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ABSTRACT 
 
In this study, resonant vibrations of two-span railway bridges subjected to high-speed trains (HSTs) are 
studied. The continuous beam is modelled by using Bernoulli-Euler beam theory, and the train is considered 
as a series of moving concentrated loads. The dynamic response is obtained analytically by using the assumed 
mode method. Effects of the speed parameter and the span to car length ratio on the response are examined. 
Numerical results show that the above mentioned parameters play very important role on the dynamic 
behavior of two-span bridges.  
Keywords: Continuous bridge, high-speed train, resonant vibration, moving load, railway bridge. 
 
 
İKİ AÇIKLIKLI DEMİRYOLU KÖPRÜLERİNİN HIZLI TREN GEÇİŞLERİ ALTINDAKİ 
REZONANS TİTREŞİMLERİ 
 
ÖZET 
 
Bu çalışmada iki açıklıklı demiryolu köprülerinin hızlı tren geçişleri altındaki rezonans titreşimleri ele 
alınmıştır. Sürekli kiriş, Euler-Bernoulli teorisine göre modellenmiş, tren ise tekil yüklerden oluşan bir yük 
katarı şeklinde düşünülmüştür. Mod birleştirme metodu kullanılarak dinamik tepkiler analitik olarak elde 
edilmiştir. Hız parametresi ve açıklık / vagon uzunluğu oranının dinamik davranış üzerindeki etkileri 
incelenmiştir. Sayısal sonuçlar, bahsedilen bu parametrelerin iki açıklıklı köprülerin dinamik davranışını 
önemli ölçüde etkilediğini göstermektedir. 
Anahtar Sözcükler: Sürekli kiriş, yüksek hızlı tren, rezonans titreşimi, hareketli yük, demiryolu köprüsü. 
 
 
 
1. INTRODUCTION 
 
The dynamic response of railway bridges under trains moving at resonant speeds is of great 
importance. Many researchers have contributed to the solution of the problem with their 
improvements, and still the dynamics of bridges under high-speed trains (HSTs) is a subject that 
draws considerable attention of researchers. Moving load induced intensive vibrations on the 
bridge are not desired because they significantly affect the transportation safety. When a train 
travels over a bridge at a resonant speed, the response of the bridge tends to increase steadily as 
there are more loads passing the bridge [1, 2]. This is the so-called “resonance phenomenon”, and 
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it can cause passenger discomfort, a reduction of the service life of the bridge, ballast 
deconsolidation, and subsequent risk of derailment [3].  

A numerous studies related to the moving load problems for simply supported beams 
have been reported in the literature [4-7]. For continuous beams, the vibration of a beam with two 
equal spans under a constant moving force was first solved by Ayre et al. [8]. Henchi and Fafard 
[9] used an exact dynamic stiffness element in the finite element approximation to study the 
dynamic response of multi-span structures under a convoy of moving loads. They developed a 
dynamic model coupled with a fast Fourier transform (FFT) algorithm. Ichikawa et al. [10] 
investigated the dynamic response of a multi-span Euler-Bernoulli beam subjected to a moving 
load with time-dependent velocity using the modal analysis. They estimated the effects of 
acceleration or deceleration of the moving load on the dynamic amplification factor for a 
symmetric three-span continuous beam. Kwark et al. [11] studied dynamic response of two-span 
continuous concrete bridges under the Korean HST by employing the experimental and 
theoretical methods. Martinez-Castro et al. [12] presented a semi-analytical solution for damped 
non-uniform continuous beams. They modeled the moving loads by the Dirac Delta function, and 
the modal loads were obtained in terms of cubic Hermitian polynomials.  Johansson et al. [13] 
derived a closed-form solution for evaluating the dynamic behavior of a general multi-span 
Bernoulli-Euler beam. The natural frequencies of vibration and corresponding mode shapes were 
obtained by applying the boundary conditions to the characteristic function of the beam.  

Although above-mentioned studies gave some results on moving load-induced 
vibrations of single or multi-span beams, no further details were presented for the resonant 
vibrations of two-span continuous beams. In the present study, the dynamic response of two-span 
bridges under HSTs is investigated with an emphasis on the resonant vibration. The impact 
factors (I) for dynamic reactions at different sections of each span are calculated depending on 
the speed parameter and the span to car length ratio.  
 
2. MATHEMATICAL FORMULATION 
 
Fig. 1 shows a two-span continuous beam with equal span length L and uniform cross section 
subjected to a series of moving loads at a constant speed v. Neglecting the damping of the beam, 
the governing equation of motion can be written as 
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where m is the mass per unit length, ( , )y y x t  is the transverse displacement of any 
beam section at time t, x refers to the longitudinal coordinate, and EI is the flexural stiffness of 
beam. ( , )F x t  is the loading function and can be defined as  
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where k kx vt d   the distance of the kth load to the left-end of the beam, kd  is the 

distance of kth load to the first one ( 1 0d  ), N is the total number loads, Pk is the magnitude of 

the kth load, /k kt d v  entrance time of the kth load to the beam, ( )δ   is the Dirac delta 

function, and ( )H   is the Heaviside function. 
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Figure 1. A two-span continuous beam subjected to a series of moving loads 
 

In solution, the assumed mode method is employed. Thus, the displacement of the 
beam can be expressed as 
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where ( )nY t  is the generalized coordinates associated with the nth natural mode and 

( )n x is the nth modal shape function of the beam.  

Substituting Eqs. (2) and (3) into Eq. (1), multiplying both sides of the resulting 
expression by ( )m x , and integrating the result with respect to x between 0 and 2L, the equation 

of motion in terms of the generalized displacement ( )nY t  can be obtained as the follows with 

considering the orthogonality conditions of the modes. 
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where over dot indicates differentiation with respect to time and n  represents nth 

circular natural frequency of the two-span bridge. If first N modes of vibration are considered, 
Eq. (4) constitutes N equations for N unknowns. The solution can be obtained easily by using the 
Newmark’s method with 1 / 4   and 1 / 2   [15]. 
 
3. MODAL SHAPE FUNCTIONS OF TWO-SPAN CONTINUOUS BEAMS 
 
The modal shape functions of two-span continuous beams can be divided into two groups: 
symmetric and antisymmetric. The circular natural frequency for symmetric and antisymmetric 
modes can be expressed as  
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Then, the modal shape functions can be expressed as 
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4. RESONANCE SPEEDS 
 
As it well known, resonance in the bridge may occur by depending on the train type, i.e., the 
distance between its axles, in a speed as [1, 4, 6]: 
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where n , L and d are nth the natural circular frequency of the beam, span length and 

the characteristic distance between the train loads, which is generally assumed as the car length, 
respectively. For simplicity, we shall introduce the following dimensionless variable: 

 

2,1cr

v v
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                                                                                                                           (9) 

 

where, S is the dimensionless speed parameter, crv is the critical speed or the 1st 

resonance of 2nd mode vibration, and v is the train speed. By letting i = 1,2,3,..., the preceding 
equation indicates that resonance may occur at the following dimensionless speeds: S = 1, 0.5, 
0.333,... for n = 2, and S = 0.64, 0.32, 0.213,... for n = 1 with diminishing values. Fig. 2 gives 
train speed – span to car length ratio curves for different dimensionless speeds calculated by Eqs. 
(8) and (9). As seen in the figure, since todays HSTs can reach the speeds within 250-350km/h, 
speeds for the 1st resonance of 2nd vibration mode (S = 1) are not possible considering today’s 
technology, but speeds for S = 0.64, 0.5 and 0.32 are possible for different span to car length 
ratio. 
 
5. NUMERICAL RESULTS 
 
For the purpose of illustration, a number of two span bridges made of pre-stressed concrete with 
E = 29.43 GPa and having different span lengths L are considered. It is assumed that the mass per 
unit length and the frequency of vibration of each bridge are defined as follows:  30  0.2m L   
t/m and 1 900 / L   rad/s [4]. In order to study the effect of span to car length ratio ( /L d ) on 

the bridge dynamic response, 16 values for /L d  within 0.5 – 2 are considered. Speed parameter 
(S) is considered between 0.0 – 1.0. The increment in S for each dynamic analysis is selected as 
0.01, and for each /L d , the results are, thus, obtained for 100 different train speeds in the 
dynamic analysis. Eurostar, a European HST, is selected as a moving vehicle and is simplified as 
a series of moving concentrated forces as shown in Fig. 3. For this vehicle, characteristic car 
length (d) is 18.7m.  
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Figure 2. Train speed vs. L / d plot for different dimensionless speeds 
 

 
 

Figure 3. Eurostar HST configuration (units in m) 
 

In the following, graphs are given for the impact factor of any response parameter. The 
impact factor (I) is defined as [4, 14]: 
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where dynD and staD  denote, respectively, the maximum dynamic and static response of the 

bridge at a section x due to the passage of moving load. 
The impact factors ID computed for the dynamic vertical displacement at the middle of 

each span are plotted with respect to the speed parameter S and the span to car length ratio /L d  
in Figs. 4 and 5 along with contour lines. An important trend revealed by these figures is that the 
shorter the span length of a two span bridge, the larger the impact factor for the displacement of 
the each span. Another observation from the figures is that the dynamic responses for the 
resonance points with S = 1.0, 0.64 and 0.5 are of practical significance, while the other resonant 
responses can generally be neglected in practice. Considerable is the fact that when / 1.5L d  , 
nearly no resonant response will be induced on the bridge due to the passage of trains, as can be 
seen in the contour lines in Figs. 3 and 4. Another merit with the figures is that the impact factor 
for the second span is slightly larger than that of the first. Finally, we can also observe that if the 
operation speeds of the train can be controlled in the range with 0.0 ≤ S < 0.4 the minimal 
resonant responses will be induced on the bridge.  
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Figure 4. Effect of the span to car length ratio on the impact factor for displacement at the 
middle of first span: /I S L d   diagram and contour lines 

 

 
 

Figure 5. Effect of the span to car length ratio on the impact factor for displacement at the 
middle of second span /I S L d   diagram and contour lines 
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Figure 6. Effect of the span to car length ratio on the maximum acceleration at the middle of first 
span: /a S L d   diagram and contour lines 

 

 
 

Figure 7. Effect of the span to car length ratio on the maximum acceleration at the middle of 
second span: /a S L d   diagram and contour lines. 

 
Figs. 6 and 7 along with contour lines show maximum accelerations computed at the 

middle of each span with respect to the speed parameter S and the span to car length ratio /L d . 
One can make similar observations from these figures as in Figs. 4 and 5.   

Figs. 8-10 along with contour lines give the impact factors IM for the bending moment 
at the middle of each span and the second support of the bridge with respect to the speed 
parameter S and the span to car length ratio /L d . As can be seen, the impact factor IM for 
bending moment at the second support of the bridge is smaller than those for bending moments at 
the middle of first and second spans.  

0
0.25

0.5
0.75

1

0.5

1

1.5

2
0

2

4

6

SL/d

M
ax

im
um

 a
cc

el
er

at
io

n 
of

 b
ri

dg
e 

at
 th

e 
fi

rs
t m

id
sp

an
 (

g)

S

L
/d

0 0.25 0.5 0.75 1
0.5

1

1.5

2

1 st span

0
0.25

0.5
0.75

1

0.5

1

1.5

2
0

1

2

3

4

5

6

7

SL/d

M
ax

im
um

 a
cc

el
er

at
io

n 
of

 b
ri

dg
e 

at
 th

e 
se

co
nd

 m
id

sp
an

 (
g)

S

L
/d

0 0.25 0.5 0.75 1
0.5

1

1.5

2

2 nd span

V. Kahya, O. Araz, M. Turan                                                    Sigma 33, 188-199, 2015 



195 
 

The impact factors IS for the shear force at both ends of each span are plotted with 
respect to the speed parameter S and the span to car length ratio /L d  in Figs. 11-14 along with 
contour lines. The impact factors for shear force (IS) at the right-ends of each span are smaller 
than those at the left-ends. Another observation from the figures is that the dynamic shear force 
and bending moment for the resonance points with S = 1.0, 0.64 and 0.5 are of practical 
significance, while the other resonant responses can generally be neglected in practice. 
 

 
 

Figure 8. Effect of the span to car length ratio on the impact factor for bending moment at the 
middle of first span: /I S L d   diagram and contour lines 

 

 
 

Figure 9. Effect of the span to car length ratio on the impact factor for bending moment at the 
middle of second span: /I S L d   diagram and contour lines 
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Figure 10. Effect of the span to car length ratio on the impact factor for bending moment at the 
middle support of the bridge: /I S L d   diagram and contour lines 

 

 
 

Figure 11. Effect of the span to car length ratio on the impact factor for shear force at the left-end 
of first span: /I S L d   diagram and contour lines 
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Figure 12. Effect of the span to car length ratio on the impact factor for shear force at the right-
end of first span: /I S L d   diagram and contour lines 

 

 
 

Figure 13. Effect of the span to car length ratio on the impact factor for shear force at the left-end 
of second span: /I S L d   diagram and contour lines 
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Figure 14. Effect o f the span to car length ratio on the impact factor for shear force at the right-
end of second span: /I S L d   diagram and contour lines 

 
6. CONCLUSIONS 
 
In this study has been conducted to specify the effects of various parameters including the speed 
parameter and the span to car length ratio on the two-span bridge accelerations and impact 
factors. Dynamic responses and impact factors have been calculated for 16 bridges with different 
span lengths and 100 different velocities. The following conclusions can be drawn from the 
study: 
 

1. The results show that an increase in the speed parameter causes an increase in the impact 
factor. If the operation speeds of the train can be controlled in the range with 0.0 ≤ S < 0.4 the 
minimal resonant responses will be induced on the bridge. On the other hand, smaller span to car 
length ratios lead to greater impact factor values.  

2. Acceleration and impact factors for displacement, bending moment and shear force at any 
section of the first span are smaller than those for the second span. 

3. Impact factors for shear force at the right-end of each span are smaller than those 
calculated at the left-end of each span. 

4. When the span to car length ratio /L d  equals 1.5, virtually no resonant responses for 
displacement, acceleration, bending moment and shear force will be induced on two-span 
bridges. 
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