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Abstract

The existence of mild solutions of a totally nonlinear Caputo-Hadamard fractional di�erential equation is
investigated using the Krasnoselskii-Burton �xed point theorem and some results are presented. Two example
are given to illustrate our obtained results.
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1. Introduction

Fractional di�erential equations arise from a variety of applications including in various �elds of science
and engineering. In particular, problems concerning qualitative analysis of fractional di�erential equations
have received the attention of many authors, see [2]-[14], [17]-[33]. Inspired and motivated by the references
[1]-[33], we study the existence of mild solutions for the totally nonlinear fractional di�erential equation{

Dα
1+h (x (t)) = f (t, x (t)) , t ∈ (1, T ] ,

x (1) = 0,
(1)

where Dα
1+ is the Caputo-Hadamard fractional derivative of order α ∈ (0, 1), h : R → R is a continuous

function with h (0) = 0 and f : [1, T ] × R → R is Lipschitz continuous. That is, there exists a positive
constant Lf > 0 such that

|f (t, x)− f (t, y)| ≤ Lf |x− y| . (2)
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By a mild solution of (1) we mean a function x ∈ C([1, T ],R) that satis�es the corresponding integral
equation of (1), where C([1, T ],R) is the space of continuous real-valued functions de�ned on [1, T ].

Equation (1) is obviously totally nonlinear. This is due to the presence of the terms h and f and the fact
that the functions h and f are arbitraries non necessarily linears.

Authors in previous mathematical studies on fractional di�erential equations did not consider the totally
nonlinear equations. Hence, our study is a novel contribution to the fractional di�erential equations.

To show the existence of mild solutions, we transform (1) into an integral equation and then use the
Krasnoselskii-Burton �xed point theorem. The obtained integral equation splits in the sum of two mappings,
one is a large contraction and the other is compact.

The organization of this paper is as follows. In Section 2, we give some de�nitions, lemmas and preliminary
results needed in later sections. Also, we present the inversion of (1) and state the Krasnoselskii-Burton �xed
point theorem. For details on the Krasnoselskii-Burton theorem we refer the reader to [16]. In Section 3,
we present our main results on the existence of mild solutions of (1) and give two example to illustrate our
obtained results.

2. Preliminaries

In this section, we introduce some notations, de�nitions and preliminary facts which are used throughout
this paper.

Let X = C([1, T ],R) be the Banach space of all real-valued continuous functions, endowed with the
maximum norm

∥x∥ = sup
t∈[1,T ]

|x (t)| .

De�nition 2.1 ([22]). The Hadamard fractional integral of order α > 0 of a function x : [1,∞) −→ R is

given by

Iα1+x (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

x (s)
ds

s
,

where Γ is the gamma function.

De�nition 2.2 ([22]). The Caputo-Hadamard fractional derivative of order α > 0 of a function x : [1,∞) −→
R is given by

Dα
1+x (t) =

1

Γ (n− α)

∫ t

1

(
log

t

s

)n−α−1

δn (x) (s)
ds

s
,

where δn =
(
t d
dt

)n
and n = [α] + 1.

Lemma 2.3 ([22]). Suppose that x ∈ Cn−1 ([1,+∞),R) and x(n) exists almost everywhere on any bounded

interval of [1,∞). Then

Iα1+D
α
1+x (t) = x (t)−

n−1∑
k=0

x(k) (1)

k!
(log t)k .

In particular, when α ∈ (0, 1) , Iα1+D
α
1+x (t) = x (t)− x (1).

From Lemma 2.3, we deduce the following lemma.

Lemma 2.4. x ∈ C ([1, T ] ,R) is a mild solution of (1) if x satis�es

x (t) = H (x (t)) +
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s
, t ∈ [1, T ] . (3)

where

H (x) = x− h (x) (4)
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De�nition 2.5 (Large contraction [16]). Let (M, d) be a metric space and consider B : M → M. Then B
is said to be a large contraction if given x, y ∈ M with x ̸= y then d (Bx,By) ≤ d (x, y) and if for all ε > 0
there exists a δ < 1 such that

[x, y ∈ M, d (x, y) ≥ ε] ⇒ d (Bx,By) ≤ δd (x, y) .

Theorem 2.6 (Krasnoselskii-Burton [16]). Let M be a closed bounded convex nonempty subset of a Banach

space (B, ∥.∥). Suppose that A and B map M into M such that

(i) x, y ∈ M, implies Ax+ By ∈ M,

(ii) A is compact and continuous,

(iii) B is a large contraction mapping,

Then there exists z ∈ M with z = Az + Bz.

We will use this theorem to show the existence of mild solutions for (1).

Theorem 2.7 ([1]). Let ∥.∥ be the supremum norm, M = {x ∈ X : ∥x∥ ≤ r}, where r is a positive constant.

Suppose that h is satisfying the following conditions

(H1) h is continuous on [−r, r] and di�erentiable on (−r, r),
(H2) the function h is strictly increasing on [−r, r],
(H3) supx∈(−r,r) h

′ (x) ≤ 1.
Then, the mapping H de�ne by (4) is a large contraction on M.

3. Main results

By using Theorem 2.6, we prove in this section the existence of mild solutions for (1). To apply Theorem
2.6 we need to de�ne a Banach space B, a closed bounded convex subset M of B and construct two mappings,
one is a large contraction and the other is compact. So, we let (B, ∥.∥) = (X, ∥.∥) and

M = {x ∈ X : ∥x∥ ≤ r} , (5)

where the positive constant r is satis�ed the following inequality

J
(rLf + σf ) (log T )

α

Γ (α+ 1)
≤ r, (6)

with σf = supt∈[1,T ] |f (t, 0)| and J ≥ 3 is a constant.
We express (3) as

x (t) = (Ax)(t) + (Bx)(t) = (Sx)(t), (7)

where the operators A,B : M → X are de�ned by

(Ax)(t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s
, (8)

and
(Bx)(t) = H (x (t)) . (9)

Lemma 3.1. Assume that (2) and (6) hold. Then, the operator A : M −→ M is compact and continuous.

Proof. Let A be de�ned by (8). Clearly, Ax is bounded and continuous. Observe that in view of (2), we
arrive at

|f (t, x)| ≤ |f (t, x)− f (t, 0) + f (t, 0)|
≤ |f (t, x)− f (t, 0)|+ |f (t, 0)|
≤ Lf ∥x∥+ σf .
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We have

|(Ax)(t)| ≤

∣∣∣∣∣ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s

∣∣∣∣∣
≤ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f (s, x (s))| ds
s

≤
(rLf + σf ) (log T )

α

Γ (α+ 1)
.

Thus,

∥Ax∥ ≤ r

J
≤ r.

Hence, A : M → M which implies A(M) is uniformly bounded.
To prove the continuity of A, we consider a sequence (xn) converging to x. We have

|(Axn)(t)− (Ax)(t)|

≤ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f (s, xn (s))− f (s, x (s))| ds
s

≤
Lf

Γ (α)

∫ t

1

(
log

t

s

)α−1

|xn (s)− x (s)| ds
s

≤
Lf

Γ (α)

∫ t

1

(
log

t

s

)α−1 ds

s
∥xn − x∥

≤
Lf (log T )

α

Γ (α+ 1)
∥xn − x∥ .

From the above analysis we obtain

∥Axn −Ax∥ ≤
Lf (log T )

α

Γ (α+ 1)
∥xn − x∥ .

Hence whenever xn → x, Axn → Ax. This shows the continuity of A.
To prove A is compact. We will prove that A(M) is equicontinuous. Let x ∈ M, then for any t1, t2 ∈ [1, T ]

with t1 < t2, we have

|(Ax) (t1)− (Ax) (t2)|

≤ 1

Γ (α)

∫ t1

1

∣∣∣∣∣
(
log

t1
s

)α−1

−
(
log

t2
s

)α−1
∣∣∣∣∣ |f (s, x (s))| ds

s

+
1

Γ (α)

∫ t2

t1

(
log

t2
s

)α−1

|f (s, x (s))| ds
s

≤
rLf + σf
Γ (α)

(∫ t1

1

((
log

t1
s

)α−1

−
(
log

t2
s

)α−1
)

ds

s
+

∫ t2

t1

(
log

t2
s

)α−1 ds

s

)

≤
rLf + σf
Γ (α+ 1)

(
(log t1)

α − (log t2)
α + 2

(
log

t2
t1

)α)
≤ 2

rLf + σf
Γ (α+ 1)

(
log

t2
t1

)α

,

which is independent of x and tends to zero as t2 → t1. Thus that A(M) is equicontinuous. So, the
compactness of A follows by the Ascoli-Arzela theorem.
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For the next we suppose that

max (|H (−r)| , |H (r)|) ≤ (J − 1)

J
r. (10)

Lemma 3.2. Let B be de�ned by (9). Suppose (10) and all conditions of Theorem 2.7 hold. Then B : M → M
is a large contraction.

Proof. Let B be de�ned by (9). Obviously, Bx is continuous. For having Bx ∈ M we will prove that ∥Bx∥ ≤ r.
Let x ∈ M, by (10) we get

|(Bx) (t)| ≤ |H (x (t))|

≤ max {|H (−r)| , |H (r)|} ≤ (J − 1) r

J
≤ r.

Then, for any x ∈ M, we have
∥Bx∥ ≤ r.

Consequently, we have B : M → M.
It remains to prove that B is a large contraction. By Theorem 2.7, H is a large contraction on M, then

for any x, y ∈ M with x ̸= y we have

|(Bx) (t)− (By) (t)| = |H (x (t))−H (y (t))|
≤ ∥x− y∥ .

Then ∥Bx− By∥ ≤ ∥x− y∥. Now, let ε ∈ (0, 1) be given and let x, y ∈ M, with ∥x− y∥ ≥ ε, from the proof
of Theorem 2.7, we have found a δ ∈ (0, 1), such that

|(Hx) (t)− (Hy) (t)| ≤ δ ∥x− y∥ .

Thus,
∥Bx− By∥ ≤ δ ∥x− y∥ .

The proof is complete.

Theorem 3.3. Suppose the hypotheses of Lemmas 3.1 and 3.2 hold. Let M de�ned by (5), Then (1) has a

mild solution in M.

Proof. By Lemma 3.1, A : M → M is continuous and compact. Also, from Lemma 3.2, the mapping
B : M → M is a large contraction. Next, we prove that if x, y ∈ M, we have ∥Ax+ By∥ ≤ r. Let x, y ∈ M
with ∥x∥ , ∥y∥ ≤ r. By (6) and (10), we obtain

∥Ax+ By∥ ≤ ∥Ax∥+ ∥By∥ ≤
(rLf + σf ) (log T )

α

Γ (α+ 1)
+

(J − 1) r

J

≤ r

J
+

(J − 1) r

J
= r.

Clearly, all the hypotheses of the Krasnoselskii-Burton theorem are satis�ed. Thus there exists a �xed point
z ∈ M such that z = Az+Bz. By Lemma 2.3 this �xed point is a mild solution of (1). Hence (1) has a mild
solution.

Example 3.4. Let us consider the following totally nonlinear fractional di�erential equation{
D

1
3

1+

(
x3 (t)

)
= 10−3 (1 + cos (x (t))) , t ∈ (1, e] ,

x (1) = 0,
(11)
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where α = 1/3, T = e, h (x) = x3, h (0) = 0, f (t, x (t)) = 10−3 (1 + cos (x (t))). De�ne

M =
{
x ∈ X : ∥x∥ ≤

√
3/3
}
.

Using Theorem 2.7, the mapping

H (x) = x− x3,

is a large contraction on the set M for r =
√
3/3. For x, y ∈ M there exists a positive constant Lf = 10−3 > 0

such that

|f (t, x)− f (t, y)| ≤ 10−3 |x− y| ,

and

σf = sup
t∈[1,e]

|f (t, 0)| = 2× 10−3.

By substituting r, α, T , Lf , σf , Γ (α+ 1) in (6), we get

J ≤ Γ (α+ 1)

(rLf + σf ) (log T )
α r ≃ 200.04,

then, we obtain J ∈ [3, 200]. Hence, by Theorem 3.3, (11) has a mild solution in M.

Example 3.5. Let us consider the following totally nonlinear fractional di�erential equation{
D

1
2

1+

(
x5 (t)

)
= 10−2

(
3

1+t +
|x(t)|

1+|x(t)|

)
, t ∈ (1, e] ,

x (1) = 0,
(12)

where α = 1/2, T = e, h (x) = x5, h (0) = 0, f (t, x (t)) = 10−2
(

3
1+t +

|x(t)|
1+|x(t)|

)
. De�ne

M =
{
x ∈ X : ∥x∥ ≤ 5−1/4

}
.

Using Theorem 2.7, the mapping

H (x) = x− x5,

is a large contraction on the set M for r = 5−1/4. For x, y ∈ M there exists a positive constant Lf = 10−2 > 0
such that

|f (t, x)− f (t, y)| ≤ 10−2 |x− y| ,

and

σf = sup
t∈[1,e]

|f (t, 0)| = 3

2
× 10−2.

By substituting r, α, T , Lf , σf , Γ (α+ 1) in (6), we get

J ≤ Γ (α+ 1)

(rLf + σf ) (log T )
α r ≃ 27.33,

then, we obtain J ∈ [3, 27]. Hence, by Theorem 3.3, (12) has a mild solution in M.

4. Conclusion

In this paper, by using the Krasnoselskii-Burton �xed point theorem, we obtained several su�cient
conditions which guarantee the existence of mild solutions for a totally nonlinear Caputo-Hadamard fractional
di�erential equation. Finally, two examples have been given to illustrate our obtained results. In the future,
we can study the existence and stability of nonnegative mild solutions of the problem (1).
Acknowledgements. The authors are grateful to the referees for their valuable comments which have led
to improvement of the presentation.



A. Ardjouni, A. Guer�, Results in Nonlinear Anal. 5 (2022), 161�168. 167

References

[1] M. Adivar, Y.N. Ra�oul, Existence of periodic solutions in totally nonlinear delay dynamic equations, Electronic Journal
of Qualitative Theory of Di�erential Equations 2009(1) (2009), 1�20.

[2] B. Ahmad, S.K. Ntouyas, Existence and uniqueness of solutions for Caputo-Hadamard sequential fractional order neutral
functional di�erential equations, Electronic Journal of Di�erential Equations 2017(36) (2017), 1�11.

[3] A. Ardjouni, Existence and uniqueness of positive solutions for nonlinear Caputo-Hadamard fractional di�erential equations,
Proyecciones 40(1) (2021), 139�152.

[4] A. Ardjouni, Asymptotic stability in Caputo-Hadamard fractional dynamic equations, Results in Nonlinear Analysis 4(2)
(2021), 77�86.

[5] A. Ardjouni, Positive solutions for nonlinear Hadamard fractional di�erential equations with integral boundary conditions,
AIMS Mathematics 4(4) (2019), 1101�1113.

[6] A. Ardjouni, A. Djoudi, Positive solutions for �rst-order nonlinear Caputo-Hadamard fractional relaxation di�erential
equations, Kragujevac Journal of Mathematics 45(6) (2021), 897�908.

[7] A. Ardjouni, A. Djoudi, Initial-value problems for nonlinear hybrid implicit Caputo fractional di�erential equations, Malaya
Journal of Matematik 7(2) (2019), 314�317.

[8] A. Ardjouni, A. Djoudi, Approximating solutions of nonlinear hybrid Caputo fractional integro-di�erential equations via
Dhage iteration principle, Ural Mathematical Journal 5(1) 2019, 3�12.

[9] A. Ardjouni, A. Djoudi, Existence and uniqueness of positive solutions for �rst-order nonlinear Liouville-Caputo fractional
di�erential equations, São Paulo J. Math. Sci. 14 (2020), 381�390.

[10] A. Ardjouni, A Djoudi, Existence and uniqueness of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional
di�erential equations, Results in Nonlinear Analysis 2(3) (2019) 136�142.

[11] A. Ardjouni, A. Lachouri, A. Djoudi, Existence and uniqueness results for nonlinear hybrid implicit Caputo-Hadamard
fractional di�erential equations, Open Journal of Mathematical Analysis 3(2) (2019), 106�111.

[12] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional di�erential equation, J. Math. Anal.
Appl. 311 (2005) 495�505.

[13] Z.B. Bai, T.T. Qiu, Existence of positive solution for singular fractional di�erential equation, Appl. Math. Comput. 215
(2009), 2761�2767.

[14] H. Boulares, A. Ardjouni, Y. Laskri, Positive solutions for nonlinear fractional di�erential equations, Positivity 21 (2017),
1201�1212.

[15] B. Bordj, A. Ardjouni, Periodic and asymptotically periodic solutions in nonlinear coupled Volterra integro-dynamic
systems with in nite delay on time scales, Advances in the Theory of Nonlinear Analysis and its Applications 5(2) (2021)
180�192.

[16] T.A. Burton, Stability by Fixed Point Theory for Functional Di�erential Equations, Dover Publications, New York, 2006.
[17] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional di�erential equation, J. Math. Anal. Appl.

204 (1996), 609�625.
[18] C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional di�erential equations with

ψ-Caputo derivative via monotone iterative technique, Axioms 9(57) (2020), 55�67.
[19] C. Derbazi, Z. Baitiche, M. Feckan, Some new uniqueness and Ulam stability results for a class of multiterms fractional

di�erential equations in the framework of generalized Caputo fractional derivative using the Φ-fractional Bielecki-type
norm, Turk. J. Math. 45 (2021), 2307�2322.

[20] C. Derbazi, Z. Baitiche, A. Zada, Existence and uniqueness of positive solutions for fractional relaxation equation
in terms of ψ-Caputo fractional derivative, International Journal of Nonlinear Sciences and Numerical Simulation,
https://doi.org/10.1515/ijnsns-2020-0228.

[21] E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional di�erential equation,
Electron. J. Qual. Theory Di�er. Equ. 3 (2008), 1�11.

[22] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Di�erential Equations, Elsevier, Ams-
terdam 2006.

[23] C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional di�erential equations on
the half-axis, Nonlinear Anal. 74 (2011), 5975�5986.

[24] K.Q. Lan, W. Lin, Positive solutions of systems of Caputo fractional di�erential equations, Communications in Applied
Analysis 17(1) (2013), 61�86.

[25] M. Matar, On existence of positive solution for initial value problem of nonlinear fractional di�erential equations of order
1 < α ≤ 2, Acta Math. Univ. Comenianae, LXXXIV(1) (2015), 51�57.

[26] K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional di�erential equations, Wiley, New York,
1993.

[27] S. Niyom, S.K. Ntouyas, S. Laoprasittichok, J. Tariboon, Boundary value problems with four orders of Riemann-Liouville
fractional derivatives, Adv. Di�erence Equ., 2016(165) (2016), 1�14.

[28] S.K. Ntouyas, J. Tariboon, Fractional boundary value problems with multiple orders of fractional derivatives and integrals,
Electronic Journal of Di�erential Equations, 2017(100) (2017), 1�18.

[29] I. Podlubny, Fractional Di�erential Equations, Academic Press, San Diego, 1999.



A. Ardjouni, A. Guer�, Results in Nonlinear Anal. 5 (2022), 161�168. 168

[30] C. Wang, R. Wang, S. Wang, C. Yang, Positive Solution of Singular Boundary Value Problem for a Nonlinear Fractional
Di�erential Equation, Bound. Value Probl. 2011 (2011), Art ID 297026.

[31] C. Wang, H. Zhang, S. Wang, Positive solution of a nonlinear fractional di�erential equation involving Caputo derivative,
Discrete Dynamics in Natural and Society 2012 (2012), Art ID425408.

[32] S. Zhang, Existence results of positive solutions to boundary value problem for fractional di�erential equation, Positivity,
13(3) (2009), 583�599.

[33] S. Zhang, The existence of a positive solution for a fractional di�erential equation, J. Math. Anal. Appl. 252 (2000),
804�812.


	1 Introduction
	2 Preliminaries
	3 Main results
	4 Conclusion

