Space-Occupying Lesions: Rare Causes Of Carpal Tunnel Syndrome

Yer Kaplayan Lezyonlar: Karpal Tünel Sendromunun Nadir Nedenleri

Raif Özden¹, Ibrahim Gökhan Duman¹, Ömer Serkan Yıldız¹, Vedat Uruç¹, Yunus Doğramacı¹, Erkam Kömürçü²

¹Mustafa Kemal Üniversitesi, Tıp Fakültesi, Ortopedi ve Travmatoloji AD., Hatay
²Çanakkale Onsekiz Mart Üniversitesi, Tıp Fakültesi, Ortopedi ve Travmatoloji AD., Çanakkale

Abstract
Most cases of carpal tunnel syndrome (CTS) are idiopathic. It is an extremely common entrapment neuropathy in the clinical practice. CTS caused by a tumor is a rare condition and it is more complicated than idiopathic CTS. Thus, the aim of our study is to evaluate the diagnosis and management of CTS caused by space-occupying lesions especially soft tissue tumors. CTS patients treated with surgery between 2004-2011 were included to the study. Of 410 patients, 12 were diagnosed as space occupying lesion. Patients with palpable mass or local swelling and neuropathy symptoms underwent magnetic resonance imaging (MRI) or ultrasonography for diagnosis. Complete excision of the tumors were performed. The symptoms subsided after surgery. CTS produced by a space-occupying lesion is uncommon and more difficult to treat than idiopathic CTS. Histopathologic examination revealed 1 tenosynovitis and tumors in 11 patients. The histopathological diagnosis of tumors were ganglion cysts in two, lipoma in five, lipofibromatous hamartoma in three, and hemangioma in one patient. In cases with unilateral CTS who had swelling or tenderness on the area of wrist, it is essential to achieve MRI, ultrasonography, and computed tomography alone or in combination in order to rule out space-occupying lesions around the carpal tunnel.

Key words: Carpal tunnel syndrome, tumors, space-occupying lesions.

Özet

Anahtar kelimeler: Karpal tünel sendromu, tümör, yer kaplayan lezyon.

Background
Idiopathic CTS is the most common peripheral neuropathy. Although most cases are of systemic conditions, including diabetes
mellitus, rheumatoid arthritis, hypothyroidism, and pregnancy. Secondary compressive causes are rare. Among secondary causes, tumors are even rarer. CTS generally presents bilaterally and space-occupying lesions should be suspected in cases with unilateral symptoms, particularly with a long history and when the symptomatic hand displays severe neurologic impairment, while the contralateral hand is neurologically intact [1]. However, these space-occupying lesions are overlooked or misdiagnosed and treated as idiopathic CTS. It is known that there is an association between raised intracarpal canal pressure and clinical CTS. The raised pressure results from either an increase in content, or a decrease in size of the carpal canal, or combination of the two. In space occupying lesions of carpal canal one or both of these conditions can be seen but generally such factors are absent in most of the cases [2]. CTS due to mass effect is very unusual, however, there are reports of hypertrophy of tenosynoviums,[3] tumorous conditions,[4-6] tophaceous gout,[7-9] and malunion after distal radial fractures [10,11]. It is possible to detect space-occupying bony lesions with plain radiographs before surgery, but it is problematic to detect space occupying soft tissue tumors without particular physical examination. Thus, the aim of our study was to evaluate the diagnosis and management of CTS caused by space-occupying lesions especially soft tissue tumors.

Methods
A retrospective study was performed on a case series of 12 patients aged 19 to 63 years (mean age, 42.3 years) who underwent surgery for CTS due to space-occupying lesions. There were 3 men and 9 women. Volar lunate dislocations, malunion due to distal radial fracture, carpal bone fractures were excluded. The mean follow-up was 25 months (ranged 17 to 31). All patients had unilateral involvement. The diagnosis of carpal tunnel syndrome was made clinically and electrophysiologically. There was sensory loss in the distribution of the median nerve and weakness of the abductor pollicis brevis and of opposition of the thumb. Both of the Tinel’s and Phalen’s tests were positive. Nerve conduction studies were consistent with CTS. Examination of the patients with tumor revealed a soft non-fluctuant mass around the volar aspect of the wrist and/or hand.

In our institution, when a patient is clinically suspected of CTS, we do not routinely perform radiological tests (radiographs of carpal tunnel, posteroanterior, and lateral views) except the patients who has a history of distal radial fracture. In patients with swelling, palpable mass or tenderness on the region of wrist, plain radiographs, and ultrasonography and/or MRI were performed to exclude mass. Occasionally computed tomography was taken when the patients had a history of distal radial fracture. We performed open carpal ligament release and removed space-occupying lesions using the standard longitudinal incision. Sex and age were compared with patients who had idiopathic CTS. Chi squared test and Mann-Whitney U test were used.

Results
We performed surgery on 410 patients to treat CTS from February 2004 to October 2011. Of these patients 305 patients had bilateral and 105 patients had unilateral CTS. The preoperative physical examination revealed definite palpable mass or diffuse swelling at the volar aspect of the wrist in 12 patients. Under general anaesthesia, a longitudinal incision was made at the wrist. After dividing the transverse carpal ligament median nerve was detected. To simplify exploration, the incision was generally extended up to the middle or distal third of the forearm depending on the size of the mass. Following surgery, symptoms were resolved without recurrence or complications in all patients. The median nerve was compressed due to mass in the carpal canal. The types of lesions confirmed by histopathologic examination were as follows; ganglion cysts in two, lipoma in five, lipofibromatous hamartoma in three, hemangioma in one, and tenosynovitis in one patient. A detailed description of the causative factors is given on Table 1. There was no statistically significant difference in terms of gender and age between the two groups (p>0.05). All 5 lipoma cases showed clinically symptoms of CTS, on clinical examination there was a firm swelling in the palmar aspect of hand and wrist with well defined margins and tenderness (Figure 1a). Tinel sign and Phalen tests were positive. MRI study confirmed the diagnosis of a benign tumor, possibly lipoma, showing bright signal on T1 images (Figure 1b) and dark signals on fat suppressed images (Figure 1c). In these patients carpal tunnel was successfully
decompressed with a longitudinal incision (Figure 1d). Histopathologic examination showed a lipomatous tumor composed of mature adipocytes without intermingling nerve fibers. At 6 months after the excision, the numbness and pain had disappeared.

Table 1. Clinical features of the patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Duration of symptoms (months)</th>
<th>Age</th>
<th>Sex</th>
<th>Diagnostic image</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>50</td>
<td>M</td>
<td>MRI</td>
<td>Lipoma</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>60</td>
<td>F</td>
<td>MRI</td>
<td>Lipoma</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>55</td>
<td>F</td>
<td>MRI</td>
<td>Lipoma</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>49</td>
<td>F</td>
<td>MRI</td>
<td>Lipoma</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>20</td>
<td>M</td>
<td>MRI</td>
<td>LH</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>24</td>
<td>M</td>
<td>MRI</td>
<td>LH</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>25</td>
<td>M</td>
<td>MRI</td>
<td>LH</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>35</td>
<td>F</td>
<td>USG</td>
<td>Ganglion</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>19</td>
<td>F</td>
<td>USG</td>
<td>Ganglion</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>50</td>
<td>M</td>
<td>MRI</td>
<td>GH</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>42</td>
<td>F</td>
<td>MRI</td>
<td>Hemangioma</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lipofibromatous hamartoma: LH, Granulomatous reaction: GH, Ultrasonography: USG

Three patient diagnosed as CTS caused by lipofibromatous hamartoma revealed a soft, non-tender mass over the volar aspect of the wrist with no atrophy of the thenar eminence. There was no deficits in motor function affecting the hand. Altered sensation at the distribution of the median nerve was detected. Tinel’s sign and Phalen’s test were both positive. The MRI showed volar mass within the carpal tunnel which was firstly thought to be a ganglion cyst compressing the median nerve in one patient (Figure 2a, b, and c). Histological examination revealed non-neoplastic fibrofatty elements with mature fibrous and adipose tissue. Under general anaesthesia, a longitudinal incision was made at the wrist and the carpal tunnel was successfully decompressed (Figure 2d and e).

Two patients had CTS and a volar wrist ganglion. They were referred to our institute after the onset of symptoms. The physical examination showed hypoaesthesia in the median nerve distribution. There was no obvious thenar muscle atrophy or weakness of
palmar abduction of the thumb. There was swelling or tenderness on the area of wrist. We performed ultrasonography. Decompression and ganglion excision were performed (Figure 3a,b). After 16 months of the surgery, 2 patients noticed complete return of the sensation and resolution of the paresthesia.

In one patient with CTS, MRI showed a mass around the median nerve (Figure 4a and b). Open longitudinal carpal ligament release was performed, and all the tissue was excised and a complete tenosynovectomy was performed (Figure 4c and d). Histologic examination of all the specimens showed granulomatous reaction (Figure 5). It was thought that it can be tuberculosis. However, in microbiological examination, mycobacterium tuberculosis was not cultured from the patient.

Another patient had a mass on the distal volar wrist. The mass had continued to grow progressively. On physical examination, the tumor was, soft, and tender. Patient had CTS symptoms. The results of electromyogram confirmed CTS. Plain X-ray revealed no specific findings. The clinical appearance was suggestive of lipoma of the right wrist but the MRI was reported as hemangioma (Figure 6a). Thus, open carpal tunnel release with resection of the mass was performed (Figure 6b). Histopathologic evaluation showed dilated and congested vascular structures in a fibrocollagenous stroma with region of bleedings, consistent with of hemangioma. There has been no recurrence after 18 months of the operation.

![Figure 3. a The ganglion was found under the median nerve in the carpal tunnel. b Open carpal tunnel release with resection of the ganglion.](image)

![Figure 4. a, b Axial and frontal magnetic resonance images of right wrist demonstrating hypointense signal of the mass. c, d Intraoperative picture of lipofibromatous hamartoma of the median nerve.](image)

![Figure 5. Microscopic view of the mass displaying granulomatous reaction (Hematoxylin-Eosin, x100).](image)
Discussion

CTS is known to be the most common compressive neuropathy in the hand. The carpal tunnel is a very small area containing the fibrous tissue and carpal bones, where 9 flexor tendons and median nerve pass through. Although most cases of CTS are idiopathic, the rare identifiable causes could be the space-occupying lesions such as the swelling of tendon sheath, rheumatoid arthritis, distal radius fracture, volar dislocation of lunate, ganglion, lipoma, lipofibromatous hamartoma and gout. Systemic causes of the CTS are hypothyroidism, diabetes, acromegaly, amyloidosis, and pregnancy. If the space-occupying lesions are not detected or misdiagnosed and treated as idiopathic CTS, the patient’s symptoms will not improve.

Idiopathic CTS usually occurs bilaterally. According to Padua et al.[12] bilateral impairment of median nerve is the rule in patients with CTS. Bagatur et al.[1,13] reported that CTS usually presents bilaterally and space-occupying lesions should be suspected in patients with unilateral symptoms, particularly with a long history and when the symptomatic hand shows severe neurophysiologic impairment, while the contralateral hand is neurophysiologically normal. In idiopathic CTS 66% of patients with unilateral CTS symptoms exhibit abnormal results in nerve conduction tests on contralateral hand. Thus, when patient has unilateral abnormalities, it is essential to suspect other reasons for CTS besides idiopathic CTS. Nakamichi and Tachibana[14] stated an increased incidence of space-occupying lesions in unilateral CTS compared with bilateral CTS and concluded that when the condition is not bilateral and the aetiology is not obvious, a space-occupying lesion should be suspected. Despite the surgical treatment of CTS, some patients may still suffer from symptoms of CTS. When a physical examination shows swelling or tenderness around the wrist flexion creases, firstly carpal tunnel view test should be performed. Furthermore, if necessary, ultrasound is an ideal diagnostic test, especially for deeply located masses and can be used in such cases. MRI, however, provides more information about tumour type and anatomic relations and is so desirable for diagnostic precision and preoperative planning. Ultrasonogram has its advantages such as wide availability, lower cost, and shorter examination time. Additionally, accurate characteristics of cystic lesion can be identified by ultrasonogram. Thus, ultrasonogram was used in our study to detect ganglion cyst. CT scans are better than MRI regarding the detection of bony lesion. It is essential to perform these tests to identify the space-occupying lesion when unilateral CTS patients exhibit tenderness or swelling of volar wrist area [15,16].

Conclusions

As a conclusion in cases with unilateral CTS, and swelling or tenderness on the area of wrist, it is essential to achieve MRI, computed tomography, ultrasonography in combination or alone in order to rule out space-occupying lesions around the carpal tunnel.
References