DOI:10.25092/baunfbed. 1022448

J. BAUN Inst. Sci. Technol., 24(2), 537-544, (2022)

Some multipliers of DBCK-algebras

Şule AYAR ÖZBAL1*, Yong Ho YON2

¹Yaşar University Faculty of Science and Letters, Department of Mathematics, Bornova, İzmir. ²Mokwon University, Department of Software Liberal Art, Deajeon, Korea.

> Geliş Tarihi (Received Date): 15.11.2021 Kabul Tarihi (Accepted Date): 16.03.2022

Abstract

The purpose of this document is to develop some of the basic theory of the multipliers algebra of dual BCK-algebras. In this study we demonstrate the concept of left bimultiplier and right bi-multiplier of dual BCK (DBCK-algebra) algebras. Several examples and results pertaining to these multipliers on DBCK-algebras are developed based on these definitions. Then we study the characteristics of the bi-multipliers on DBCK-algebras and obtained some properties of DBCK-algebras. We focused on the behavior of the elements of DBCK-algebras under the concept of left bi-multiplier and right bi-multiplier of DBCK-algebras. We also characterize $Ker_a(X)$ and $Fix_a(X)$ by bimultipliers on DBCK- algebras. We describe some elementary related properties of these sets.

Keywords: Multipliers, DBCK-algebras, kernel, fixed set

DBCK-cebirlerinin bazı çarpanları

Öz

Bu çalışmanın amacı DBCK-cebirlerinin çarpanlarının bazı temel teorilerini geliştirmektir. Bu çalışmada DBCK-cebirlerinin sol ikili-çarpanları ve sağ ikili çarpanları tanıtılmıştır. Bu tanımlardan yola çıkarak DBCK cebirlerinde bu çarpanlara ilişkin çeşitli örnekler ve sonuçlar geliştirilmiştir. Sonrasında DBCK-cebirleri üzerinde ikili çarpanların iligili karakteristik özellikleri çalışılmış ve bazı özellikleri elde edilmiştir. DBCK-cebirlerinin elemanlarının DBCK-cebirleri üzerinde sol ikiliçarpanları ve sağ ikili çarpanları altında görüntüleri çalışılmıştır. DBCK-cebirileri üzerinde Ker_a(X) ve Fix_a(X) kümeleri DBCK-cebirleri üzerinde ikili-çarpanlar aracılığı ile tanımlanmıştır. Bu kümelerin ilgili bazı temel özelliklerine yer verilmiştir.

^{*}Şule AYAR ÖZBAL, sule.ayar@yasar.edu.tr, <u>https://orcid.org/0000-0001-5933-5858</u> Yong Ho YON, yonyongho@gmail.com, <u>https://orcid.org/0000-0003-1187-8997</u>

Anahtar kelimeler: Çarpanlar, DBCK-cebirleri, çekirdek, sabit küme

1. Introduction

The notion of *MV*-algebra was invented by Chang [1] to provide an algebraic proof of the completeness theorem of infinite valued Lukasiewicz propositional calculus. The algebraic theory of *MV*-algebas was deeply studied by [2-5]. The notion of *DBCK*-algebra which is an algebraic system having as models logical systems equipped with implication was introduced by K. H. Kim and Y. H. Yon [6] in 2007. They introduced some characteristics of dual BCK-algebras and MV -algebras, and proved that the MV -algebra is coincided to the bounded commutative dual BCK-algebra. It was also studied and generalized in [7].

A partial multiplier on a commutative semigroup (A,.) was introduced by Larsen [8] as a function F from a nonvoid subset D_F of A into A such that F(x).y=x. F(y) for all x, y in D_F . The concept of multiplier for distributive lattices was defined by Cornish [9]. For a distributive lattice multipliers are used to give a non standard construction of the maximal lattice of quotients [10]. In this study, we establish the notion of left bi-multiplier and right bi-multiplier of dual *BCK* (*DBCK*- algebra) algebras to study the properties of the bi-multipliers on *DBCK*-algebras. We characterize *Ker_a* (*X*) and *Fix_a* (*X*) by bi-multipliers on *DBCK*-algebras.

2. Preliminaries

Definition 2.1. [6] A DBCK-algebra is an algebraic system $(Y, \rightarrow, 1)$ that has the following axioms for every *x*, *y*, $z \in Y$:

DBCK1. $(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) = 1$,

DBCK2 $x \rightarrow ((x \rightarrow y) \rightarrow y) = 1$,

DBCK3. $x \rightarrow x = 1$,

DBCK4. $x \rightarrow y = 1$ and $y \rightarrow x = 1$ imply x = y,

DBCK5. $x \rightarrow l = l$.

A *DBCK*-algebra is a poset with the binary relation " \leq " defined by $x \leq y$ if and only if $x \rightarrow y=1$, and 1 is the greatest element.

A (meet-) semilattice with a binary operation" \clubsuit " that has the following axiom is called a *Heyting semilattice* (or *implicative semilattice*):

H. $z \land x \leq y$ if and only if $z \leq x \Rightarrow y$.

Proposition 2.2. [6] A DBCK-algebra Y satisfies the properties given below for every $x, y, z \in Y$:

(1) $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z),$

(2) $y \le x \Rightarrow y$ (3) $x \le y$ implies $z \Rightarrow x \le z \Rightarrow y$ and $y \Rightarrow z \le x \Rightarrow z$, (4) $x \le y \Rightarrow z$ implies $y \le x \Rightarrow z$, (5) $1 \Rightarrow x = x$. (6) $x \Rightarrow y \le (y \Rightarrow z) \Rightarrow (x \Rightarrow z)$ (7) $x \le (x \Rightarrow y) \Rightarrow y$, (8) $x \Rightarrow y \le (z \Rightarrow x) \Rightarrow (z \Rightarrow y)$, (9) $((x \Rightarrow y) \Rightarrow y) \Rightarrow y = x \Rightarrow y$. ($x \Rightarrow y$) $\Rightarrow y$ is an upper bound of x and y in a *DBCK*-algebra Y by (2) and (7).

If there exists an element 0 in Y where $0 \Rightarrow x=1$ for all $x \in Y$, a *DBCK*-algebra (Y, \Rightarrow , 1) is defined as to be *bounded*. The element $x \Rightarrow 0$ will be denoted by x^n and $x^{nn} = (x^n)^n$ for any element x in a bounded *DBCK*-algebra Y. In implicative algebras, implications generate the complementation. Here $x \Rightarrow 0 = x^n$ means that \Rightarrow induces ⁿ.

Proposition 2.3. [6] A bounded *DBCK*-algebra has the properties given below *x*, *y* $\in V$:

(1) $I^{n} = 0$ and $0^{n} = 1$, (2) $x \le x^{nn}$ and $x^{nnn} = x^{n}$, (3) $x \twoheadrightarrow y \le y^{n} \twoheadrightarrow x^{n}$, (4) $x \le y$ implies $y^{n} \le x^{n}$, (5) $x \twoheadrightarrow y^{n} = y \twoheadrightarrow x^{n}$.

A *DBCK*-algebra V is said to be *commutative* if it satisfies $(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$ for every $x, y \in V$.

Proposition 2.4. [6] A bounded commutative *DBCK*-algebra Y has the properties given below for every $x, y \in Y$: (1) Y is a lattice with $x \lor y = (x \Rightarrow y) \Rightarrow y$ and $x \land y = (x^n \lor y^n)^n$, (2) $x = x^{nn}$, (3) $x \Rightarrow y = y^n \Rightarrow x^n$.

3. Multipliers of DBCK-algebras

Definition 3.1. Let Y be a DBCK-algebra. A left bi-multiplier of Y is a map $\mathcal{H}: Y$

 $\times V \rightarrow V$ satisfying the properties given below: $\forall x, y, z \in V$,

- (L1) $\mathcal{H}(xz, y) = x \mathcal{H}(z, y),$
- (L2) $\mathcal{H}(x, y) = y \mathcal{H}(x, 1).$

A right bi-multiplier of V is a map $\Psi: V \times V \to V$ satisfying the properties given below: $\forall x, y, z \in V$, (R1) $\Psi(x, yz) = y \Psi(x, z)$, (R2) $\Psi(x, y) = x \Psi(1, y)$.

Lemma 3.2. Let \mathcal{H} be a left-multiplier of a *DBCK*-algebra \mathcal{Y} . Then it satisfies the undermentioned for all $x, y, z \in \mathcal{Y}$:

(1) $\mathcal{H}(1, y) = 1,$ (2) $x \leq \mathcal{H}(x, y),$ (3) $\mathcal{H}(xz, y) = \mathcal{H}(yz, x),$ (4) $\mathcal{H}(xy, y) = 1,$ (5) $\mathcal{H}(x, x) = 1.$

Proof. (1) $\mathcal{H}(1, y) = \mathcal{H}(\mathcal{H}(1, y)1, y) = \mathcal{H}(1, y) \mathcal{H}(1, y) = 1 \forall y \in V$, (2) $x \mathcal{H}(x, y) = \mathcal{H}(xx, y) = \mathcal{H}(1, y) = 1 \forall x, y \in V$, by (L1) and (1) of this lemma, hence $x \leq \mathcal{H}(x, y)$. (3) $\mathcal{H}(xz, y) = y \mathcal{H}(xz, 1) = y(x \mathcal{H}(z, 1)) = y \mathcal{H}(z, x) = \mathcal{H}(yz, x) \forall x, y, z \in V$, by (L2) and (L1). (4) $\mathcal{H}(xy, y) = \mathcal{H}(yy, x) = \mathcal{H}(1, x) = 1 \forall x, y \in V$, by (3) of this lemma. (5) $\mathcal{H}(x, x) = \mathcal{H}(1x, x) = 1 \forall x \in V$, by (4) of this lemma.

Lemma 3.3. Let \mathcal{H} be a right-multiplier of a *DBCK*-algebra \mathcal{Y} . Then it satisfies the undermentioned for all $x, y, z \in \mathcal{Y}$:

(1) $\mathcal{H}(y, 1) = 1,$ (2) $y \leq \mathcal{H}(x, y),$ (3) $\mathcal{H}(x, yz) = \mathcal{H}(y, xz),$ (4) $\mathcal{H}(x, yx) = 1,$ (5) $\mathcal{H}(x, x) = 1.$

Proof. (1) For all $y \in V$, $\mathcal{H}(y, 1) = \mathcal{H}(y, \mathcal{H}(1, y)|1) = \mathcal{H}(y, 1) \mathcal{H}(y, 1) = 1$.

(2) For all $x, y \in V$, $y \stackrel{\mathcal{H}}{\longrightarrow} (x, y) = \stackrel{\mathcal{H}}{\longrightarrow} (x, yy) = \stackrel{\mathcal{H}}{\longrightarrow} (x, 1) = 1$ by (R1) and (1) of this lemma, hence $y \leq \stackrel{\mathcal{H}}{\longrightarrow} (x, y)$.

(3) For all $x, y, z \in V$, $\mathcal{H}(x, yz) = x^{\mathcal{H}(1, yz)} = x (y^{\mathcal{H}(1, z)}) = x^{\mathcal{H}(y, z)} = \mathcal{H}(y, xz)$ by (R2) and (R1).

- (4) For all x, $y \in V$, $\mathcal{H}(x, yx) = \mathcal{H}(yy, x) = \mathcal{H}(1, x) = 1$ by (3) of this lemma.
- (5) For all $x \in V$, $\mathcal{H}(x, x) = \mathcal{H}(1x, x) = 1$ by (4) of this lemma.

Example 3.4. (1) Let *V* be a *DBCK* -algebra. If we define a map $\mathcal{H}: V \times V \to V$ by $\mathcal{H}(x, y) = a(yx)$

for every $x, y \in Y$ and some $a \in Y$, then \mathcal{H} is a left-multiplier of Y. In fact, we have $\mathcal{H}(xy, z) = a(z(xy)) = a(x(zy)) = x(a(zy)) = x \mathcal{H}(y,z)$, and $\mathcal{H}(x, y) = a(yx) = y(ax) = y(a(1x)) = y \mathcal{H}(x, 1)$.

(2) Let *V* be a *DBCK* -algebra. If we define a map $\mathcal{H}: V \times V \to V$ by $\mathcal{H}(x, y) = a$ (*xy*)

for every x, $y \in V$ and some $a \in V$, then \mathcal{H} is a right-multiplier of V.

Definition 3.5. Let f be a left-multiplier of a *DBCK* -algebra Y. Fix $a \in Y$ and define a set $F_a(Y)$ by $F_a(Y) := \{x \in Y | f(x, a) = x\}$ for all $x \in Y$.

Lemma 3.6. Let f be a left-multiplier of a *DBCK* -algebra Y. If $x \in Y$, $y \in F_a(Y)$ then $x \Rightarrow y \in F_a(Y)$.

Proof. Let $x \in V$, $y \in Fa(V)$ and by using the definition of left-multiplier of a DBCK-algebra V we have $f(x \Rightarrow y, a) = x \Rightarrow f(y, a) = x \Rightarrow y$. Therefore, $x \Rightarrow y \in F_a(V)$.

Lemma 3.7. Let \mathcal{H} be a left-multiplier of a *DBCK*-algebra \mathcal{V} . If $y \in F_a(\mathcal{V})$ then $x \mathcal{V}$ $y \in F_a(\mathcal{V})$ for a bounded commutative *DBCK*-algebra \mathcal{V} .

Proof. Let $y \in F_a(V)$ and by using the definition of left-multiplier of a *DBCK*algebra V we have $\mathcal{H}(x \lor y, a) = \mathcal{H}((x \clubsuit y) \clubsuit y, a) = (x \clubsuit y) \clubsuit \mathcal{H}(y, a) = (x \clubsuit y) \clubsuit y = x \lor y$. Therefore, $x \lor y \in F_a(V)$.

For the rest of the study it is assumed that \mathcal{H} is a left-multiplier of a commutative DBCK- algebra V unless the contrary is mentioned.

Lemma 3.8. For any *x*, *y* \in *Y*, if $x \leq y$ and $x \in F_a(Y)$ then $y \in F_a(Y)$.

Proof. Let x, y be any elements in V where $x \le y$ and $x \in F_a(V)$ then $\mathcal{H}(y, a) = \mathcal{H}(1 \Rightarrow y, a) = \mathcal{H}((x \Rightarrow y) \Rightarrow y, a) = \mathcal{H}((y \Rightarrow x) \Rightarrow x, a) = (y \Rightarrow x) \Rightarrow \mathcal{H}(x, a) = (y \Rightarrow x) \Rightarrow x = y.$ So, $y \in F_a(V)$.

Let Y be a *DBCK* -algebra. A nonempty subset A of Y is said to be \mathcal{H} -invariant if $\mathcal{H}(A, A) \subseteq A$ where $\mathcal{H}(A, A) = \{\mathcal{H}(x, x) | x \in A\}$.

Lemma 3.9. Every filter T is \mathcal{H} -invariant.

Proof. Let $y \in \mathcal{H}$ (T, T) then $y = \mathcal{H}(x, z)$ for some $x, z \in T$. We have $x \leq \mathcal{H}(x, z)$ from Lemma 3.2 (2). So, $x^{n} \to \mathcal{H}(x, z) = 1$. Since T is a filter, we have $\mathcal{H}(x, z) \subseteq T$. So, $y \in T$. Therefore, T is \mathcal{H} -invariant.

Lemma 3.10. $\mathcal{H}(x \lor y, z) = \mathcal{H}(x, z) \lor \mathcal{H}(y, z)$ and $\mathcal{H}(x \land y, z) = \mathcal{H}(x, z) \land \mathcal{H}(y, z)$ for all $x, y, z \in V$.

Proof. Let $x, y, z \in Y$. In that case $\mathcal{H} (x \lor y, z) = \mathcal{H} (x^{nn} \lor y^{nn}, z)$ $= \mathcal{H} ((x^n \land y^n) \stackrel{n}{,} z)$ $= \mathcal{H} ((x^n \land y^n) \stackrel{n}{,} z)$ $= (x^n \land y^n) \stackrel{n}{,} (0, z)$ $= (x^n \land y^n) \stackrel{H}{,} (0, z)$ $= (x^n \stackrel{H}{,} (0, z)) \lor (y^n \stackrel{H}{,} (0, z))$ $= \mathcal{H} (x^n \stackrel{n}{,} 0, z) \lor \mathcal{H} (y^n \stackrel{n}{,} 0, z)$ $= \mathcal{H} (x^{nn}, z) \lor \mathcal{H} (y^{nn}, z)$ $= \mathcal{H} (x, z) \lor \mathcal{H} (y, z)$ We can prove the case of meet in the similar way.

Lemma 3.11. \mathcal{H} is isotone left-multiplier, that is if $x_1 \leq x_2$, then $\mathcal{H}(x_1, z) \leq \mathcal{H}(x_2, z)$, for every $z \in V$.

Proof. Let $x_1 \le x_2$. Then $\mathcal{H}(x_2, z) = \mathcal{H}(x_1 \lor x_2, z) = \mathcal{H}(x_1, z) \lor \mathcal{H}(x_2, z)$ for all $z \in \mathcal{V}$. This implies that \mathcal{H} is isotone.

Definition 3.12. Let f be a left-multiplier of a *DBCK*-algebra Y. Fix $a \in Y$ and define a set $Ker_a(Y)$ by $Ker_a(Y)$: = { $x \in Y | f(x, a) = 0$ } for all $x \in Y$.

Lemma 3.13. Let \mathcal{H} be a left-multiplier of a *DBCK*-algebra Y. If $y \in Ker_a(Y)$ and $x \in Y$ then $x \land y \in Ker_a(Y)$.

Proof. Let $y \in Ker_a(Y)$. Then $\mathcal{H}(x, a) = 0$. $\mathcal{H}(x \land y, a) = \mathcal{H}(x, a) \land \mathcal{H}(y, a) = 0 \land \mathcal{H}(y, a) = (1 \lor [\mathcal{H}(y, a)]^n)^n = ((1 \Rightarrow [\mathcal{H}(y, a)]^n))^n$ $\Rightarrow [\mathcal{H}(y, a)]^n)^n = 1^n = 0$ for all $x \in X$. This implies $x \land y \in Ker_a(Y)$.

Lemma 3.14. Let \mathcal{H} be a left-multiplier of a *DBCK*-algebra \mathcal{Y} . If $x \in Ker_a(\mathcal{Y})$ and $y \leq x$ then $y \in Ker_a(\mathcal{Y})$.

Proof. Let $x \in Ker_a(V)$ and $y \le x$ Then $\mathcal{H}(x, a) = 0$ and $y \Rightarrow x = 0$. Hence $\mathcal{H}(y, a) = \mathcal{H}(x \land y, a) = \mathcal{H}(y, a) \land \mathcal{H}(x, a) = \mathcal{H}(y, a) \land 0 = (\mathcal{H}(y, a) \lor V) \vDash = ((\mathcal{H}(y, a) \lor V))$ $" \Rightarrow 1) \Rightarrow 1) = 0.$

This implies $y \in Ker_a(Y)$.

References

- [1] Chang, C. C., Algebraic analysis of many valued logics, **Transactions of the American Mathematical Society**, vol. 88, pp. 467–490, (1958).
- [2] Cattaneo, G., Giuntini, R., and Pilla, R., BZMV^{dM} algebras and Stonian MValgebras (applications to fuzzy sets and rough approximations)," Fuzzy Sets and Systems, vol. 108, no. 2, pp. 201–222, (1999).
- [3] Chang, C. C., A new proof of the completeness of the Łukasiewicz axioms, **Transactions of the American Mathematical Society**, vol. 93, pp. 74–80, (1959).

- [4] Cignoli, R., D'Ottaviano, I., and Mundici, D., Algebraic Foundations of Many-Valued-Reasoning, **Kluwer Academic**, Dodrecht, The Netherlands, (2000).
- [5] Rasouli, S., and Davvaz, B., Roughness in MV-algebras, **Information Sciences**, vol. 180, no. 5, pp. 737–747, (2010).
- [6] Kim, K. H., Yong Y. H., Dual BCK-algebra and MV algebra, Scientiae Mathematicae Japonicae, 66 247-253 (2007).
- [7] Walendziak, A., On commutative BE-algebras, Scientiae Mathematicae Japonicae (69) no. 2: 281-284, (2009).
- [8] Larsen, R., An Introduction to the Theory of Multipliers, Berlin: Springer-Verlag, (1971).
- [9] Cornish, W.H., The multiplier extension of a distributive lattice, Journal of Algebra, 32, 339–355, (1974).
- [10] Schmid, J., Multipliers on distributive lattices and rings of quotients, **Houston Journal of Mathematics**, 6(3), 401–425, (1980).