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Abstract
In this paper, we introduce a concept of fixed point property for a semigroup S called A-fixed point property,
where A is a non-empty subset of S. Also, the relationship between A-amenability and A-fixed point property is
investigated.
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1. Introduction
Let S be a semitopological semigroup, i.e. S is a semigroup with a Hausdorff topology such that for each a ∈ S, the mappings
s→ as and s→ sa from S into S are continuous. Let `∞(S) denotes the C∗-algebra of bounded real-valued functions on S with
the supremum norm and pointwise multiplication. For each a ∈ S and f ∈ `∞(S), let a f and fa denote, respectively, the left and
right translations of S by a, i.e. (a f )(s) = ( f ·a)(s) = f (as) and ( fa)(s) = (a · f )(s) = f (sa), s ∈ S. Let X be a closed subspace
of `∞(S) containing the constant functions and being invariant under translations. A linear functional m ∈ X∗ is called a mean if
‖m‖= m(1) = 1; where 1 denotes the constant function on S with value 1. Then m is called a left invariant mean if

m(s f ) = m( f ),

for all s ∈ S and f ∈ X . If X is a subalgebra of `∞(S), then m is multiplicative if m( f g) = m( f )m(g) for all f ,g ∈ X .
Recently, a new version of amenability of discrete semigroups, namely set amenability is defined by authors in [1] as

follows:

Definition 1.1. Let S be a semigroup and /0 6= A⊆ S. We say that a mean m on `∞(S) is an A-invariant mean if for all a ∈ A
and f ∈ `∞(S) we have

m(a f ) = m( f ).

A semigroup S which admits A-invariant means is called left A-amenable. If for every pure subset A of S, S is left
A-amenable, then we say that S is left set-amenable. The right A-amenability may be defined similarly. A semigroup S which is
both left and right A-amenable is called A-amenable. It follows immediately that every amenable semigroup is A-amenable for
all subsets A of S, but the converse is not true in general, see the examples are given in [1] for more details.

A semitopological semigroup S is said to be act on a topological space X from the left if there is a map S×X → X denoted
by (s,x)→ s · x for each (s,x) ∈ S×X such that (st) · x = s · (t · x) for all s, t ∈ S and x ∈ X . The action is separately continuous
if the mapping is continuous in each of the variables when the other is kept fixed. Moreover, the action is jointly continuous if
the mapping is continuous when S×X has the product topology.
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When C is a convex subset of a linear topological space X , we say that an action of S on C is affine if for each s ∈ S, the
mapping from C→C defined by x 7→ s · x (x ∈C) is affine, i.e. it satisfies s · (λx+(1−λ )y) = λ (s · x)+(1−λ )(s · y), for all
s ∈ S, x,y ∈C and 0≤ λ ≤ 1.

Let Cb(S) be the Banach space of all continuous bounded real-valued functions on S with the supremum norm topology,
A(K) be the closed subspace of Cb(K) consisting of all real valued continuous affine functions on a compact Hausdorff space K
and LUC(S) be the space of left uniformly continuous functions on S, that is, all f ∈Cb(S) such that the mappings s 7→ s f from
S into Cb(S) are continuous when Cb(S) has the supremum norm topology. Then LUC(S) is a C∗-subalgebra of Cb(S) invariant
under translations and contains the constant functions.

A function f ∈Cb(S) is strongly almost periodic if {a f : a ∈ S} is relatively compact in the supremum norm topology of
Cb(S) and the set of all strongly almost periodic functions is denoted by AP(S). Also, it is weakly almost periodic if {a f : a∈ S}
is relatively compact in the weak topology of Cb(S) and the set of all weakly almost periodic functions is denoted by WAP(S).

In this paper, we investigate a new version of the fixed point property for semitopological semigroups that we call A-fixed
point property, where A is a non-empty subset of S. In the next section, we introduce and study the concept of set-reversibility
of semitopological semigroups that is a generalization of reversibility that is defined for discrete semigroups in [1]. Section 3,
introduce the notion of set-fixed point theory for semitopological semigroups and gives some relations between set-amenability
and set-fixed point property for them.

Finally, in section 4, we give some examples for clarifying this new version of fixed point property for semitopological
semigroups that they show that set-fixed point property is weaker than fixed point property.

2. Set-reversiblity for semigroups
For discrete semigroups, set reversibility is defined in [1, Definition 4.7], now we start off with the following definition for
semitopological semigroups:

Definition 2.1. Let S be a semigroup and /0 6= A⊆ S. We say that S is left A-reversible if aS∩bS 6= /0 for all a,b ∈ A. If S for
every pure subset A is A-reversible, then we call it set-reversible.

Clearly, every reversible semigroup is set-reversible, but, the converse is not true [1, Example 4.8]. For discrete semigroup
S, if it is left A-amenable, then S is left A-reversible [1, Lemma 4.9]. However, a general semitopological semigroup S needs
not be left A-reversible even when Cb(S) has a left A-invariant mean unless S is normal (see Proposition 2.5).

Proposition 2.2. Let S be a compact semitopological semigroup with minimal right ideal I, then S is left I-reversible.

Proof. Since I is a right ideal, aS and bS are closed right ideals of S contained in I for each a,b ∈ I. Furthermore, since I is
minimal, aS = bS = I. Thus

aS∩bS = I 6= /0.

Proposition 2.3. Let S be a compact semitopological semigroup with subset A containig of a minimal right ideal. If S is left
A-reversible, then A consists a unique minimal right ideal of S.

Proof. Let I1 and I2 be two distinct minimal right ideals in A. It is easy to verify that they are closed and disjoint. Now, if we
consider a1 ∈ I1 and a2 ∈ I2, then we may write

a1S⊆ I1 and a2S⊆ I2.

By minimility of I1 and I2, we obtain that a1S = I1 and a2S = I2. Therefore

a1S∩a2S = I1∩ I2 = /0.

This is a contradiction.

The following Proposition is a set-reversibility version of [2, Lemma 3.1] that its proof is similar and we omit it.

Proposition 2.4. Let S be a semitopological semigroup with non-empty subset A and X be a left translation invariant subspace
of Cb(S) containing constants. If X which separates closed subsets of S and has a left A-invariant mean, then S is left
A-reversible.
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Above proposition implies immediately the following result:

Proposition 2.5. Let S be a normal semitopological semigroup and Cb(S) has a left A-invariant mean, then S is left A-reversible.

In light [1, Lemma 4.9] of the above proposition we have the following result:

Proposition 2.6. Let S be a discrete semigroup left A-amenable, then S is left A-reversible.

If S is not a normal semitopological semigroup, then Proposition 2.5 does not hold. For example, if S is a left zero semigroup,
that is a semigroup whose multiplication is defined by st = s for all s, t ∈ S and is the topological space which is regular and
Hausdorff such that Cb(S) consists of constant functions only. For a fixed a ∈ S define m( f ) = f (a), for all f ∈Cb(S). Then for
each subset A of S, contains more than one element, m is a left A-invariant mean on Cb(S), but S is not left A-reversible.

By the following result, we show that set-reversibility can be transfered by a continuouse and onto semigroup homomor-
phism.

Proposition 2.7. Let S and T be two semitopological semigroups and ϕ be a continuouse homomorphism of S onto T . If S is
left A-reversible, then T is left ϕ(A)-reversible.

Proof. For each b1,b2 ∈ ϕ(A), there exist a1,a2 ∈ A such that ϕ(a1) = b1 and ϕ(a2) = b2. Since S is left A-reversible,
a1S∩a2S 6= /0. Let x0 ∈ a1S∩a2S, then there are nets (a1sα)⊂ a1S and (a2tβ )⊂ a2S such that a1sα −→ x0 and a2tβ −→ x0.
Continuity of ϕ implies

b1ϕ(sα) = ϕ(a1sα)−→ ϕ(x0) and b2ϕ(tβ ) = ϕ(a2tβ )−→ ϕ(x0).

It follows that there exists ϕ(x0) ∈ b1T ∩b2T , hence T is left ϕ(A)-reversible.

Recall that if S is a semigroup, the intersection of all the two-sided ideals of S is called the kernel of S and denoted by K(S).
If K(S) is non-empty, it is clearly the smallest two-sided ideal of S (see [3]).

Similar to [4, Lemma 2.8], we have the following result:

Proposition 2.8. Let S be a compact semitopological semigroup with unit and let A be a subset of S that consists a minimal
right ideal of S. Then the following statements are equivalent:

(a) A consists a unique minimal right ideal of S.

(b) Cb(S) has a left A-invariant mean.

Proof. (b)⇒ (a). Let m be a left A-invariant mean on Cb(S) and I1 and I2 be two distinct minimal right ideals in A. It is
obvious that I1 and I2 are closed and disjoint. Now, we define f ∈Cb(S) by

f (s) =

{
0 s ∈ I1

1 s ∈ I2.

Then for any a ∈ I1 and b ∈ I2, we have a f = 0 and b f = 1. But, by the definition of m,

1 = m(a f ) = m( f ) = m(b f ) = 0,

which this is a contradiction.
(a)⇒ (b). By [4, Corollary 2.4], K(S) is a union of compact semitopological groups that are left ideals. Normalized Haar

measure on any one of these will be a left A-invariant mean for Cb(S).

By the following result, we rewrite [4, Lemma 2.10] as follows that its proof is similar to that mentioned Lemma and for
clarify we state its proof.

Proposition 2.9. Let S and T be semitopological semigroups with T be compact and ϕ : S→ T be a continuous homomorphism
with ϕ(S) dense in T . Let ϕ̃ : Cb(T )−→Cb(S) be the dual map taking f into f ◦ϕ , then Cb(T ) has a left ϕ(A)-invariant mean
if and only if ϕ̃(Cb(T )) has a left A-invariant mean.
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Proof. Suppose that there is a left ϕ(A)-invariant mean m on Cb(T ). For each f ∈Cb(T ), define n by

n(ϕ̃ f ) = m( f ).

Furthermore, it is clear that for any f in Cb(T ),

s(ϕ̃ f ) = ϕ̃(ϕ(s) f ) for all s ∈ S.

Now, for all a ∈ A and f ∈Cb(T ), we have

n(a(ϕ̃ f )) = n(ϕ̃(ϕ(a) f )) = m(ϕ(a) f ) = m( f ) = n(ϕ̃ f ).

This means that n is a left A-invariant mean on ϕ̃(Cb(T )).
On the other hand, let n be a left A-invariant mean on ϕ̃(Cb(T )), we can define a mean m on Cb(T ) by

m( f ) = n(ϕ̃ f ) for all f ∈Cb(T ).

Since m satisfies

m(ϕ(a) f ) = n(ϕ̃(ϕ(a) f )) = n(a(ϕ̃ f )) = n(ϕ̃ f ) = m( f ),

for all a ∈ A, m is a left ϕ(A)-invariant mean on Cb(T ).

3. Common set-fixed point
Fixed point property for semigroups is one of the interesting concepts related to the semigroups theory that investigated by
many authors, see [5]-[9]. Set-fixed point property for discrete semigroups is defined in [1, Definition 4.5]. Now, we define it
for semitopological semigroups as follows:

Definition 3.1. Let X be a non-empty Hausdorff topological space and S is a semigroup acting on X from the left with /0 6= A⊆ S.
A point x ∈ X is called a common A-fixed point of S in X if a · x = x for each a ∈ A. If S for every pure subset A has a common
A-fixed point, then we say that it has a common set-fixed point.

It follows immediately that every common fixed point of S in X is a common A-fixed point. But the converse is not true
in general (see the Example 4.2). In this section, we rewrite some well-known results related to fixed point properties of
semitopological semigroup for the set fixed point properties.

Before stating the following result, recall that when K is convex subset of a Banach space, a mapping T : K 7−→ K is called
non-expansive self-maps if ‖T x−Ty‖≤ ‖x− y‖, for each x,y ∈ K.

Theorem 3.2. Let S be a left I-reversible semigroup of non-expansive self-maps on a non-empty compact convex subset K of a
Banach space with ideal I, then K contains a common I-fixed point.

Proof. By using Zorn’s Lemma, there is a minimal I-invariant non-empty compact convex set X ⊆ K. By using Zorn’s Lemma
again, we can find a minimal I-invariant nonempty compact set M ⊆ X . Since S is left I-reversible, if {a1,a2, . . . ,an} is any
finite subset of I, there is a finite subset {s1,s2, . . . ,sn} of S such that a1s1 = a2s2 = · · ·= ansn. Hence

n⋂
i=1

aiM ⊇
n⋂

i=1

ai(sia1M) = a1s1a1M 6= /0.

Thus the family {aM : a ∈ I} has the finite intersection property. By compactness of M, F =
⋂

a∈I aM is non-empty. Assume
that x ∈ F . For each pair a,b ∈ I, there exist c,d ∈ S such that ac = bd. Since F ⊆ caM, x = cay for some y ∈M. Furthermore,

ax = a(cay) = b(day) ∈ bM.

Moreover, aF ⊆ F , for all a ∈ I. By minimality of M, we have F = M. Therefore M = aM, for all a ∈ I.
If we assume that M contains more than one point, there is an element u in the closed convex hull of M such that

ρ = sup{‖u− x‖: x ∈M}< δ (M), where δ (M) is the diameter of M. Define

X0 =
⋂

x∈M

{y ∈ X : ‖x− y‖ ≤ ρ},

then X0 is a proper non-empty compact convex subset of X such that it is I-invariant, which contradicts the minimality of X .
Hence M is a singleton set, which proves the theorem.
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Note that in the above Theorem if we replace I by S we have the following result:

Corollary 3.3. Let S be a left reversible semigroup of non-expansive self-maps on a non-empty compact convex subset K of a
Banach space, then K contains a common fixed point of S.

Definition 3.4. An action S on a convex subset K of a linear topological space X is A-affine if a · (λx+(1−λ )y) = λ (a · x)+
(1−λ )(a · y), for all a ∈ A, x,y ∈ K and 0≤ λ ≤ 1.

Clearly every affine action is an A-affine, but the converse is not true in general. For example, let S be a semigroup of
real-valued functions on R with function composition operation and A = { f : R→ R | f (x) = kx}. Define the action S on R by
f · x = f (x). It is easy to see that this action is A-affine, but it does not act affinely on R.

There is a strong connection between left A-amenability and A-fixed point properties. By a similar method for discrete
semigroups in [1, Theorem 4.6] and [9, Theorem 2.1], we have the following result:

Theorem 3.5 (Day’s Fixed Point Theorem). Let S be a semigroup. Then the following statements are equivalent:

(a) S is left A-amenable.

(b) Whenever S acts A-affinely on a non-empty compact convex subset K of a locally convex space, there is a common A-fixed
point of S in K.

Proof. According to [1, Theorem 4.6], it suffices that we prove (b)⇒ (a).
(b)⇒ (a). As well-known that M(S) the set of all means on `∞(S) is a w∗-compact convex subset of `∞(S)∗. For s ∈ S and

m ∈M(S), we can define the action S on the left `∞(S)∗ by (s ·m)( f ) = m( f · s) for each f ∈ `∞(S). It is easy to verify that
the map m 7→ s ·m is w∗−w∗-continuous and S acts A-affinely on (M(S),w∗). Hence, by the assumption there is a common
A-fixed point of S in M(S) which is a left A-invariant mean on `∞(S).

Theorem 3.6. Let S be a semitopological semigroup. Then the following statements are equivalent:

(a) LUC(S) has a multiplicative left A-invariant mean.

(b) Whenever action of S on a compact Hausdorff space X is jointly continuous, then X contains a common A-fixed point of
S.

Proof. (a)⇒ (b). From [8, Theorem 1], for each x ∈ X and each f ∈Cb(X), we have fx ∈ LUC(S), where fx is defined by
fx(s) = f (s ·x). Now, for x∈ X we consider Tx : C(X)→ LUC(S) by Tx( f ) = fx for each f ∈C(X). Let T ∗x : LUC(S)∗→C(X)∗

be the adjoint map of Tx. Thus, if m is a multiplicative left A-invariant mean on LUC(S), then there exists a point x0 ∈ X such
that f (x0) = (T ∗x m)( f ) = m(Tx f ) for all f ∈C(X).

For each s ∈ S, define θs : C(X)→C(X) by (θs f )(x) = f (s · x) for all f ∈C(X) , x ∈ X . Hence, for each t ∈ S, we have

(Tx(θs f ))(t) = (θs)(t · x) = f (s · (t · x)) = f (st · x) = fx(st) = (Tx f )(st) = s(Tx f )(t).

Therefore, Tx(θs f ) = s(Tx f ). Thus it follows that for all f ∈C(X) and a ∈ A,

f (a · x0) = (θa f )(x0)

= m(Tx(θa f ))

= m(a(Tx f ))

= m(Tx f )

= f (x0).

But C(X) separates points of X and this implies that x0 is the A-fixed point.
(b)⇒ (a). Assume that X is the compact Hausdorff space of the set of all multiplicative means on LUC(S), where X is

given by the w∗-topology of LUC(S)∗. By a simillar method in [8, Theorem 1] and use the notations there in, one can show the
action of S on X its jointly continuous. Thus, (b) implies that there exists m0 ∈ LUC(S)∗ such that m0(a f ) = m0( f ), for all
f ∈ LUC(S) and a ∈ A.

Theorem 3.7. Let S be a semitopological semigroup. Then the following properties are equivalent:

(a) LUC(S) has a left A-invariant mean.
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(b) Whenever action of S on a nonempty compact convex subset X of a locally convex linear topological space is A-affine,
then X contains a common A-fixed point of S.

Proof. (a)⇒ (b). For each x ∈ X and each f ∈Cb(X), the proof of Theorem 3.6 yields fx ∈ LUC(S), where fx is defined by
fx(s) = f (s · x). For a specific x ∈ X we consider Tx : A(X)→ LUC(S) by Tx( f ) = fx for each f ∈ A(X). Now, by simmilar
method in Theorem 3.6 we can obtain (b).

(b)⇒ (a). Assume that X is the compact convex set of the space of all means on LUC(S), with the w∗-topology of LUC(S)∗.
Define the A-affine action of S on X by s ·m = l∗s m, for each s ∈ S and m ∈ X . Now, the argument used in the proof of Theorem
3.6 can be used to show that the action is jointly continuous, hence by (b), there exists an A-fixed point of S on X .

An action of S on a compact convex subset K of locally convex space X is equicontinuous if for each neighborhood U of 0,
there exists a neighborhood V of 0 in X such that x,y ∈ K and x− y ∈V imply s · x− s · y ∈U for each s ∈ S.

In the following Theorem, we state a relation between the existence of left A-invariant mean on AP(S), the space of
continuous almost periodic functions on S and A-fixed point properties of S acting on certain subsets of a locally convex space.
In light of [10, Theorem 3.2], we have the following result which its proof is similar to the mentioned result and for clarifying
we write its proof completely.

Theorem 3.8. Let S be a semitopological semigroup. Then the following statements are equivalent:

(a) AP(S) is left A-amenable.

(b) Whenever action of S on a compact convex subset K of a separated locally convex space is separately continuous,
equicontinuous and A-affine, then there exists a common A-fixed point of S in K.

Proof. (a)⇒ (b). Suppose that m is a left A-invariant mean on AP(S). Since the finite means are w∗-dense in the set of means,
we can find a net of finite means ϕα = ∑

n
iα=1 λiα δsiα

, λiα > 0 and ∑
n
iα=1 λiα = 1 such that w∗-converges to m in AP(S)∗. Let

x ∈ K be fixed and x0 be a cluster point of the net (∑n
iα=1 λiα siα · x)α in K. Now by [10, Lemma 3.1], for each f ∈ A(K), we

have fx ∈ AP(S) and hence

f (a · x0) = f (a · lim
α

n

∑
iα=1

λiα siα · x) = f (lim
α

n

∑
iα=1

λiα asiα · x)

= lim
α

f (
n

∑
iα=1

λiα asiα · x) = lim
α
(

n

∑
iα=1

λiα f (asiα · x))

= lim
α

n

∑
iα=1

λiα δsiα
(a( fx)) = lim

α
ϕα(a( fx))

= m(a( fx)) = m( fx)

= f (x0),

for all a ∈ A. Since A(K) separates points, this shows that x0 is an A-fixed point for S.
(b)⇒ (a). Let the compact convex set K be the space of all means on AP(S), where K has the w∗-topology of AP(S)∗. Let

the A-affine action of S on K be given by s ·m = l∗s m, for each s ∈ S and m ∈ K. By the similar method in [10, Theorem 3.2],
the action of S on (K,w∗) is both separately continuous and equicontinuous. Consequently, any A-fixed point in K under this
action is a left A-invariant mean on AP(S).

Recall that the right translation operators ra on the Banach space AP(S), clearly, form an almost periodic semigroup of
operators. In fact, the strong operator closure of this semigroup is a compact semitopological semigroup, having jointly
continuous multiplication, in the strong (or equivalently weak) operator topology. It will be denoted by Sa and called the almost
periodic compactification of S.

Corollary 3.9. Let S be a semitopological semigroup with subset A containig of minimal right ideal. If S is left A-reversible,
then AP(S) is left A-amenable.

Proof. Assume that S is left A-reversible. In light of [4, Theorem 6.1], the homomorphism r : S 7→ Sa defined by r(a) = ra is
continuous. This implies that Sa is also r(A)-reversible. By Proposition 2.3, Sa has a unique minimal right ideal in r(A). Hence,
by Theorem 2.8, Cb(S

a
) has a left r(A)-invariant mean. Consequently, again it follows from [4, Theorem 6.1] and Proposition

2.9, AP(S) has a left A-invariant mean.

Form the above Corollary and Proposition 2.5, we immediately have the following result:



Set Invariant Means and Set Fixed Point Properties — 31/34

Corollary 3.10. Let S be a normal semitopological semigroup and Cb(S) has a left A-invariant mean, then AP(S) has a left
A-invariant mean.

Note that the converse of Corollary 3.9 is false in general, since there exist the exampels of topological semigroups such as
S such that they are not left A-reversible, but AP(S) (or even Cb(S)) has a left A-invariant mean (see Exampel 4.3 ).

Definition 3.11. Let Q be a (fixed) family of continuous semi-norms on a separated locally convex space X which determines
the topology of X. Then an action of S on a subset K ⊆ X is QA-nonexpansive if ρ(a ·x−a ·y)≤ ρ(x−y) for all a ∈ A, x,y ∈ K
and ρ ∈ Q.

Theorem 3.12. Let S be a semitopological semigroup. Then the following statements are equivalent:

(a) AP(S) is left A-amenable.

(b) Whenever S is a separately continuous and QA-non-expansive action on a compact convex subset K of a separately
locally convex space, there is a common A-fixed point of S in K.

Proof. (a)⇒ (b). Assume that m is a left A-invariant mean on AP(S). An application of Zorn’s Lemma shows that there exists
a minimal non-empty compact convex X ⊆ K, that is invariant under A. In particular, If X is not a singleton, apply Zorn’s
Lemma for the second time to get a minimal non-empty compact F ⊆ X , that is invariant under A.

Let x ∈ X be a fixed. By using [10, Lemma 3.1], we may define a mean µ on C(F) by µ( f ) = m( fx) for all f ∈C(F).
Since µ( f )≥ 0 whenever f ≥ 0, and µ(1) = 1 and,

µ(a f ) = m((a f )x) = m(a( fx)) = m( fx) = µ( f ).

It is easy to see that µ is a left A-invariant mean on C(F). From Riesz representation Theorem, µ can be viewed as a
regular probability measure on F and it satisfies µ(B) = µ(a−1B) for each Borel set B ⊆ F and a ∈ A, where as usual,
a−1B = {x ∈ F : a · x ∈ B}. Let Γ = {B ⊆ F : B is closed subset, µ(B) = 1}. Set F0 =

⋂
B∈Γ B. Then by finite intersection

property F0 is a non-empty compact subset of F . Since for each B ∈ Γ and a ∈ A, we have a−1B ∈ Γ then a−1F0 ⊇ F0 or
F0 ⊇ aF0. Hence F = F0 by the minimality of F . Since

µ(aF) = µ(a−1(aF)) = µ(F) = 1,

aF ∈ Γ for all a ∈ A. Consequently, F ⊇ aF ⊇ F0 = F . This means that aF = F for all a ∈ A.
Now, if F is a singleton we are done, otherwise, there exists a continuous seminorm ρ in Q such that r = sup{ρ(x−

y) : x,y ∈ F} > 0. Then, by De Marr’s Lemma [6], there exists an element u in the closed convex hull of F such that
r0 = sup{ρ(u− x) : x ∈ F}< r. Consider

X0 =
⋂
x∈F

{y ∈ X : ρ(y− x)≤ r0 }.

Then u∈ X0 and X0 is a nonempty closed convex proper subset of X . From aF = F for each a∈ A and QA-nonexpansiveness
of S on X , we can write

ρ(a · x0−a · y)≤ ρ(x0− y)≤ r0,

for each x0 ∈ X0 and y ∈ F . This leads to aX0 ⊆ X0 for all a ∈ A, contradicting the minimality of X . Consequently, F contains
only one point, which, in fact, is a common A-fixed point for S.

(b)⇒ (a). We can prove it by the same argument in Theorem 3.8.

Finally, in this section, by the similar method in [7, Theorem 3.4], we have the following result:

Theorem 3.13. Let S be a semitopological semigroup with separable ideal I. Then the following statements are equivalent:

(a) WAP(S) is left I-amenable.

(b) Whenever S acts on a weakly compact convex subset K of a separated locally convex space and the action is weakly
separately continuous, weakly quasi-equicontinuous and QI-non-expansive, there is a common I-fixed point of S in K.
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4. Examples

Example 4.1. Consider the semigroup S = {a,b,c,d} defined as follows:
a b c d

a a a c c
b b b d d
c a a c c
d b b d d

(i) Let A = {a,b}. The sets aS = {a,c} and bS = {b,d} are disjoint minimal right ideals. Thus S is not left A-reversible.
Letting f = χ{a,c} be the characteristic function. It is easy to see that a f = 1 and b f = 0. Now, if we take m a left A-invariant

mean on AP(S) =WP(S) =Cb(S), then

1 = m(a f ) = m( f ) = m(b f ) = 0,

which is impossible.
(ii) Let A = {a,c}. Since aS∩ cS = {a,c}, S is left A-reversible. Now, if we for a fix a ∈ S define m( f ) = f (a) for all

f ∈ AP(S). It is evident that a f = c f . Also, we have

m(a f ) = a f (a) = f (aa) = f (a) = m( f ).

This means that m is a left A-invariant mean on AP(S).

In the following, we denote the cardinal number of a set A by |A|.

Example 4.2. Let K = [0,1] and consider a semigroup S = {hs : s ∈ K} with functional composition operation. Define the
action S on K by hs(x) = s for each x ∈ K. Then for any subset A of S we have:

(i) If |A|= 1, then there is an A-fixed point of S in K.

(ii) If |A| ≥ 2, then there is no common A-fixed point of S in K.

Example 4.3. Consider the partially bicyclic semigroups S2 = 〈e,a,b,c|ab = e,ac = e〉 and S1,1 = 〈e,a,b,c,d|ac = e,bd = e〉.
For A1 = {b,c} and A2 = {b,d}, since

bS2∩ cS2 = /0 and cS1,1∩dS1,1 = /0

S2 and S1,1 are not left Ai-reversible (i = 1,2), respectively. Of course, it is worth to mention that both AP(S2) and AP(S1,1)
have an invariant mean [7, Proposition 4.6].

We consider for a semitopological semigroup S the following A-fixed point property:
(FA): Every jointly continuous action of S on a non-empty compact convex set K of a separated locally convex topological

vector space has a common A-fixed point.

Proposition 4.4. If a semitopological semigroup S has the common A-fixed point property (FA), then LUC(S) has a left
A-invariant mean.

Proof. Suppose that M(S) is the set of all means on LUC(S), where M(S) is given the w∗-topology of LUC(S)∗. Then, M(S)
is w∗-compact convex subset of LUC(S)∗. Define an action of S on X by s ·m = l∗s m for each s ∈ S and each m ∈M(S). This
action is jointly continuous on M(S). Therefore, the common A-fixed point of this action gives a left A-invariant mean on
LUC(S).

Corollary 4.5. If S is a discrete semigroup with the common A-fixed point property (FA), then S is left A-amenable.

In the following, by Ai’s we mean the sets in Example 4.3.

Example 4.6. We know that the partially bicyclic semigroups S2 and S1,1 are not left Ai-amenable (i = 1,2), respectively.
Hence, by Corollary 4.5, they do not have the common Ai-fixed point property (FA).

Proposition 4.7. Let S and T be two semigroups and ϕ be a homomorphism of S onto T . If S has the common A-fixed point
property (FA), then T has the common ϕ(A)-fixed point property (FA).
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Proposition 4.8. Let S and T be semigroups such that S×T has the common (A×B)-fixed point property (FA).Then both
semigroups S and T have the common A-fixed point and common B-fixed point property (FA), respectively.

Proof. Consider the projection homomorphisms πS : S×T −→ S and πT : S×T −→ T defined by πS(s, t) = s and πT (s, t) = t,
respectively. Let S×T has the common (A×B)-fixed point property (FA). Then by πS(A×B) = A and Proposition 4.7, we
obtain that S has the common A-fixed point property (FA). Similarly, we conclude that T has the common B-fixed point property
(FA).

In the following, we show that the converse of the Proposition 4.8, is not true in general.

Example 4.9. Commutative free semigroup on two generators does not have (FA).

First recall from the well-known Schauder’s Fixed Point Theorem that every free commutative discrete semigroup on one
generator has the fixed point property (FA). Let N0 denote the additive semigroup of non-negative integers, which is the free
commutative semigroup on one generator. Hence, it has the common A-fixed point property (FA).

We know from [11] that there are two continuous functions f and g mapping the unit interval [0,1] into itself which
commute under the function composition but do not have any common fixed point in [0,1].

Consider set A = {(0,0),(1,0),(0,1)} and define the action of N0×N0 on [0,1] by

(0,0) · x = x, (1,0) · x = f (x) and (0,1) · x = g(x).

Then, N0×N0 has no common A-fixed point on [0,1]. Therefore, this semigroup does not has (FA), since it is isomorphic to
N0×N0.

5. Conclusion
In this paper, we investigate a new version of the fixed point property for semitopological semigroups and also we introduce
and study the concept of set-reversibility of semitopological semigroups that is a generalization of reversibility that is defined
for discrete semigroups. Finally, some examples are given to illustrate the theoretical results.
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