially self-adjoint on $C_{c}^{\infty}(M)$.

4. The separation problem result

We will introduce our main theorem in this section.
Theorem 4.1. Let (M, g) be a complete connected Riemannian manifold without boundary, let E be a vector bundle over M with a metric covariant derivative ∇. We assume $V \in C^{1}($ End $E), V(x) \geq 0$, for all $x \in M$, where the inequality is understood in the sense of linear operators $E_{x} \rightarrow E_{x}$ and

$$
\begin{equation*}
\left|\left(\nabla^{E n d} V(x)\right)\right| \leq \sigma(V(x))^{3 \backslash 2}, 0 \leq \sigma<1 . \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|+\|V u\| \leq C\left[\left\|L_{V}^{\nabla} u\right\|+\|u\|\right], \tag{4.2}
\end{equation*}
$$

for all $u \in D_{2}^{\nabla}$, where $C \geq 0$ be a constant, that is L_{V}^{∇} is separated in $L^{2}(E)$.
Lemma 4.2. Under the hypothesis of the Theorem 3.1, then the following inequalities are valid for all $u \in C_{c}^{\infty}(E)$,

$$
\begin{equation*}
\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|+\|V u\| \leq C_{1}\left\|L_{V}^{\nabla} u\right\|, \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|V^{1 / 2}\left(\nabla^{+} \nabla\right)^{3 / 2} u\right\| \leq C_{1}\left\|L_{V}^{\nabla} u\right\| \tag{4.4}
\end{equation*}
$$

where $V^{1 / 2}$ is the square root of the operator $V(x): E_{x} \rightarrow E_{x}$ and C_{1} is a constant depending on $n=\operatorname{dim} M, m=\operatorname{dim} E_{x}$ and σ.

Proof. By the definition of L_{V}^{∇}, for all $\delta>0$ and all $u \in C_{c}^{\infty}(E)$ we obtain

$$
\begin{aligned}
\left\|L_{V}^{\nabla} u\right\|^{2} & =\left\|\left(\nabla^{+} \nabla\right)^{3} u+V u\right\|^{2} \\
& =\left(\left(\nabla^{+} \nabla\right)^{3} u+V u,\left(\nabla^{+} \nabla\right)^{3} u+V u\right) \\
& =\|V u\|^{2}+\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2}+2 \operatorname{Re}\left(\left(\nabla^{+} \nabla\right)^{3} u, V u\right) \\
& =\|V u\|^{2}+\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2}+2 \operatorname{Re}\left(\left(\nabla^{+} \nabla\right)^{3} u, V u\right)+\delta\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2} \\
& -\delta\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2} \\
& =\|V u\|^{2}+\delta\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2}+(1-\delta)\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2} \\
& +2 \operatorname{Re}\left(\left(\nabla^{+} \nabla\right)^{3} u, V u\right) \\
& \left.=\|V u\|^{2}+\delta\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2}+(1-\delta) \operatorname{Re}\left(\nabla^{+} \nabla\right)^{3} u, L_{V}^{\nabla} u-V u\right) \\
& \left.+2 \operatorname{Re}\left(\nabla^{+} \nabla\right)^{3} u, V u\right) \\
& \left.=\|V u\|^{2}+\delta\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2}+(1-\delta) \operatorname{Re}\left(\nabla^{+} \nabla\right)^{3} u, L_{V}^{\nabla} u\right) \\
& \left.+(1+\delta) \operatorname{Re}\left(\left(\nabla^{+} \nabla\right)^{3} u, V u\right)\right) .
\end{aligned}
$$

By the product rule $\nabla(V u)=\left(\nabla^{E n d} V\right) u+V \nabla u$, so for all $u \in C_{c}^{\infty}(E)$, we have

$$
\begin{align*}
\operatorname{Re}\left(\left(\nabla^{+} \nabla\right)^{3} u, V u\right) & =\operatorname{Re}\left(\left(\nabla^{+} \nabla\right)^{2} u,\left(\nabla^{+} \nabla\right)(V u)\right) \\
& =\operatorname{Re}\left(\left(\nabla^{+} \nabla\right)^{2} u, \nabla^{+}\left(\nabla^{E n d} V\right) u+\nabla^{+} V \nabla u\right) \\
& =\operatorname{Re}\left(\left(\nabla^{+} \nabla\right)^{2} u, \nabla^{+}\left(\nabla^{E n d} V\right) u\right)+\operatorname{Re}\left(\left(\nabla^{+} \nabla\right)^{2} u, \nabla^{+} V \nabla u\right) \\
& =\operatorname{Re}(Z)+W, \tag{4.5}
\end{align*}
$$

where $Z:=\left(\left(\nabla^{+} \nabla\right)^{2} u, \nabla^{+}\left(\nabla^{E n d} V\right) u\right)$ and $W:=\left(V^{1 / 2}\left(\nabla^{+} \nabla\right)^{3 / 2} u, V^{1 / 2}\left(\nabla^{+} \nabla\right)^{3 / 2} u\right)$, then, we obtain

$$
\begin{equation*}
(1+\delta) \operatorname{Re}\left(\left(\nabla^{+} \nabla\right)^{3} u, V u\right)=(1+\delta) \operatorname{Re} Z+(1+\delta) W \geq-(1+\delta)|Z|+(1+\delta) W \tag{4.6}
\end{equation*}
$$

By Cauchy-Schwartz $2 a b \leq k a^{2}+k^{-1} b^{2}$, where k, a and b are positive real numbers and the condition (4.1) we obtain

$$
\begin{align*}
& |Z| \leq(\sigma+1) \int_{M}\left|\left(\nabla^{+} \nabla\right)^{3 / 2} V^{1 / 2} u\right|_{\left(T^{*} M \otimes E\right)_{x}}|V u|_{E_{x}} d \mu \\
& |Z| \leq \frac{\delta \alpha}{2}\left\|V^{1 / 2}\left(\nabla^{+} \nabla\right)^{3 / 2} u\right\|^{2}+\frac{(\sigma+1)^{2}}{2 \delta \alpha}\|V u\|^{2} \tag{4.7}
\end{align*}
$$

for all $\alpha>0$, we use Cauchy-Schwartz again, we obtain

$$
\begin{equation*}
\left|\operatorname{Re}\left(\left(\nabla^{+} \nabla\right)^{3} u, L_{V}^{\nabla} u\right)\right| \leq\left|\left(\left(\nabla^{+} \nabla\right)^{3} u, L_{V}^{\nabla} u\right)\right| \leq \frac{\gamma}{2}\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2}+\frac{1}{2 \gamma}\left\|L_{V}^{\nabla} u\right\|^{2} \tag{4.8}
\end{equation*}
$$

for all $\gamma>0$, we obtain

$$
\begin{aligned}
\left\|L_{V}^{\nabla} u\right\|^{2} & \geq\|V u\|^{2}+\delta\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2} \\
& -\frac{(1+\delta) \delta \alpha}{2}\left\|V^{1 / 2}\left(\nabla^{+} \nabla\right)^{3 / 2} u\right\|^{2}-\frac{(1+\delta)(\sigma+1)^{2}}{2 \delta \alpha}\|V u\|^{2} \\
& +(1+\delta)\left\|V^{1 / 2}\left(\nabla^{+} \nabla\right)^{3 / 2} u\right\|^{2}-\frac{|1-\delta| \gamma}{2}\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2} \\
& -\frac{|1-\delta|}{2 \gamma}\left\|L_{v}^{\nabla} u\right\|^{2},
\end{aligned}
$$

from this, we obtain

$$
\begin{aligned}
\left(1+\frac{|1-\delta|}{2 \gamma}\right)\left\|L_{V}^{\nabla} u\right\|^{2} & \geq\left(1-\frac{(1+\delta)(\sigma+1)^{2}}{2 \delta \alpha}\right)\|V u\|^{2} \\
& +\left(\delta-\frac{|1-\delta| \gamma}{2}\right)\left\|\left(\nabla^{+} \nabla\right)^{3} u\right\|^{2} \\
& +\left((1+\delta)-\frac{(1+\delta) \delta \alpha}{2}\right)\left\|V^{1 / 2}\left(\nabla^{+} \nabla\right)^{3 / 2} u\right\|^{2}
\end{aligned}
$$

Now the inequalities (4.3) and (4.4) holds if

$$
\begin{equation*}
|1-\delta|<\frac{2 \delta}{\gamma}, \delta \alpha<2 \text { and }(1+\delta)(\sigma+1)^{2}<4 \tag{4.9}
\end{equation*}
$$

Since, from $0 \leq \sigma<1$, there exist $\delta>0, \gamma>0$ and $\alpha>0$ such that the inequalities (4.10) hold.

4.1. Proof of theorem 4.1

As M be a geodesically complete manifold it is known that $\left(\left.L_{V}^{d}\right|_{C_{c}^{\infty}(M)}\right)^{\sim}$ in $L^{2}(M)$, be m-accretive and it coincides with $H_{2 . V}^{d}$. Also, from the assumption on M, the operator $\left(\left.L_{V}^{\nabla}\right|_{C_{c}^{\infty}(E)}\right)^{\sim}$ in $L^{2}(E)$, is m-accretive and it coincides with $H_{2 . V}^{\nabla}$. Both of these statements are proven in [31]. From the strategy of Milatovic employs in [25], then the operator $\left.L_{V}^{\nabla}\right|_{C_{c}^{\infty}(E)}$ is essentially self-adjoint and $\left(\left.L_{V}^{\nabla}\right|_{C_{c}^{\infty}(E)}\right)^{\sim}=H_{2 . V}^{\nabla}$. We prove (4.3) and (4.4) for all $u \in D_{2}^{\nabla}=\operatorname{Dom}\left(H_{2 . V}^{\nabla}\right)$, from which (4.2) follows directly. Since $H_{2 . V}^{\nabla}$ is a closed operator, there exists a sequence $\left\{u_{k}\right\}$ in $C_{c}^{\infty}(E)$ such that $u_{k} \rightarrow u$ and $L_{V}^{\nabla} u_{k} \rightarrow$ $H_{2 . V}^{\nabla} u$ in $L^{2}(E)$, by the previous lemma the sequence $\left\{u_{k}\right\}$ satisfies (4.3) and (4.4), hence $\left\{\left(\nabla^{+} \nabla\right)^{3} u_{k}\right\},\left\{V u_{k}\right\}$ and $\left\{V^{1 / 2}\left(\nabla^{+} \nabla\right)^{3 / 2} u_{k}\right\}$ are Cauchy sequences in the space $L^{2}(E)$. Furthermore, $\left\{\nabla u_{k}\right\}$ is a Cauchy sequence in $L^{2}\left(T^{*} M \otimes E\right)$ as

$$
\left\|\nabla u_{k}\right\|^{2}=\left(\nabla u_{k}, \nabla u_{k}\right)=\left(\nabla^{+} \nabla u_{k}, u_{k}\right) \leq\left\|\nabla^{+} \nabla u_{k}\right\|\left\|u_{k}\right\|
$$

and

$$
\begin{aligned}
\left\|\left(\nabla^{+} \nabla\right)^{3 / 2} u_{k}\right\|^{2} & =\left(\left(\nabla^{+} \nabla\right)^{3 / 2} u_{k},\left(\nabla^{+} \nabla\right)^{3 / 2} u_{k}\right) \\
& =\left(\left(\nabla^{+} \nabla\right)^{3} u_{k}, u_{k}\right) \leq\left\|\left(\nabla^{+} \nabla\right)^{3} u_{k}\right\|\left\|u_{k}\right\|
\end{aligned}
$$

We will prove that $\left(\nabla^{+} \nabla\right)^{3} u_{k} \rightarrow\left(\nabla^{+} \nabla\right)^{3} u, V u_{k} \rightarrow V u, V^{1 / 2}\left(\nabla^{+} \nabla\right)^{3 / 2} u_{k} \rightarrow V^{1 / 2}\left(\nabla^{+} \nabla\right)^{3 / 2} u$, $\nabla u_{k} \rightarrow \nabla u$ and $\left(\nabla^{+} \nabla\right)^{3 / 2} u_{k} \rightarrow\left(\nabla^{+} \nabla\right)^{3 / 2} u$. As the essential self-adjointness of $\left.\nabla^{+} \nabla\right|_{C_{c}^{\infty}(E)}$ and $\left.\left(\nabla^{+} \nabla\right)^{3}\right|_{C_{c}^{\infty}(E)}$ we obtain $\left(\nabla^{+} \nabla\right)^{3 / 2} u_{k} \rightarrow\left(\nabla^{+} \nabla\right)^{3 / 2} u$ and $\left(\nabla^{+} \nabla\right)^{3} u_{k} \rightarrow\left(\nabla^{+} \nabla\right)^{3} u$ in $L^{2}(E)$. As $\left\{\nabla u_{k}\right\}$ is a Cauchy sequences in $L^{2}\left(T^{*} M \otimes E\right)$, it follows that ∇u_{k} convergent
to some elements $z \in L^{2}\left(T^{*} M \otimes E\right)$, respectively then for all $\Psi \in C_{c}^{\infty}\left(T^{*} M \otimes E\right)$ we have $0=\left(\nabla u_{k}, \Psi\right)-\left(u_{k}, \nabla^{+} \Psi\right) \rightarrow(z, \Psi)-\left(u, \nabla^{+} \Psi\right)=(z, \Psi)-(\nabla u, \Psi)$, as $\operatorname{Dom}\left(H_{2 . V}^{\nabla}\right) \subset$ $W_{l o c}^{2,2}(E)$ (see, Lemma 8.8 in [8]). With the convergence relations, we take the limit as $k \rightarrow \infty$ in all terms in (4.3) and (4.4) with u replaced by u_{k} then (4.3) and (4.4) hold for all $u \in D_{2}^{\nabla}=\operatorname{Dom}\left(H_{2 . V}^{\nabla}\right)$.

References

[1] H.A. Atia, Separation problem for second order elliptic differential operators on Riemannian manifolds, J. Computat. Anal. Appl. 19, 229-240, 2015.
[2] H.A. Atia, R.S. Alsaedi and A. Ramady, Separation of bi-harmonic differential operators on Riemannian manifolds, forum Math. 26(3), 953-966, 2014.
[3] H.A. Atia, Magnetic bi-Harmonic differential operators on Riemannian manifolds and the separation problem, J. Contemporary Math. Anal. 51, 222-226, 2016.
[4] H.A. Atia, Separation problem for bi-harmonic differential operators in $L_{p^{-}}$ spaces on manifolds, J. Egyptian Math. Soc. 27, Article number:24, 2019. https://doi.org/10.1186/s42787-019-0029-6.
[5] L. Bandara and H. Saratchandran, Essential self-adjointness of powers of first order differential operators on non-compact manifolds with low-regularity metrics, J. Funct. Anal. 273, 3719-3758, 2017.
[6] K.Kh. Boimatov, Coercive estimates and separation for second order elliptic differential equations, Soviet Math. Dokl. 38, 157-160, 1989.
[7] K.Kh. Boimatov, On the Everitt and Giertz method for Banach spaces, Dokl. Akad. Nauk 356, 10-12, 1997.
[8] M. Braverman, O. Milatovic and M. Shubin, Essential self-adjointness of Schrodinger type operators on manifolds, Russian Math. Surveys, 57, 641-692, 2002.
[9] R.C. Brown, D.B. Hinton and M.F. Shaw, Some separation criteria and inequalities associated with linear second order differential operators, in: Function spaces and applications, 7-35, Narosa Publishing House, New Delhi, 2000.
[10] M. Braverman and S. Cecchini, Spectral theory of von Neumann algebra valued differential operators over non-compact manifolds, J. Noncommut. Geom. 10, 1589-1609, 2016.
[11] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrodinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer, Berlin, 1987.
[12] K.J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, in: Graduate Texts in Mathematics 194, Springer, Berlin, 2000.
[13] W.D. Evans and A. Zettle, Dirichlet and separation results for Schrodinger type operators, Proc. Roy. Soc. Edinburgh Sect. A 80, 151-162, 1978.
[14] W.N. Everitt and M. Giertz, Inequalities and separation for Schrodinger type operators in $L^{2}\left(R^{n}\right)$, Proc. Roy. Soc. Edinburgh Sect. A 79, 257-265, 1977.
[15] M. Gaffney, A special Stokes's theorem for complete Riemannian manifolds, Ann. Math. 60, 140-145, 1954.
[16] A. Grigoryan, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics 47, American Mathematical Society, Providence, RI, International Press, Boston, MA, 2009.
[17] R. Grummt and M. Kolb, Essential selfadjointness of singular magnetic Schrodinger operators on Riemannian manifolds, J. Math. Anal. Appl. 388, 480-489, 2012.
[18] B. Guneysu, Kato's inequality and form boundedness of Kato potentials on arbitrary Riemannian manifolds, Proc. Am. Math. Soc. 142, 1289-1300, 2014.
[19] B. Guneysu, Sequences of Laplacian cut-off functions, J. Geom. Anal. 26, 171-184, 2016.
[20] B. Guneysu, Covariant Schrodinger semigroups on Riemannian manifolds, Operator Theory, Advances and Applications 264, Birkhauser, Basel, 2017.
[21] B. Guneysu and O. Post, Path integrals and the essential self-adjointness of differential operators on noncompact manifolds, Math. Z. 275, 331-348, 2013.
[22] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New york, 1980.
[23] O. Milatovic, Separation property for Schrodinger operators on Riemannian manifolds, J. Geom. Phys. 56, 1283-1293, 2006.
[24] O. Milatovic, Separation property for Schrodinger operators ${ }^{p}$-spaces on non compact manifolds, Complex Var. Elliptic Equ. 58, 853-864, 2013.
[25] O. Milatovic, Self-adjoitness of perturbed biharmonic operators on Riemannian manifolds, Math. Nachr. 290, 2948-2960, 2017.
[26] O. Milatovic, Self-adjointness, m-accretivity, and separability for perturbations of laplacian and bi-laplacian on Riemannian manifolds, Integral Equations Operator Theory, 90, Art. 22, 2018.
[27] X.D. Nguyen, Essential self-adjointness and self-adjointness for even order elliptic operators, Proc. Roy. Soc. Edinburgh Sect. A, 93, 161-179, 1982.
[28] N. Okazawa, An p^{p} theory for Schrodinger operators with nonnegative potentials, J. Math. Soc. Japan 36, 675-688, 1984.
[29] N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Japan 34, 677-701, 1982.
[30] M. Reed and B. Simon, Methods of modern mathematical physics II: Fourier analysis, self-adjointness, Academic Press, New York, 1975.
[31] R. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal. 52, 48-79, 1983.

[^0]: *Corresponding Author.
 Email addresses: h_a_atia@hotmail.com (H.A. Atia), hh.emam@science.zu.edu.eg (H.H. Emam)
 Received: 10.11.2021; Accepted: 22.03.2022

